JPH05340870A - Total-reflection absorption spectrum measuring instrument - Google Patents

Total-reflection absorption spectrum measuring instrument

Info

Publication number
JPH05340870A
JPH05340870A JP17016192A JP17016192A JPH05340870A JP H05340870 A JPH05340870 A JP H05340870A JP 17016192 A JP17016192 A JP 17016192A JP 17016192 A JP17016192 A JP 17016192A JP H05340870 A JPH05340870 A JP H05340870A
Authority
JP
Japan
Prior art keywords
mirror
point
focal point
sample
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17016192A
Other languages
Japanese (ja)
Inventor
Nobuaki Takagi
伸朗 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17016192A priority Critical patent/JPH05340870A/en
Publication of JPH05340870A publication Critical patent/JPH05340870A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand the applicable scope of the total-reflection absorption spectrum measuring method (ATR) by making incident light to incident to an ellipsoidal mirror through one focal point of the mirror and positioning the surface of a sample to the other focal point or the image point of a plane mirror at the same focal point. CONSTITUTION:Projected infrared rays must be condensed to one focal point F' side of an ellipsoidal mirror 1 after the rays are reflected by a notched mirror 2 and the mirror 1. When an object point 0 is positioned on the extension line of the center axis M of the mirror 1 on the focal point F' side and a plane mirror 3 which is the auxiliary mirror of a Newtonian reflecting microscope is positioned so that the points 0 and F' can become symmetrical with respect to the mirror 3, the infrared rays can be condensed to the point 0. In addition, after the title semispherical total-reflection absorption spectrum measuring instrument having its center at the point 0, namely, an ATR prism 4 is positioned, a sample is positioned below the prism 4. Therefore, the rays condensed to the point 0 are reflected by the mirror 1 as if they are emitted from the focal point F' and condensed to the other focal point F of the mirror after they are reflected by the sample and mirror 3. The rays condensed to the point F are photometrically measured with a measuring instrument provided on the outside of the figure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射顕微鏡システムを
利用した全反射吸収スペクトル測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total reflection absorption spectrum measuring apparatus using a reflection microscope system.

【0002】[0002]

【従来の技術】全反射吸収スペクトル測定法(ATR)
は、試料面に試料より低屈折率の透明体を接触させ、こ
の低屈折率透明体側から、試料との境界面で全反射が起
きる入射角で測定光を入射させ、全反射された光の試料
による吸収減光を検出することにより、試料の吸収特性
を測定する方法で、従来から、赤外光について測定を行
う場合、反射光学系によって構成された赤外顕微分光装
置を用いた図8に示すような装置が用いられている。
2. Description of the Related Art Total reflection absorption spectrum measurement method (ATR)
Contact the sample surface with a transparent material with a lower refractive index than the sample, and from this low refractive index transparent material side, enter the measurement light at an incident angle where total reflection occurs at the interface with the sample, and A method of measuring the absorption characteristics of a sample by detecting the absorption and extinction of the sample. Conventionally, in the case of measuring infrared light, an infrared microspectroscopic device constituted by a reflection optical system is used. An apparatus as shown in is used.

【0003】図8はカセグレン式赤外顕微分光光度計の
対物鏡の部分を示す。対物鏡は中央に孔のあいた主鏡1
0と、この主鏡10と同軸の副鏡11とよりなってお
り、図外の分光器から出射した単色光が、図で光軸の右
半分を下方に光軸と平行に対物鏡光学系に入射せしめら
れ、その光は主鏡10及び副鏡11で反射されて対物鏡
光学系の集光点0に集光される。試料Sはその表面0点
を中心とする半球形のATRプリズム4の下面に接触さ
せる。このすると、0点に集光する光は、ATRプリズ
ムでは屈折されず、そのまま0点に集光し、試料面で全
反射されて、対物光学系の光軸の左半部を上行し、検出
される。
FIG. 8 shows a part of an objective mirror of a Cassegrain infrared microspectrophotometer. The objective is a primary mirror with a hole in the center 1
0 and a secondary mirror 11 coaxial with the main mirror 10, and monochromatic light emitted from a spectroscope (not shown) is located in the right half of the optical axis downward in the figure and is parallel to the optical axis. Light is reflected by the primary mirror 10 and the secondary mirror 11, and is condensed at the focal point 0 of the objective mirror optical system. The sample S is brought into contact with the lower surface of the hemispherical ATR prism 4 centered on the surface 0 point. In this case, the light focused on the 0 point is not refracted by the ATR prism, is focused on the 0 point as it is, is totally reflected by the sample surface, and goes up the left half of the optical axis of the objective optical system for detection. To be done.

【0004】このようなカセグレン式の反射顕微鏡で
は、上に向けた副鏡11の下方に光を集光させる構造で
あるため、主鏡10の副鏡11よりも上にある部分から
反射された光が0点に集光されることになるため、試料
照射光の試料面への入射角を充分大きく設定することが
できず、ATRプリズムと試料との接触面で全反射を起
こさせるためには、ATRプリズムの屈折率を試料に対
して充分小さなものにする必要があり、試料によって
は、ATRプリズムとして適当な物質がなく、ATR測
定法が実施できないと云う問題があった。
In such a Cassegrain type reflection microscope, since the structure is such that light is condensed below the secondary mirror 11 facing upward, the light is reflected from the portion of the primary mirror 10 above the secondary mirror 11. Since the light is focused at the 0 point, the incident angle of the sample irradiation light on the sample surface cannot be set sufficiently large, and total reflection is caused at the contact surface between the ATR prism and the sample. It is necessary to make the refractive index of the ATR prism sufficiently smaller than that of the sample, and there is a problem that depending on the sample, there is no suitable substance for the ATR prism and the ATR measurement method cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、入射光の入
射角が広くしても測定できるように、反射顕微鏡を用い
たATR測定で、試料照射光の試料面への入射角を大き
くしても、ATRの適用範囲を拡大することを目的とす
る。
SUMMARY OF THE INVENTION According to the present invention, the ATR measurement using a reflection microscope increases the incident angle of the sample irradiation light on the sample surface so that the measurement can be performed even if the incident angle of the incident light is wide. However, the purpose is to expand the applicable range of ATR.

【0006】[0006]

【課題を解決するための手段】顕微全反射吸収スペクト
ル測定装置において、図1に示すように、反射対物鏡と
して楕円面鏡を用い、上記装置への入射光を上記楕円面
鏡の一方の焦点Fを通して同楕円面鏡に入射させる投光
手段と、上記楕円面鏡の他方の焦点F’と同楕円面鏡の
この焦点F’の側の頂点との間に同頂点側に反射面を向
けて同楕円面鏡の両焦点を結ぶ楕円面鏡の中心軸Mに対
して垂直に挿入された副鏡の平面鏡3と、この平面鏡3
に関して上記他方の焦点F’と対称な点0を中心とする
半球状のATRプリズム4を設けた。或は、図4,図5
に示すように、楕円面鏡の一つの焦点に直接試料面の集
光点を位置させるようにした。
In a microscopic total reflection absorption spectrum measuring apparatus, an ellipsoidal mirror is used as a reflecting objective as shown in FIG. 1, and incident light to the apparatus is focused on one side of the ellipsoidal mirror. A reflecting surface is directed to the same ellipsoidal mirror between the light projecting means for making the light incident on the same ellipsoidal mirror through F and the other focus F ′ of the ellipsoidal mirror and the apex on the side of this focus F ′ of the same ellipsoidal mirror. And the plane mirror 3 of the secondary mirror inserted perpendicularly to the central axis M of the ellipsoidal mirror that connects both focal points of the same ellipsoidal mirror, and this plane mirror 3
Regarding the above, a hemispherical ATR prism 4 centered on a point 0 symmetrical to the other focus F ′ is provided. Alternatively, FIG. 4 and FIG.
As shown in, the focal point of the sample surface was directly positioned at one focal point of the ellipsoidal mirror.

【0007】[0007]

【作用】本発明によれば、副鏡の平面鏡が楕円面鏡の焦
点と頂点との間に挿入され、試料への集光点の像が、上
記焦点となるようにしてあるので、副鏡と楕円面鏡の焦
点との間隔を任意に小さくすることができ、この間隔を
小さくすることで、試料面の集光点における入射角,反
射角を任意に90°に近ずけることが可能となる。或
は、試料面を直接楕円面鏡の焦点に置くことで、試料へ
の入射角を一層大きくすることが可能となる。
According to the present invention, the plane mirror of the secondary mirror is inserted between the focal point and the apex of the ellipsoidal mirror so that the image of the focal point on the sample becomes the focal point. And the focal point of the ellipsoidal mirror can be made arbitrarily small, and by making this space small, the incident angle and the reflection angle at the condensing point of the sample surface can be made arbitrarily close to 90 °. Becomes Alternatively, by placing the sample surface directly on the focal point of the ellipsoidal mirror, the incident angle on the sample can be further increased.

【0008】[0008]

【実施例】図1に本発明の一実施例を示す。図におい
て、1はF,F’を焦点とする楕円面鏡である。2は図
2に示すような切欠ミラーで、2つの焦点F,F’を結
ぶ中心軸Mに切欠縁2Aが当接し、ミラー部2Bが図で
中心軸の左側に位置するように配置されており、点Pは
切欠ミラー2の鏡面に対して焦点Fと対称な点であり、
図外の赤外光源から図外投光手段により点Pを通過する
ように赤外光が切欠ミラー2に投光されると、投光され
た赤外光は、切欠ミラー2で反射され、楕円面鏡1で反
射されて、もう1方の焦点であるF’に集光されるはず
であるが、中心軸M上の他方の焦点F’側の延長線上に
物体点(集光点)0を配置し、平面鏡3を0とF’がニ
ュートン式反射顕微鏡の副鏡の平面鏡3に対して対称と
なるように配置すれば、F’に集光するはずの赤外光は
物体点0に集光される。物体点0には赤外光の入射側
(図上側)に0点を中心とする半球形のATRプリズム
4を配置し、下方に試料Sを配置する。5は切欠ミラー
2と楕円面鏡1との間に配置されたアパーチャーで、図
3に示すような2つの半円スリット5A,5Bを有して
おり、スリット5Aは入射スリットで、切欠ミラー2か
ら楕円面鏡1に照射される赤外光において、必要な角度
以外の光を遮光し、スリット5Bは出射スリットで0点
で試料から反射され、更に、楕円面鏡1から反射された
光を通す。物体点0に集光された光は試料Sで反射さ
れ、平面鏡3で反射されることで、あたかも焦点F’か
ら出た光のように、楕円面鏡1で反射され、焦点Fに集
光される。焦点Fに集光された光は、図外の測定装置で
測光される。図4は本発明の第2実施例で、副鏡を使わ
ないものである。試料面の集光点0を直接楕円面鏡1の
一方の焦点F’に置いたものである。図1の構造と対応
する部分には図と同じ符号を付し、一々の説明は冗長に
なるので省略する。図5は本発明の第3実施例で、上記
図4の実施例の変形例で、特に大きな入射角を必要とす
る場合に適する。図6は本発明の第4実施例で、図1の
変形例であり、入射光と反射光を切欠ミラー2による楕
円面鏡1の焦点Fに相当する位置で、図7に示すような
第2のアパーチャー6により、更に細く光束を絞ったも
ので、より微小な範囲の測定を行うことができる。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an ellipsoidal mirror whose focal points are F and F '. Reference numeral 2 denotes a notched mirror as shown in FIG. 2, in which the notched edge 2A is in contact with the central axis M connecting the two focal points F and F ′, and the mirror portion 2B is arranged so as to be located on the left side of the central axis in the figure. The point P is a point symmetrical to the focal point F with respect to the mirror surface of the cutout mirror 2,
When the infrared light is projected from the infrared light source (not shown) by the light projecting means (not shown) onto the cutout mirror 2, the projected infrared light is reflected by the cutout mirror 2. It should be reflected by the ellipsoidal mirror 1 and condensed at the other focal point F ′, but the object point (focus point) on the extension line on the other focal point F ′ side on the central axis M. By arranging 0 and arranging the plane mirror 3 so that 0 and F ′ are symmetric with respect to the plane mirror 3 of the secondary mirror of the Newton-type reflection microscope, the infrared light which should be focused on F ′ is at the object point 0. Is focused on. At the object point 0, a hemispherical ATR prism 4 centered at 0 is arranged on the incident side of infrared light (upper side in the figure), and a sample S is arranged below. Reference numeral 5 is an aperture arranged between the cutout mirror 2 and the ellipsoidal mirror 1, and has two semicircular slits 5A and 5B as shown in FIG. 3, and the slit 5A is an entrance slit, and the cutout mirror 2 The infrared light emitted from the ellipsoidal mirror 1 is shielded from light other than the required angle, and the slit 5B is reflected from the sample at the 0 point by the exit slit, and further the light reflected from the ellipsoidal mirror 1 is reflected. Pass through. The light focused on the object point 0 is reflected by the sample S and is reflected by the plane mirror 3, so that it is reflected by the ellipsoidal mirror 1 and is focused on the focus F as if it were the light emitted from the focus F ′. To be done. The light condensed at the focal point F is measured by a measuring device (not shown). FIG. 4 shows a second embodiment of the present invention in which a secondary mirror is not used. The focal point 0 on the sample surface is directly placed on one focus F ′ of the ellipsoidal mirror 1. The parts corresponding to those of the structure of FIG. 1 are denoted by the same reference numerals as those in the figure, and the description thereof will be redundant and will not be repeated. FIG. 5 shows a third embodiment of the present invention, which is a modification of the embodiment of FIG. 4 and is suitable for a case where a particularly large incident angle is required. FIG. 6 shows a fourth embodiment of the present invention, which is a modification of FIG. 1, in which incident light and reflected light are located at a position corresponding to the focal point F of the ellipsoidal mirror 1 formed by the cutout mirror 2 as shown in FIG. With the aperture 6 of 2, the light flux is further narrowed, and it is possible to perform measurement in a finer range.

【0009】[0009]

【発明の効果】本発明によれば、凹面鏡に楕円面鏡を用
いたニュートン式反射対物鏡を使うことにより、大きな
入射角(>60度)でATR測定を行うことが可能とな
り、測定対象やATRプリズムの材質に対する自由度が
大きくなっり、測定可能な物質範囲が広くなった。
According to the present invention, by using a Newton-type reflective objective mirror using an ellipsoidal mirror as a concave mirror, it becomes possible to perform ATR measurement at a large incident angle (> 60 degrees), and The degree of freedom for the material of the ATR prism is increased, and the measurable substance range is widened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の側面構成図FIG. 1 is a side configuration diagram of an embodiment of the present invention.

【図2】上記実施例における切欠ミラーの詳細図FIG. 2 is a detailed view of the cutout mirror in the above embodiment.

【図3】上記実施例におけるアパーチャーの詳細図FIG. 3 is a detailed view of the aperture in the above embodiment.

【図4】本発明の第2実施例の側面構成図FIG. 4 is a side view of the second embodiment of the present invention.

【図5】本発明の第3実施例の側面構成図FIG. 5 is a side view of the third embodiment of the present invention.

【図6】本発明の第4実施例の側面構成図FIG. 6 is a side view of the fourth embodiment of the present invention.

【図7】上記実施例におけるアパーチャーの詳細図FIG. 7 is a detailed view of the aperture in the above embodiment.

【図8】従来例の側面構成図FIG. 8 is a side view of a conventional example.

【符号の説明】[Explanation of symbols]

1 楕円面鏡 2 切欠ミラー 3 平面鏡 4 ATRプリズム 5 アパーチャー 1 Ellipsoidal mirror 2 Notched mirror 3 Plane mirror 4 ATR prism 5 Aperture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反射顕微鏡を用いた全反射吸収スペクトル
測定装置において、反射対物鏡として楕円面鏡を用い、
入射光を該楕円面鏡の一つの焦点を通して同楕円面鏡に
入射させ、他の焦点或は同焦点の平面鏡の像点に試料面
を位置させるようにしたことを特徴とする全反射吸収ス
ペクトル測定装置。
1. A total reflection absorption spectrum measuring apparatus using a reflection microscope, wherein an ellipsoidal mirror is used as a reflection objective mirror,
Total reflection absorption spectrum characterized in that incident light is made incident on the same ellipsoidal mirror through one focal point of the ellipsoidal mirror and the sample surface is positioned at the image point of the other focal point or the plane mirror of the same focal point. measuring device.
JP17016192A 1992-06-04 1992-06-04 Total-reflection absorption spectrum measuring instrument Pending JPH05340870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17016192A JPH05340870A (en) 1992-06-04 1992-06-04 Total-reflection absorption spectrum measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17016192A JPH05340870A (en) 1992-06-04 1992-06-04 Total-reflection absorption spectrum measuring instrument

Publications (1)

Publication Number Publication Date
JPH05340870A true JPH05340870A (en) 1993-12-24

Family

ID=15899816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17016192A Pending JPH05340870A (en) 1992-06-04 1992-06-04 Total-reflection absorption spectrum measuring instrument

Country Status (1)

Country Link
JP (1) JPH05340870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650043A1 (en) * 1993-10-25 1995-04-26 Jasco Corporation Optical system for high-sensitivity reflectivity measurement equipment
CN109358019A (en) * 2018-12-13 2019-02-19 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650043A1 (en) * 1993-10-25 1995-04-26 Jasco Corporation Optical system for high-sensitivity reflectivity measurement equipment
US5483350A (en) * 1993-10-25 1996-01-09 Kazuhiro Kawasaki Optical system for infrared spectroscopy having an aspherical concave mirror
CN109358019A (en) * 2018-12-13 2019-02-19 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis
CN109358019B (en) * 2018-12-13 2023-12-22 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis

Similar Documents

Publication Publication Date Title
KR100293126B1 (en) Inspection device
JP4744215B2 (en) Dark field inspection lighting system
JP3188295B2 (en) Optical analyzer and optical analysis method
JPS58145911A (en) Optical system for testing with light transmission microscope by reflected light irradiation
EP1035408A1 (en) Apparatus for measuring characteristics of optical angle
US6943880B2 (en) Spectroscopic ellipsometer with adjustable detection area
JPH08254650A (en) Focus detector
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
JPH05340870A (en) Total-reflection absorption spectrum measuring instrument
KR100992839B1 (en) Spectroscopic Ellipsometer with a Microspot Module
JPH09250966A (en) Apparatus for measuring reflectivity
JP2006047780A (en) Infrared microscope
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JP3136576B2 (en) Microscopic total reflection absorption spectrum measurement device
US7327457B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths while minimizing polarization changes
JPH11142241A (en) Measuring apparatus for spectral transmittance
JP2001174708A (en) Infrared microscope
JPH07120379A (en) Optical system for high-sensitivity reflection measuring apparatus
JPH04297810A (en) Optical tester
JPH0783845A (en) Inspection device
JPH063263A (en) Microscopic total reflection absorption spectrum measuring device
JPH03172728A (en) Reflectivity measurement device for light-transmissive member
JPH08233728A (en) Microscopic total reflection absorption spectrum measuring apparatus
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JP2742926B2 (en) Reflective illumination optical device