JP4057315B2 - Tire durability test method - Google Patents

Tire durability test method Download PDF

Info

Publication number
JP4057315B2
JP4057315B2 JP2002061614A JP2002061614A JP4057315B2 JP 4057315 B2 JP4057315 B2 JP 4057315B2 JP 2002061614 A JP2002061614 A JP 2002061614A JP 2002061614 A JP2002061614 A JP 2002061614A JP 4057315 B2 JP4057315 B2 JP 4057315B2
Authority
JP
Japan
Prior art keywords
tire
test method
holding
filling
durability test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002061614A
Other languages
Japanese (ja)
Other versions
JP2003262568A (en
Inventor
泰司 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002061614A priority Critical patent/JP4057315B2/en
Publication of JP2003262568A publication Critical patent/JP2003262568A/en
Application granted granted Critical
Publication of JP4057315B2 publication Critical patent/JP4057315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、タイヤの耐久試験方法に関するものであり、より詳細には、高温環境下に曝されたタイヤの特にクラウン部において生じる経時的劣化に伴うクリープ挙動を短期間で効率良く模擬できるタイヤの耐久試験方法に関するものである。
【0002】
【従来の技術】
高温環境下に曝されたタイヤにおいて生じる経時的劣化における耐久性を評価するための従来の試験方法としては、例えば、特開平9−133611号公報に記載されている。
【0003】
上掲公報記載のタイヤの耐久試験方法は、タイヤ内に高濃度の酸素を注入し、酸素によるタイヤの劣化を促進させた後、タイヤに空気を注入し、荷重を負荷した状態で回転ドラム上で走行させてタイヤの耐久性を評価したものであり、かかる方法は、動的負荷状態のタイヤの耐久性を評価するため、例えば、高温実使用環境下でタイヤが経時的に劣化して、特にベルトを構成するコード層間ゴムが劣化して、タイヤ径成長が生じ、最終的にはクリープ破壊に至るような故障形態の他、路面状態や荷重負荷条件等の他の因子による故障形態も加味してタイヤの耐久性を総合的に評価したものである。
【0004】
このため、高温環境下に曝されたタイヤが経時的に劣化してタイヤ径成長が生じ、最終的にはクリープ破壊に至るような故障形態だけに因するタイヤの耐久性の良否を評価することはできず、他の因子の影響をなくして、タイヤ自体の耐久性のみを評価する方法としては適さなかった。
【0005】
また、高温環境下に曝されたタイヤ自体の耐久性のみを評価するための手段としては、静止した無負荷状態で耐久性試験を行うことが有用である。
【0006】
静止した無負荷状態で行う従来の耐久性試験方法としては、例えば常温にてタイヤ内部に水を注入し、その破壊圧(水圧)で評価する、いわゆるタイヤ水圧試験方法があるが、かかるタイヤ水圧試験方法は、一般に常温で行われ、かつタイヤのビード部のみが破壊する場合が多かったため、高温環境下に曝されたタイヤ自体の耐久性を評価するには適さなかった。
【0007】
また、高温環境下で実使用されたタイヤは、劣化してクリープによって破壊に至るまでには、通常はかなり長期間を有するため、かかるクリープ破壊を短期間で模擬できる方法を開発できれば、タイヤ自体の耐久性の良否を予測できる点で有利になる。
【0008】
【発明が解決しようとする課題】
この発明の目的は、静止した無負荷状態のタイヤにおいて、タイヤ充填圧とタイヤの加熱温度を適正に設定することによって、高温環境下で実使用されたタイヤの特にクラウン部において生じる経時的劣化に伴うクリープ挙動を、短期間で効率良く模擬できるタイヤの耐久試験方法を提供することにある。
【0009】
上記目的を達成するため、この発明のタイヤの耐久試験方法は、タイヤに気体を充填して、静止した無負荷状態のタイヤ充填圧を一定の充填圧で保持する高内圧保持工程と、タイヤの少なくともトレッド部の全体を50℃以上の一定温度に加熱し、少なくともタイヤが径成長するまで前記加熱温度で保持する恒温保持工程とを有し、タイヤの径成長は、トレッド部の踏面に対向させて配置した変位計により測定することにある。
【0010】
また、高内圧保持工程に先だって、タイヤに高濃度酸素を含有する気体を充填して、酸素によるタイヤの劣化を促進させる工程をさらに有することが好ましい。
【0011】
さらに、高内圧保持工程での充填圧は最高空気圧以上1500kPa以下であること、 及び/又は、高内圧保持工程におけるタイヤへの気体の充填は遠隔操作にて行うことが好ましい。
尚、ここでいう「最高空気圧」とは、JATMA YEAR BOOK (2001)に規定する最高空気圧(最大負荷能力に対応する空気圧)を意味する。
【0012】
さらにまた、恒温保持工程での加熱・保持温度は50〜120℃の範囲であること、及び/又は、恒温保持工程におけるタイヤの加熱・保持はタイヤウォーマーを用いて行うことが好ましい。
【0014】
また、タイヤをホイールに組み付けてタイヤ車輪とし、このタイヤ車輪のホイールの両側面に存在する中心穴に一対の固定軸をそれぞれ挿入して、タイヤ車輪を空中に浮かした状態で固定することによって、タイヤを静止した無負荷状態とすることがより好適である。
【0015】
【発明の実施の形態】
高温環境下、例えば炎天下に屋外で長期間曝されたタイヤは、それを構成するゴム部分が劣化してクリープ現象が生じやすく、コード層間のゴム接着力が低下する等の理由によりタイヤが径成長して、図1に示すように、タイヤ10がクリープ破壊することになる。
【0016】
上述した水圧試験方法では、ベルトが破壊するよりも先にビード部が破壊する場合が多く、クリープ現象によるタイヤ自体の耐久性を正確に把握することができず、また、タイヤの実使用条件と同様の条件下で試験を行う場合には、長期間を要することになり、いずれの方法も短期間でクリープ現象によるタイヤ自体の耐久性の良否を正確に把握することはできなかった。
【0017】
この発明に従うタイヤの耐久試験方法は、タイヤ1に気体を充填して、タイヤ充填圧を一定の充填圧で保持する高内圧保持工程と、静止した無負荷状態のタイヤ1の少なくともトレッド部2の全体を50℃以上、好適には50〜120℃の一定温度に加熱し、少なくともタイヤ1が径成長するまで前記加熱温度で保持する恒温保持工程とを有し、タイヤ1の径成長は、トレッド部2の踏面に対向させて配置した変位計7により測定することにあり、この構成を採用することによって、高温環境下で実使用されたタイヤにおいて生じる経時的劣化に伴うクリープ挙動を、短期間で効率良く模擬することができる。
【0018】
また、より短期間でクリープ挙動を効率良く模擬する必要がある場合には、高内圧保持工程に先だって、タイヤ1に高濃度酸素を含有する気体を充填して、酸素によるタイヤ1の劣化を促進させる工程をさらに有することが好ましい。
【0019】
尚、ここでいう「高濃度酸素を含有する気体」とは、具体的には酸素濃度を30%以上とすることが好ましく、より好ましくは30〜99%とする。酸素濃度が30%未満だと、タイヤの劣化促進効果が十分に得られなくなるおそれがあるからである。
【0020】
また、タイヤ1の劣化促進工程は、常温(例えば20℃前後の雰囲気)で行うこともできるが、さらに、加熱して常温よりも高い温度雰囲気下、好ましくは20〜120℃で行うことが、タイヤ1を構成するゴム組成物中への酸素の拡散を促進する点で好ましい。
【0021】
高内圧保持工程での充填圧は、最高空気圧以上1500kPa以下であることが好ましい。最高空気圧未満だと、クリープ現象が促進されないからであり、1500kPa超えだと、瞬時にタイヤがバーストする危険性があるからである。
【0022】
高内圧保持工程におけるタイヤ1への気体の充填は、遠隔操作にて行うことが安全性の点から好ましい。遠隔操作で気体の充填を行う方法としては、例えば、タイヤから離れた場所に充填装置を設置すればよい。
【0023】
恒温保持工程におけるタイヤの加熱・保持は、図2に示すように、タイヤウォーマー3を用いて行うことが好ましい。このタイヤウォーマー3は、ヒーター加熱部(図示せず)、図3に示すようにトレッド部2の陸部4に、測定子5を突き刺すなどの固定手段によって接触させる。タイヤウォーマー3に接続した温調器(図示せず)によって、測定子5の温度をとらえながら予め設定した温度になるように自動制御される。
【0024】
また、タイヤ1にクリープ現象が生じると、タイヤ1は径成長して、最終的にはバーストする傾向があることから、クリープ現象の生じやすさは、タイヤ1の径成長によって判断することが好ましい。
【0025】
タイヤ1の径成長は、図4に示すように、トレッド部2の踏面に対向させて配置した変位計7により測定する
【0026】
尚、図4では、タイヤ1に被せたタイヤウォーマー3の、トレッド部2の中央位置にある部分に変位量測定用孔8をあけ、変位計7を、その測定子9がタイヤ1のトレッド部2の陸部に接触した状態でマグネットスタンド10で位置決め固定し、変位計7からの測定データーを、離隔した位置に設置したカウンター(図示せず)で読みとれるように構成した場合を示しているが、この構成だけには限定されず、特許請求の範囲内での種々の変更が可能である。
【0027】
また、タイヤ1を静止した無負荷状態とする方法としては、例えば、図2に示すように、タイヤ1をホイール11に組み付けてタイヤ車輪とし、このタイヤ車輪のホイール11の両側面に存在する中心穴に一対の固定軸12をそれぞれ挿入して、タイヤ車輪を空中に浮かした状態で固定することが、簡便にタイヤ1を静止した無負荷状態にセットできる点で好ましい。
【0028】
尚、前記固定軸12は、異なるサイズのホイール11の中心穴に挿入できるようにするため、先端部分を、例えば円錐状のようにテーパ状とすることが好ましく、また、固定軸12とホイール11の中心穴との関係から、必要に応じてこれらの間にリング状のスペーサー(図示せず)を配設することもできる。
【0029】
そして、この発明に従うタイヤの耐久試験方法を用いて試験を行ったところ、試験期間が約14日間程度で、6年間の長期間にわたって劣化した実使用タイヤ自体のクリープ挙動と同様なクリープ挙動を模擬することができた。
【0030】
【発明の効果】
この発明によれば、静止した無負荷状態のタイヤにおいて、タイヤ充填圧とタイヤの加熱温度を適正に設定することによって、高温環境下で実使用されたタイヤの特にクラウン部において生じる経時的劣化に伴うクリープ挙動を、短期間で効率良く模擬できるタイヤの耐久試験方法の提供が可能になった。
【図面の簡単な説明】
【図1】 クリープ破壊が生じたタイヤの一例を示す正面図である。
【図2】 この発明に従うタイヤの耐久試験方法を行うための試験設備の主要部を示す斜視図である。
【図3】 タイヤのトレッド部の温度を測定する方法を説明するための図である。
【図4】 図2に示す変位計の拡大斜視図である。
【符号の説明】
1、10 タイヤ
2 トレッド部
3 タイヤウォーマー
4 陸部
5 温調器の測定子
6 配線
7 変位計
8 変位量測定用孔
9 変位計の測定子
10 マグネットスタンド
11 ホイール
12 固定軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire durability test method, and more specifically, a tire that can efficiently simulate in a short time the creep behavior associated with deterioration over time of a tire exposed to a high temperature environment, particularly in a crown portion. It relates to a durability test method.
[0002]
[Prior art]
As a conventional test method for evaluating durability against deterioration over time that occurs in a tire exposed to a high temperature environment, for example, it is described in JP-A-9-133611.
[0003]
In the tire durability test method described in the above publication, high-concentration oxygen is injected into the tire to promote deterioration of the tire due to oxygen, then air is injected into the tire, and a load is applied to the rotating drum. In this method, in order to evaluate the durability of a tire in a dynamic load state, for example, the tire deteriorates over time in a high-temperature actual use environment, Especially, the cord interlayer rubber constituting the belt deteriorates, tire diameter growth occurs, and finally the failure mode that leads to creep failure, as well as the failure mode due to other factors such as road surface conditions and load conditions Thus, the tire durability is comprehensively evaluated.
[0004]
For this reason, tires exposed to high-temperature environments will deteriorate over time and tire diameter growth will occur, and the durability of the tire will be evaluated only due to failure modes that ultimately lead to creep failure. It was not suitable as a method for evaluating only the durability of the tire itself without the influence of other factors.
[0005]
Further, as a means for evaluating only the durability of the tire itself exposed to a high temperature environment, it is useful to perform a durability test in a stationary and no-load state.
[0006]
As a conventional durability test method performed in a stationary and no-load state, for example, there is a so-called tire water pressure test method in which water is injected into a tire at normal temperature and evaluated by its breaking pressure (water pressure). In general, the test method was performed at normal temperature, and only the bead portion of the tire was often destroyed. Therefore, the test method was not suitable for evaluating the durability of the tire itself exposed to a high temperature environment.
[0007]
In addition, tires that are actually used in high temperature environments usually have a considerably long period of time before they are degraded and destroyed by creep, so if a method that can simulate such creep failure in a short period of time can be developed, the tire itself It is advantageous in that it can predict the quality of the durability.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to prevent deterioration over time, particularly in a crown portion of a tire actually used in a high temperature environment, by appropriately setting a tire filling pressure and a tire heating temperature in a stationary and no-load tire. An object of the present invention is to provide a tire durability test method capable of effectively simulating the accompanying creep behavior in a short period of time.
[0009]
In order to achieve the above object, a tire durability test method according to the present invention includes a high internal pressure maintaining step in which a tire is filled with a gas, and a stationary and unloaded tire filling pressure is maintained at a constant filling pressure. heating at least the entire tread portion at a constant temperature above 50 ° C., possess a constant temperature holding step of holding at the heating temperature to at least the tire diameter growth, size growth of the tire, so as to face the tread of the tread portion It is to measure with a displacement meter .
[0010]
In addition, prior to the high internal pressure maintaining step, it is preferable to further include a step of filling the tire with a gas containing high-concentration oxygen to promote deterioration of the tire due to oxygen.
[0011]
Further, it is preferable that the filling pressure in the high internal pressure holding step is not less than the maximum air pressure and not more than 1500 kPa, and / or the gas filling into the tire in the high internal pressure holding step is performed by remote control.
The “maximum air pressure” here means the maximum air pressure (the air pressure corresponding to the maximum load capacity) specified in the JATMA YEAR BOOK (2001).
[0012]
Furthermore, the heating / holding temperature in the constant temperature holding step is preferably in the range of 50 to 120 ° C. and / or the tire heating / holding in the constant temperature holding step is preferably performed using a tire warmer.
[0014]
Also, by assembling the tire to the wheel and making it a tire wheel, by inserting a pair of fixed shafts into the center holes present on both sides of the wheel of the tire wheel, and fixing the tire wheel in a floating state, It is more preferable to place the tire in a stationary and no-load state.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Tires that have been exposed outdoors for a long time under high-temperature environments, for example, in hot weather, tend to cause creep due to deterioration of the rubber parts that make up the tire, resulting in a decrease in rubber adhesion between cord layers. Then, as shown in FIG. 1, the tire 10 will creep-destruct.
[0016]
In the water pressure test method described above, the bead portion often breaks before the belt breaks, and the durability of the tire itself due to the creep phenomenon cannot be accurately grasped. When the test is performed under the same conditions, it takes a long time, and none of the methods can accurately grasp the durability of the tire itself due to the creep phenomenon in a short time.
[0017]
In the tire durability test method according to the present invention, the tire 1 is filled with a gas to maintain the tire filling pressure at a constant filling pressure, and at least the tread portion 2 of the tire 1 in a stationary unloaded state. the whole 50 ° C. or higher, preferably heated to a constant temperature of 50 to 120 ° C., possess a constant temperature holding step of holding at the heating temperature to at least the tire 1 is the diameter growth, diameter growth of the tire 1, a tread This is to measure the creep behavior associated with the deterioration over time in a tire actually used in a high temperature environment by adopting this configuration. Can be simulated efficiently.
[0018]
In addition, when it is necessary to simulate the creep behavior efficiently in a shorter period of time, the tire 1 is filled with a gas containing high-concentration oxygen prior to the high internal pressure maintaining step to promote deterioration of the tire 1 due to oxygen. It is preferable to further include a step of causing
[0019]
The “gas containing high-concentration oxygen” mentioned here specifically has an oxygen concentration of preferably 30% or more, more preferably 30 to 99%. This is because if the oxygen concentration is less than 30%, the tire deterioration promoting effect may not be sufficiently obtained.
[0020]
Moreover, although the deterioration acceleration | stimulation process of the tire 1 can also be performed at normal temperature (for example, the atmosphere around 20 degreeC), it is further heated and performed in a temperature atmosphere higher than normal temperature, Preferably it is 20-120 degreeC, This is preferable in that the diffusion of oxygen into the rubber composition constituting the tire 1 is promoted.
[0021]
The filling pressure in the high internal pressure holding step is preferably not less than the maximum air pressure and not more than 1500 kPa. This is because the creep phenomenon is not promoted if the pressure is lower than the maximum air pressure, and if it exceeds 1500 kPa, there is a risk that the tire bursts instantaneously.
[0022]
The filling of the gas into the tire 1 in the high internal pressure maintaining step is preferably performed by remote control from the viewpoint of safety. As a method of filling the gas by remote operation, for example, a filling device may be installed in a place away from the tire.
[0023]
The heating and holding of the tire in the constant temperature holding step is preferably performed using a tire warmer 3 as shown in FIG. The tire warmer 3 is brought into contact with a heater heating section (not shown), and a fixing means such as a piercing probe 5 to the land portion 4 of the tread portion 2 as shown in FIG. A temperature controller (not shown) connected to the tire warmer 3 automatically controls the temperature of the probe 5 so as to reach a preset temperature.
[0024]
Further, when a creep phenomenon occurs in the tire 1, the tire 1 grows in diameter and eventually tends to burst. Therefore, it is preferable to determine the susceptibility of the creep phenomenon based on the diameter growth of the tire 1. .
[0025]
As shown in FIG. 4, the diameter growth of the tire 1 is measured by a displacement meter 7 arranged to face the tread surface of the tread portion 2 .
[0026]
In FIG. 4, a displacement measuring hole 8 is formed in a portion of the tire warmer 3 that is placed on the tire 1 at the center position of the tread portion 2, and the displacement meter 7 is connected to the tread portion of the tire 1. 2 shows a case where the magnetic stand 10 is positioned and fixed in contact with the land portion 2 and the measurement data from the displacement meter 7 can be read by a counter (not shown) installed at a separated position. However, the present invention is not limited to this configuration, and various modifications within the scope of the claims are possible.
[0027]
Further, as a method for bringing the tire 1 into a stationary and no-load state, for example, as shown in FIG. 2, the tire 1 is assembled to a wheel 11 to form a tire wheel, and the centers existing on both side surfaces of the wheel 11 of this tire wheel. It is preferable to insert a pair of fixed shafts 12 in the holes and fix the tire wheels in a state of floating in the air because the tire 1 can be easily set in a stationary and no-load state.
[0028]
In order to allow the fixed shaft 12 to be inserted into the center hole of the wheel 11 having a different size, the tip portion is preferably tapered, for example, conical, and the fixed shaft 12 and the wheel 11 are also tapered. In view of the relationship with the central hole, a ring-shaped spacer (not shown) may be provided between them if necessary.
[0029]
When the test was conducted using the tire durability test method according to the present invention, the test period was about 14 days, and the creep behavior similar to the creep behavior of the actual tire itself deteriorated over a long period of 6 years was simulated. We were able to.
[0030]
【The invention's effect】
According to the present invention, in a stationary and no-load tire, by appropriately setting the tire filling pressure and the tire heating temperature, it is possible to prevent deterioration over time, particularly in a crown portion of a tire actually used in a high temperature environment. It has become possible to provide a tire durability test method that can efficiently simulate the accompanying creep behavior in a short period of time.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a tire in which creep fracture has occurred.
FIG. 2 is a perspective view showing a main part of a test facility for performing a tire durability test method according to the present invention.
FIG. 3 is a diagram for explaining a method of measuring the temperature of a tread portion of a tire.
4 is an enlarged perspective view of the displacement meter shown in FIG. 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 10 Tire 2 Tread part 3 Tire warmer 4 Land part 5 Temperature control gauge 6 Wiring 7 Displacement gauge 8 Displacement measurement hole 9 Displacement gauge gauge
10 Magnetic stand
11 wheel
12 Fixed shaft

Claims (7)

タイヤに気体を充填して、タイヤ充填圧を一定の充填圧で保持する高内圧保持工程と、
静止した無負荷状態のタイヤの少なくともトレッド部の全体を50℃以上の一定温度に加熱し、少なくともタイヤが径成長するまで前記加熱温度で保持する恒温保持工程とを有し、
タイヤの径成長は、トレッド部の踏面に対向させて配置した変位計により測定することを特徴とするタイヤの耐久試験方法。
A high internal pressure holding step of filling the tire with gas and holding the tire filling pressure at a constant filling pressure;
A constant temperature maintaining step of heating at least the entire tread portion of the stationary unloaded tire to a constant temperature of 50 ° C. or higher, and holding at the heating temperature until the tire grows in diameter ,
A tire endurance test method, wherein the tire diameter growth is measured by a displacement meter arranged to face the tread surface .
高内圧保持工程に先だって、タイヤに高濃度酸素を含有する気体を充填して、酸素によるタイヤの劣化を促進させる工程をさらに有する請求項1記載のタイヤの耐久試験方法。  The tire durability test method according to claim 1, further comprising a step of filling the tire with a gas containing high-concentration oxygen prior to the high internal pressure maintaining step to promote deterioration of the tire due to oxygen. 高内圧保持工程での充填圧は最高空気圧以上1500kPa以下である請求項1又は2記載のタイヤの耐久試験方法。  The tire durability test method according to claim 1 or 2, wherein the filling pressure in the high internal pressure maintaining step is not less than a maximum air pressure and not more than 1500 kPa. 高内圧保持工程におけるタイヤへの気体の充填は、遠隔操作にて行う請求項1、2又は3記載のタイヤの耐久試験方法。  The tire endurance test method according to claim 1, 2 or 3, wherein the filling of the tire with gas in the high internal pressure maintaining step is performed by remote control. 恒温保持工程での加熱・保持温度は50〜120℃の範囲である請求項1〜4のいずれか1項記載のタイヤの耐久試験方法。  The tire durability test method according to any one of claims 1 to 4, wherein a heating / holding temperature in the constant temperature holding step is in a range of 50 to 120 ° C. 恒温保持工程におけるタイヤの加熱・保持は、タイヤウォーマーを用いて行う請求項1〜5のいずれか1項記載のタイヤの耐久試験方法。  The tire durability test method according to any one of claims 1 to 5, wherein the heating and holding of the tire in the constant temperature holding step is performed using a tire warmer. タイヤをホイールに組み付けてタイヤ車輪とし、このタイヤ車輪のホイールの両側面に存在する中心穴に一対の固定軸をそれぞれ挿入して、タイヤ車輪を空中に浮かした状態で固定することによって、タイヤを静止した無負荷状態とする請求項1〜のいずれか1項記載のタイヤの耐久試験方法。The tire is assembled by attaching the tire to the wheel to form a tire wheel, and by inserting a pair of fixed shafts into the center holes on both sides of the wheel of the tire wheel, and fixing the tire wheel in a state of floating in the air, The tire durability test method according to any one of claims 1 to 6 , wherein the tire is in a stationary and no-load state.
JP2002061614A 2002-03-07 2002-03-07 Tire durability test method Expired - Fee Related JP4057315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061614A JP4057315B2 (en) 2002-03-07 2002-03-07 Tire durability test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061614A JP4057315B2 (en) 2002-03-07 2002-03-07 Tire durability test method

Publications (2)

Publication Number Publication Date
JP2003262568A JP2003262568A (en) 2003-09-19
JP4057315B2 true JP4057315B2 (en) 2008-03-05

Family

ID=29195816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061614A Expired - Fee Related JP4057315B2 (en) 2002-03-07 2002-03-07 Tire durability test method

Country Status (1)

Country Link
JP (1) JP4057315B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570144B1 (en) * 2004-10-21 2006-04-11 한국타이어 주식회사 Testing apparatus of durability for controlling surface temperature of tire
JP4496945B2 (en) * 2004-12-06 2010-07-07 横浜ゴム株式会社 Tire durability test method
JP4415845B2 (en) * 2004-12-14 2010-02-17 横浜ゴム株式会社 Tire durability test method
JP4622608B2 (en) * 2005-03-23 2011-02-02 横浜ゴム株式会社 Tire durability test method
JP4743754B2 (en) * 2005-05-31 2011-08-10 住友ゴム工業株式会社 Tire durability test method
JP2006349641A (en) * 2005-06-20 2006-12-28 Bridgestone Corp Deterioration testing method of tire component and deterioration testing device of tire component
JP4687344B2 (en) * 2005-09-09 2011-05-25 横浜ゴム株式会社 Tire durability test method
JP4687401B2 (en) * 2005-11-08 2011-05-25 横浜ゴム株式会社 Test method for evaluating thermal degradation of pneumatic tires
JP5728840B2 (en) * 2010-07-09 2015-06-03 横浜ゴム株式会社 Tire water pressure test apparatus and tire water pressure test method
JP5794909B2 (en) * 2011-12-27 2015-10-14 住友ゴム工業株式会社 Tire evaluation method
JP5865111B2 (en) * 2012-02-17 2016-02-17 株式会社ブリヂストン Tire testing method
JP6475491B2 (en) * 2014-12-19 2019-02-27 住友ゴム工業株式会社 Tire durability evaluation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593475Y2 (en) * 1993-02-26 1999-04-12 株式会社イノアックコーポレーション Tire warmer
JP3373737B2 (en) * 1995-09-07 2003-02-04 株式会社ブリヂストン Durability test method for pneumatic tires

Also Published As

Publication number Publication date
JP2003262568A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP4057315B2 (en) Tire durability test method
WO2002058947A3 (en) A method of wear testing a tire
EP1615012A2 (en) Method of testing tires for durability
AU7733898A (en) Device for monitoring stresses undergone by a tire
JP4699682B2 (en) Tire temporal change prediction method, apparatus, program, and medium
CN205748941U (en) A kind of tyre last detection equipment
CN109062188B (en) Test equipment and method for online detection of GYK
CN107089102B (en) A kind of detection method of the slow gas leakage of tire
CN109724893B (en) Testing device and method for testing durability of ultra-thin wearing layer in tunnel
JP4076380B2 (en) Indoor tire durability test method and testing machine
CN109238748B (en) Indoor evaluation method for all-steel radial wheel shoulder air fault
CA2459740C (en) Method of determining potential cause of tire failure by measuring the tire temperature achieved during operating conditions
CN207881876U (en) Torque measurement testing stand
JP2018025491A (en) Method and device for measuring rolling resistance of tire
CN103470314B (en) For determining the method and system of the croop property of turbine components before the procedure
JP4687401B2 (en) Test method for evaluating thermal degradation of pneumatic tires
CN114755027B (en) Whole vehicle multiaxial loading test bed, test method and medium
JP2004037286A (en) Indoor tire durability testing method
KR100570144B1 (en) Testing apparatus of durability for controlling surface temperature of tire
CN212410317U (en) Pavement interlayer torsional shear tester
KR100435381B1 (en) Apparatus for measuring noise from a tire on the road
JP2008203145A (en) Durability test method of pneumatic tire
CN201837525U (en) Device for detecting durability of manual automobile glass lifter
JPH0763541A (en) Plugging measuring instrument
KR100845387B1 (en) Imitative tester of flat spot for tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Ref document number: 4057315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees