JP4053821B2 - コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ - Google Patents

コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ Download PDF

Info

Publication number
JP4053821B2
JP4053821B2 JP2002166979A JP2002166979A JP4053821B2 JP 4053821 B2 JP4053821 B2 JP 4053821B2 JP 2002166979 A JP2002166979 A JP 2002166979A JP 2002166979 A JP2002166979 A JP 2002166979A JP 4053821 B2 JP4053821 B2 JP 4053821B2
Authority
JP
Japan
Prior art keywords
knob
magnetic flux
flux density
switch
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166979A
Other languages
English (en)
Other versions
JP2004014327A (ja
Inventor
裕二 右松
洋市 近藤
郷司 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002166979A priority Critical patent/JP4053821B2/ja
Publication of JP2004014327A publication Critical patent/JP2004014327A/ja
Application granted granted Critical
Publication of JP4053821B2 publication Critical patent/JP4053821B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Switches With Compound Operations (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチに関する。
【0002】
【従来の技術】
車両では、ワイパースイッチ、ランプスイッチ等、例えば、ステアリングコラムの両側にコンビネーションスイッチが用いられている。ところが、このようなコンビネーションスイッチにおいては、従来、リード線が半田付けされた固定接点及び操作ノブに装着された可動接点を回転させることにより切り替え動作を行うようにしているため、信頼性や部品点数増加にともなうコストアップ等の問題があった。以下に、この問題を図8を用いて説明する。
【0003】
図8(A)及び図8(B)はそれぞれ、従来のコンビネーションスイッチの一例としてのワイパースイッチの平面図及びZZ線断面図である。このワイパースイッチは、筒状のレバー構造をしており、ステアリングコラムの左側に設置される。このワイパースイッチは、図8(A)及び図8(B)に示すように、レバー本体901、リアワイパーノブ902、センタノブ903及びINT/VOLノブ904から大略構成されている。
【0004】
図8(A)の平面図に示すように、レバー本体901には、各ワイパー駆動ポジションやウオッシャ等を示す表示意匠が形成されており、図示しないステアリングコラムにレバー軸部901bを介して取り付けられている。また、リアワイパーノブ902には、ウオッシャポジション902a、902e、OFFポジション902b、間欠駆動ポジション902c、定速駆動ポジション902dを示す各ポジション意匠が形成されると共に、このノブ902の回転操作を容易にするための操作補助凸部902fが設けられている。また、センタノブ903には、このノブ903の回転操作時の目印となるポジションマーク903aが形成されている。そして、INT/VOLノブ904には、ワイパーの駆動速度に対応するボリューム意匠904aが形成されると共に、このノブ904の回転操作を容易にするための操作補助凹部904bが設けられている。その先端部には、キャップ905が被せられている。上記レバー本体901及びセンタノブ903はステアリングコラムに固定されており、リアワイパーノブ902及びINT/VOLノブ904は、所定角度範囲内で回転可能である。詳しくは、リアワイパーノブ902は多段階に回転クリック可能であり、INT/VOLノブ904は連続的に回転可能である。
【0005】
図8(B)の断面図に示すように、レバー本体901はコード911に半田付けされたリアワイパー用固定接点906を有しており、リアワイパーノブ902はリアワイパー用可動接点907を有している。リアワイパー用固定接点906は、上記各ポジション902a〜902eに対応して複数対設けられており、リアワイパーノブ902が上記いずれかのポジション902a〜902eに回転クリック操作されると、これにともないリアワイパー用可動接点907も回転し、複数のリアワイパー用固定接点906のいずれかに電気的に接触する。これにより、リアワイパーノブ902にて、ウオッシャポジション902a、902e、OFFポジション902b、間欠駆動ポジション902c、定速駆動ポジション902dのいずれかが選択可能になり、これに応じたリアワイパー及びウオッシャ駆動が行われる。
【0006】
一方、センタノブ903は抵抗基板908を有しており、INT/VOLノブ904はINT/VOL用可動接点909を有している。INT/VOLノブ904が回転操作されると、これにともない可動接点909も抵抗基板908上を回転摺動し、その抵抗値が連続的に可変となる。これにより、フロントワイパーの駆動速度を、所定範囲内で連続的に指定可能になり、これに応じたフロントワイパー駆動が行われる。
【0007】
【発明が解決しようとする課題】
ところが、上記従来のコンビネーションスイッチにおいては、上記スイッチングのために、複数の可動接点907、909、固定接点906及び抵抗基板908等が必要となり、部品点数が増大すると共にスイッチ構造が複雑化する。したがって、低コスト化を計りにくいという問題があった。また、従来のコンビネーションスイッチは、接触型スイッチである点やスイッチ構造の複雑化により、信頼性を向上させるのにも限界があった。
【0008】
よって本発明は、上述した現状に鑑み、非接触型で構造の簡素化された信頼性の高いコンビネーションスイッチを提供することを課題としている。また、本発明は、このコンビネーションスイッチを用いて、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいワイパースイッチ及びランプスイッチを提供することを課題としている。
【0009】
【課題を解決するための手段】
上記課題を解決するためになされた請求項1記載のコンビネーションスイッチは、複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、回転軸上に固定的に配置されて磁束密度を検出する磁束密度検出素子と、第1ノブに装着されて、この第1ノブの回転にともなって前記磁束密度検出素子の周りを段階的に回転する第1磁石と、第2ノブに装着されて、この第2ノブの回転にともなって前記磁束密度検出素子の周りを連続的に回転する第2磁石と、を有し、前記磁束密度検出素子にて検出される前記第1ノブの回転にともなう段階的な磁束密度の変化に基づいて、前記第1ノブの段階的なスイッチポジションを検出し、前記磁束密度検出素子にて検出される前記第2ノブの回転にともなう連続的な磁束密度の変化に基づいて、前記第2ノブの連続的なスイッチポジションを検出する、ことを特徴とする。
【0010】
請求項1記載の発明によれば、磁束密度を検出する磁束密度検出素子が回転軸上に固定的に配置されており、第1ノブの回転にともなって第1磁石が磁束密度検出素子の周りを段階的に回転し、第2ノブの回転にともなって第2磁石が磁束密度検出素子の周りを連続的に回転する。そして、第1ノブの回転にともなう段階的な磁束密度の変化に基づいて第1ノブの段階的なスイッチポジションが検出され、第2ノブの回転にともなう連続的な磁束密度の変化に基づいて第2ノブの連続的なスイッチポジションが検出される。このように、段階的な磁束密度の変化及び連続的な磁束密度の変化をそれぞれ検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。
【0011】
上記課題を解決するためになされた請求項2記載のワイパースイッチは、請求項1記載のコンビネーションスイッチを用いた車載されるワイパースイッチであって、前記第1ノブにて、リアワイパーのオフ、間欠駆動、連続駆動又はウオッシャモードのいずれかを選択的に切り替え、前記第2ノブにて、フロントワイパーを連続的に割り当てられた所定の駆動速度に切り替える、ことを特徴とする。
【0012】
請求項2記載の発明によれば、第1ノブにて、ワイパーのオフ、間欠駆動、連続駆動又はウオッシャモードのいずれかを選択的に切り替え、第2ノブにて、ワイパーの駆動速度を連続的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えは段階的な磁束密度の変化を利用するので複数のポジション切り替えに適合し、第2ノブによる切り替えは連続的な磁束密度の変化を利用するので連続的な速度制御に適合する。
【0013】
上記課題を解決するためになされた請求項3記載のコンビネーションスイッチは、複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、第1ノブの回転軸上に配置され、この第1ノブの回転にともなって比較的小さな回転角度ステップで段階的に回転する磁束密度検出素子と、第2ノブに装着され、この第2ノブの回転にともなって前記磁束密度検出素子の周りを、前記磁束密度検出素子の回転角度ステップの2倍以上の回転角度ステップで段階的に回転する磁石と、を有し、前記磁束密度検出素子により検出される磁束密度に基づいて、前記第1ノブ及び前記第2ノブのそれぞれのスイッチポジションを検出する、ことを特徴とする。
【0014】
請求項3記載の発明によれば、この第1ノブの回転にともなって磁束密度検出素子が比較的小さな回転角度ステップで段階的に回転し、第2ノブの回転にともなって磁石が磁束密度検出素子の周りを磁束密度検出素子の回転角度ステップの2倍以上の回転角度ステップで段階的に回転する。そして、磁束密度検出素子により検出される磁束密度に基づいて、第1ノブ及び第2ノブのそれぞれのスイッチポジションが検出される。このように、小さな回転角度ステップで段階的に回転する磁束密度検出素子により、この周りを大きな回転角度ステップで段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。
【0015】
上記課題を解決するためになされた請求項4記載のコンビネーションスイッチは、請求項3記載のコンビネーションスイッチにおいて、前記第1ノブには、前記磁束密度検出素子に替えて、前記磁石が配置され、前記第2ノブには、前記磁石に替えて、前記磁束密度検出素子が配置される、ことを特徴とする。
【0016】
請求項4記載の発明によれば、上記第1ノブには磁束密度検出素子に替えて磁石が配置され、上記第2ノブには磁石に替えて磁束密度検出素子が配置される。すなわち、大きな回転角度ステップで段階的に回転する磁束密度検出素子により、この周りを小さな回転角度ステップで段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。
【0017】
上記課題を解決するためになされた請求項5記載のランプスイッチは、請求項3又は4記載のコンビネーションスイッチを用いた車載されるランプスイッチであって、前記第1ノブにて、車両のフロント部及びリア部に取り付けられた補助ランプのオンオフを選択的に切り替え、前記第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替える、ことを特徴とする。
【0018】
請求項5記載の発明によれば、第1ノブにて、車両のフロント部及びリア部に取り付けられた補助ランプのオンオフを選択的に切り替え、第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えでは大きな磁束密度差が検出されるので補助ランプのオンオフ制御に適合し、第2ノブによる切り替えでは小さな磁束密度差が検出されるので、多段階の全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードの切替制御に適合する。
【0019】
上記課題を解決するためになされた請求項6記載のコンビネーションスイッチは、複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、回転軸上に固定的に配置されて磁束密度を検出する磁束密度検出素子と、第1ノブの回転にともなって前記磁束密度検出素子の周りを180°の回転角度ステップで回転し、前記第1ノブと異なる第2ノブの回転にともなって前記磁束密度検出素子の周りを90°以下の回転角度ステップで、それぞれ独立的に回転する磁石と、を有し、前記磁束密度検出素子により検出される磁束密度に基づいて、前記第1ノブ及び前記第2ノブのそれぞれのスイッチポジションを検出する、ことを特徴とする。
【0020】
請求項6記載の発明によれば、磁束密度を検出する磁束密度検出素子が回転軸上に固定的に配置されており、第1ノブの回転にともなって磁石が磁束密度検出素子の周りを180°の回転角度ステップで段階的に回転し、第2ノブの回転にともなってこの磁石が磁束密度検出素子の周りを90°以下の回転角度ステップで、それぞれ独立的に回転する。そして、磁束密度検出素子により検出される磁束密度に基づいて、第1ノブ及び第2ノブのそれぞれのスイッチポジションが検出される。このように、大小の異なる回転角度ステップでそれぞれ段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。
【0021】
上記課題を解決するためになされた請求項7記載のランプスイッチは、請求項6記載のコンビネーションスイッチを用いた車載されるランプスイッチであって、前記第1ノブにて、フォッグランプオン及びフォッグランプオフを選択的に切り替え、前記第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替える、ことを特徴とする。
【0022】
請求項7記載の発明によれば、第1ノブにて、フォッグランプオン及びフォッグランプオフを選択的に切り替え、第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えでは大きな磁束密度差が検出されるのでフォッグランプのオンオフ制御に適合し、第2ノブによる切り替えでは小さな磁束密度差が検出されるので、多段階の全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードの切替制御に適合する。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
まず、図1〜図3を用いて、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態を示し、特に、図1(A)、図1(B)及び図1(C)はそれぞれ、本発明の第1実施形態に係るコンビネーションスイッチの平面図、XX線断面図及びYY線要部断面図である。このコンビネーションスイッチは、筒状のレバー構造をしたロータリ型のワイパースイッチとして用いられ、ステアリングコラムの左側に設置されるものである。このワイパースイッチは、図1(A)及び図1(B)に示すように、レバー本体1、INT/VOLノブ2、センタノブ3及びリアワイパーノブ4から大略構成されている。
【0024】
図1(A)の平面図に示すように、レバー本体1には、各ワイパー駆動ポジションやウオッシャ等を示す表示意匠が形成されており、図示しないステアリングコラムにレバー軸部1bを介して固定されている。INT/VOLノブ2には、ワイパーの連続的な駆動速度に対応するボリューム意匠が形成されると共に、このノブ2の回転操作を容易にするための操作補助凸部2bが設けられている。また、センタノブ3には、このノブ3の回転操作時の目印となるポジションマーク3aが形成されている。そして、リアワイパーノブ4には、ウオッシャポジション4a、4e、OFFポジション4b、間欠駆動ポジション4c、定速駆動ポジション4dを示す各ポジション意匠が形成されると共に、このノブ4の回転操作を容易にするための操作補助凹部4fが設けられている。これらレバー本体1、INT/VOLノブ2、センタノブ3、及びリアワイパーノブ4はいずれも略円筒状であり、その先端部には、キャップ5が被せられている。上記レバー本体1及びセンタノブ3はステアリングコラムに固定されており、INT/VOLノブ2及びリアワイパーノブ4は、所定角度範囲内で回転軸部1eを中心に回転可能である。詳しくは、INT/VOLノブ2は連続的に回転可能であり、リアワイパーノブ4は多段階に回転クリック可能である。
【0025】
図1(B)の断面図に示すように、レバー本体1とセンタノブ3とは互いに固定的に結合されている。レバー本体1はステアリングコラムに対して固定されているので、センタノブ3は回転操作不可能である。レバー本体1の中心から内側に延設された中空で一部開口した回転軸部1eの略中心には、回路基板10に搭載されたホールIC6(請求項の磁束密度検出素子に相当)が配置されている。ホールIC6は公知の素子が利用可能であり、磁石7、8n、8sによる磁束密度を検出しこれを電気信号に変換し、コード12を介して図示しない制御部に出力する。この回路基板10は図1(C)に示すようにレバー本体1の回転軸部1eに固定されているので、INT/VOLノブ2及びリアワイパーノブ4の回転時にも不動である。
【0026】
INT/VOLノブ2は、レバー本体1の中心から本スイッチ内側に延設された回転軸部1eの側面の溝1cに係合されたスペーサ部材11、12を介して、回転軸部1eを中心に、ボリューム範囲に対応する所定角度範囲内で回転可能に取り付けられている。このINT/VOLノブ2には、一対のINT/VOL用磁石8n、8sが配置されている。磁石8n及び8sはそれぞれ、内側がN極及びS極になるように着磁されている。磁石8n及び8sは、INT/VOLノブ2に連動して、回転軸部1e、すなわち、ホールIC6の周りを回転する。
【0027】
リアワイパーノブ4もまた、回転軸部1eを中心に各ポジション4a〜4eに対応する所定角度範囲で回転可能に取り付けられている。このリアワイパーノブ4の内側円筒部4gには、リング状のリアワイパー用磁石7が取り付けられている。この磁石7も、リアワイパーノブ4に連動して、回転軸部1e、すなわち、ホールIC6の周りを回転する。このリアワイパーノブ4は、回転軸部1eの端部近傍の側面の溝1dに係合された固定部材13にて、外側にとびださないように固定されている。そして、リアワイパーノブ4の先端部には、キャップ5が被せられている。
【0028】
図1(C)の要部断面図に示すように、ホールIC6を周回するように、リアワイパー用磁石7が配置され、両極に一対のINT/VOL用磁石8n、8sが配置されている。回路基板10に搭載されるホールIC6は固定的であり、磁石7、及び磁石8n、8sの回転にともなう磁束密度の変化を検出する。
【0029】
ここで、図2及び図3を用いて、上記構成のワイパースイッチの作用について説明する。図2は、図1のコンビネーションスイッチにおける、INT/VOL用磁石、リアワイパー用磁石の回転動作を説明するための図である。図3は、図1のコンビネーションスイッチにおける、両磁石の回転角度と磁束密度との関係を示す特性図である。
【0030】
図2に示すように、リアワイパーノブ4の回転に連動して、リアワイパー用磁石7は、所定の回転角度範囲内でホールIC6の周りを回転する。この回転にともなう磁束密度は、図3において、特性曲線7gで示されている。この回転角度範囲は、例えば、−25°〜75°である。この角度範囲は、上記ウオッシャポジション4a、4e、OFFポジション4b、間欠駆動ポジション4c、定速駆動ポジション4dを識別するために割り当てられたものである。例えば、リアワイパーノブ4がウオッシャポジション4aからOFFポジション4bに切り替えられると、リアワイパー用磁石7は、P1、P2間に対応する回転角度(例えば、−20°程度)から、P2、P3間に対応する回転角度(例えば、0°程度)に変化するように割り当てられている。
【0031】
したがって、リアワイパーノブ4がウオッシャポジション4aからOFFポジション4bに切り替えられると、この回転角度変化にともなって、ホールIC6にて検出される磁束密度は、P1、P2間に対応する磁束密度(例えば、−95mT程度)から、P2、P3間に対応する磁束密度(例えば、−55mT程度)に変化する。この磁束密度の変化に基づいてウオッシャ動作が停止される。逆に、リアワイパーノブ4がOFFポジション4bからウオッシャポジション4aに切り替えられると、リアワイパー用磁石7は、P2、P3間に対応する上記回転角度から、P1、P2間に対応する上記回転角度に変化し、この回転角度変化にともなって、ホールIC6にて検出される磁束密度も、P2、P3間に対応する上記磁束密度からP1、P2間に対応する上記磁束密度に変化する。この磁束密度の変化に基づいてウオッシャ動作が開始される。
【0032】
同様に、P2、P3間に対応する回転角度と、P3、P4間に対応する回転角度との間の相互角度変位にともなう磁束密度の変化により、リアワイパーノブ4のOFFポジション4b、間欠駆動ポジション4c間の切り替えが検出される。また同様に、P3、P4間に対応する回転角度と、P4、P5間に対応する回転角度との間の相互角度変位にともなう磁束密度の変化により、リアワイパーノブ4の間欠駆動ポジション4c、定速駆動ポジション4d間の切り替えが検出される。また同様に、P4、P5間に対応する回転角度と、P5、P6間に対応する回転角度との間の相互角度変位にともなう磁束密度の変化により、リアワイパーノブ4の定速駆動ポジション4d、ウオッシャポジション4e間の切り替えが検出される。なお、周知のように、ウオッシャポジション4a、4eは、ノブ4から手が離されると自動的に隣のポジションに復帰するようになっている。
【0033】
一方、図2に示すように、INT/VOLノブ2の回転に連動して、磁石8n、8sは所定の回転角度範囲θ内でホールIC6の周りを回転する。回転角度範囲θは、フロントワイパーの連続可変の駆動速度範囲に対応して予め割り当てられたもので、例えば、120°(0°〜120°)としている。これは、図3において、特性曲線8g1、8g2、及び8g3で示されている。詳しくは、上記のように、リアワイパーノブ4の回転操作により、ホールIC6にて検出される磁束密度も7gで示したように変化する。このため、INT/VOLノブ2を一様に回転操作しても、その磁束密度は、特性曲線8g1、8g2、及び8g3で示すように異なったものとなる。但し、これら特性曲線8g1、8g2、及び8g3は、INT/VOLノブ2の角度変位、すなわち、磁石8n、8sの角度変位に対して、変化の仕方は同様になる。したがって、この変化の仕方に基づいて、INT/VOLノブ2の連続的なスイッチポジションが検出される。図3において、細線で囲まれたSLOW及びFASTは、INT/VOLノブ2にて設定されるフロントワイパーの駆動速度を示し、それぞれ、低速及び高速を意味する。また、太線で囲んだRR.WASH、ON、INT、及びOFFは、INT/VOLノブ2により設定される各ポジションを示し、それぞれ、ウオッシャポジション、定速駆動ポジション、OFFポジション、及び間欠駆動ポジションを意味する。
【0034】
なお、このワイパースイッチでは、リアワイパーノブ4がウオッシャポジション4a、4eにあるときにINT/VOLノブ2は操作されないものと想定している。すなわち、リアワイパーノブ4が、OFFポジション4b、間欠駆動ポジション4c、又は定速駆動ポジション4dに設定されているときに、INT/VOLノブ2が操作されるものと想定し、INT/VOLノブ2の回転にともなう磁束密度の変動範囲は、上記P2、P3間、P3、P4間、又はP4、P5間のそれぞれの磁束密度の変動範囲よりも小さくなるように設定されている。これにより、INT/VOLノブ2及びリアワイパーノブ4のそれぞれのポジションが独立的に検出可能となる。
【0035】
このように、第1実施形態のコンビネーションスイッチによれば、段階的な磁束密度の変化及び連続的な磁束密度の変化をそれぞれ検出するようにしているので、非接触で複数のスイッチ(例えば、上記ノブ2及び4)による切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。また、このコンビネーションスイッチを用いて、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいワイパースイッチを得ることができる。
【0036】
なお、上記コンビネーションスイッチは、ワイパースイッチのみならず、複数のスイッチが必要なランプスイッチに用いることも可能である。この第1実施形態は、請求項1及び2に相当し、特に、リアワイパーノブ4、INT/VOLノブ2、リアワイパー用磁石7及びINT/VOL用磁石8n、8sはそれぞれ、請求項の第1ノブ、第2ノブ、第1磁石、及び第2磁石に相当する。
【0037】
次に、図4及び図5を用いて、本発明の第2実施形態について説明する。図4は、本発明の第2実施形態に係るコンビネーションスイッチの要部を示す図である。図5は、図4のコンビネーションスイッチにおける、各ポジション、回転角度及び相対角度の関係を示す図である。
【0038】
この第2実施形態のコンビネーションスイッチは、例えば、車両のランプスイッチに用いられる。このランプスイッチは、筒状のレバー構造をしたロータリ型のコンビネーションスイッチであり、ステアリングコラムの右側に設置される。このランプスイッチは、図4に示すように、第1ノブ201、第2ノブ202及び固定ノブ203を含んで構成される。第1ノブ201及び第2ノブ202はそれぞれ、固定ノブ203を挟んで、独立的に回転可能である。
【0039】
第1ノブ201は、例えば、回転操作にて車両のフロント部及びリア部に取り付けられた補助ランプに対応するポジションに選択的、段階的に切り替え可能である。第1ノブ201は中空の円筒状になっており、その内部で回路基板210に搭載されたホールIC206(請求項の磁束密度検出素子に相当)が固定されている。すなわち、ホールIC206は第1ノブに連動して回転する。このホールIC206は、第1ノブ201に連動して図5で示すような比較的小さな回転角度ステップで段階的に回転する。
【0040】
第2ノブ202は、例えば、回転操作にて全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードに対応するポジションに選択的、段階的に切り替え可能である。この第2ノブ202は中空の円筒状になっており、その内壁の一部は内歯車204と歯合可能な構造になっている。内歯車204は、このランプスイッチの内側に配置されたリング状の磁石207を、第2ノブ202の回転角度の3倍で、第2ノブ202に連動して回転可能な構造になっている。
【0041】
固定ノブ203は、図1のセンタノブ3に類似した中空の円筒状になっており、その表面にはポジションマーク等が形成されている。この固定ノブ203は、構造的、意匠的には必要であるが、本実施形態に係る切り替え動作には特に影響しない。
【0042】
このランプスイッチは、図示しないレバー本体を介してステアリングコラムに取付られており、その外形は、例えば、図1に示したコンビネーションスイッチと類似の周知の形状をしているので、その説明は省略する。
【0043】
このような構造のランプスイッチにおいて、第1ノブ201は、図5(A)に示すように、回転操作にて車両のフロント部及びリア部に取り付けられた補助ランプを選択的、段階的に切り替え可能である。例えば、ポジションOFFにてフロント部及びリア部に取り付けられた補助ランプを共にオフし、ポジションFRにてフロント部の補助ランプのみをオン、ポジションRRにてリア部の補助ランプのみをオンに切り替え可能である。各ポジション間の移行に際し、第1ノブ201、すなわち、ホールIC206は、比較的小さな回転角度ステップ、例えば、25°づつ変位する。
【0044】
一方、第2ノブ202は、図5(B)に示すように、回転操作にて車両の全ランプオフ(ポジションOFF)、テールランプオン(ポジションTAIL)、ヘッドランプオン(ポジションHEAD)、及びオートランプモード(ポジションAUTO)を選択的、段階的に切り替え可能である。各ポジション間の移行に際し、第2ノブ202は、例えば、25°づつ変位するが、上記内歯車204にて、磁石207はその3倍である75°づつ変位する。
【0045】
したがって、これら第1ノブ201及び第2ノブ202回転にともなうホールIC206と磁石207との相対角度は、図5(C)に示すように、12段階、存在することになる。したがって、これら異なる相対角度にそれぞれ対応して、磁束密度も12段階、存在するので、第1ノブ201及び第2ノブ202のそれぞれのポジションが独立的に検出可能となる。詳しくは、図5(C)に示すように、相対角度が0°、25°又は50°に対応する磁束密度が検出されれば第2ノブ202はポジションOFFにあり、相対角度が75°、100°又は125°に対応する磁束密度が検出されれば第2ノブ202はポジションTAILにあり、相対角度が150°、175°又は200°に対応する磁束密度が検出されれば第2ノブ202はポジションHEADにあり、そして、相対角度が225°、250°又は275°に対応する磁束密度が検出されれば第2ノブ202はポジションAUTOにあると判定可能である。
【0046】
また、相対角度が0°、75°、150°又は225°に対応する磁束密度が検出されれば第1ノブ201はポジションOFFにあり、相対角度が25°、100°、175°又は250°に対応する磁束密度が検出されれば第1ノブ201はポジションFRにあり、そして、相対角度が50°、125°、200°又は275°に対応する磁束密度が検出されれば第1ノブ201はポジションRRと判定可能である。
【0047】
ここでは、磁石207がホールIC206の3倍の回転角度ステップで回転する例を示したが、これは第1ノブ201の切替段階に応じて2倍や4倍であってもよい。要は、磁石207がホールIC206の2倍以上の回転角度ステップで回転するようにすればよい。また、上記第1ノブ201にはホールIC206に替えて磁石207が配置され、第2ノブ202には磁石207に替えてホールIC206が配置されるようにしてもよい。この場合、第1ノブ201に連動して磁石207が25°づつ変位し、第2ノブ202に連動してホールIC206が75°づつ変位するようにする(請求項4に相当)。
【0048】
このように、第2実施形態のコンビネーションスイッチによれば、小さな回転角度ステップで段階的に回転するホールIC206(又は磁石207)により、この周りを大きな回転角度ステップで段階的に回転する磁石207(又はホールIC206)の磁束密度を検出するようにしているので、非接触で複数のスイッチ(例えば、上記第1ノブ201及び第2ノブ202)による切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。また、このコンビネーションスイッチを用いて、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいランプスイッチを得ることができる。
【0049】
なお、上記コンビネーションスイッチは、ランプスイッチのみならず、複数のスイッチが必要なワイパースイッチに用いることも可能である。この第2実施形態は、請求項3〜5に相当する。
【0050】
更に、図6及び図7を用いて、本発明の第3実施形態について説明する。図6は、本発明の第3実施形態に係るコンビネーションスイッチに含まれる磁石及びホールICの、各ポジション毎の相対的な位置関係を示す図である。図7は、図6のコンビネーションスイッチにおける、各ポジション毎のホールICにて検出される磁束密度を示す特性図である。
【0051】
この第3実施形態のコンビネーションスイッチも、例えば、車両のランプスイッチに用いられる。このランプスイッチは、上記第2実施形態と同様、筒状のレバー構造をしたロータリ型のコンビネーションスイッチであり、ステアリングコラムの左側に設置される。このランプスイッチは、回転軸上に固定的に配置されて磁束密度を検出するホールIC306(請求項の磁束密度検出素子に相当)と、中空の筒状の第1ノブの回転にともなって上記ホールIC306の周りを略180°の回転角度ステップで回転し、中空の筒状の第1ノブとは別種の第2ノブの回転にともなって上記ホールICの周りを略90°以下の回転角度ステップで、それぞれ独立的に回転するひとつのリング状の磁石307とを含んで構成される。第1ノブ及び第2ノブはそれぞれ独立的に所定角度範囲内で回転可能である。このランプスイッチも、図示しないレバー本体を介してステアリングコラムに取付られており、その外形は、例えば、図1に示したコンビネーションスイッチと類似の周知の形状をしているので、その説明は省略する。
【0052】
上記第1ノブは、回転操作にて車両のフォッグランプのオンオフを選択的、段階的に切り替え可能である。そして、第1ノブは、フォッグランプのオンポジションFOGONから、フォッグランプのオフポジションFOGOFFへの切り替えにともない、リング状の磁石307を略180°回転させる。これには、上記第2実施形態にて説明した内歯車等が利用される。
【0053】
一方、上記第2ノブは、回転操作にて車両の全ランプオフ(ポジションOFF)、テールランプオン(ポジションTAIL)、ヘッドランプオン(ポジションHEAD)、及びオートランプモード(ポジションAUTO)を選択的、段階的に切り替え可能である。各ポジション間の移行に際し、第2ノブは、例えば、30°づつ回転させる。
【0054】
このような構成のランプスイッチにおいて、第1ノブがポジションFOGOFFからポジションFOGONに切り替えられると、ホールIC306と磁石307との位置関係は、図6の上側に示す状態から、図6の下側に示す状態へと変化する。これにより、ホールIC306にて検出される磁束密度は、図7に示すように、正域から負域へと大きく変化する。このような磁束密度により、第1ノブがポジションFOGONにあるかポジションFOGOFFにあるかを判定可能である。
【0055】
一方、第2ノブがポジションOFF、ポジションTAIL、ポジションHEAD、ポジションAUTOに切り替えられる毎に、ホールIC306と磁石307との位置関係は、図6に示すように、30°づつ変化していく。これにより、ホールIC306にて検出される磁束密度は、図7に示すように、正域において4つの各ポジションに応じた値が得られ、負域においても同様である。この磁束密度により、第2ノブがポジションOFF、ポジションTAIL、ポジションHEAD、ポジションAUTOのいずれにあるかを判定可能である。
【0056】
このように、第3実施形態のコンビネーションスイッチによれば、大小の異なる回転角度ステップでそれぞれ段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチ(例えば、第1ノブ及び第2ノブ)による切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。特に、第1ノブ及び第2ノブの回転にともなってひとつの磁石だけが回転すればよいのでより構造が簡素化されて、低コスト化がより促進される。また、非接触型の簡易な構成により信頼性も向上する。更に、このコンビネーションスイッチを用いて、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいランプスイッチを得ることができる。
【0057】
なお、上記実施形態では、磁石307を第1ノブにて略180°、第2ノブにて30°づつ回転させる例を示したが、第2ノブは例えば略45°づつ回転させるようにしてもよい。但し、この場合、第2ノブの切り替え段数は2段階となる。要は、第2ノブは略90°以下の回転角度ステップであればよい。また、上記コンビネーションスイッチは、ランプスイッチのみならず、複数のスイッチが必要なワイパースイッチに用いることも可能である。この第3実施形態は、請求項6及び7に相当する。
【0058】
このように、本発明の実施形態のコンビネーションスイッチによれば、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。更に、このコンビネーションスイッチを用いて、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいワイパースイッチ及びランプスイッチを得ることができる。
【0059】
なお、本発明は、上記実施形態に限定されるものでなく、構成の要旨に付随する各種設計変更が可能である。例えば、ワイパースイッチやランプスイッチ以外への適用、各ポジションの変更、変位角度の変更、磁石の形状変更等、適宜変更可能である。
【0060】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、磁束密度を検出する磁束密度検出素子が回転軸上に固定的に配置されており、第1ノブの回転にともなって第1磁石が磁束密度検出素子の周りを段階的に回転し、第2ノブの回転にともなって第2磁石が磁束密度検出素子の周りを連続的に回転する。そして、第1ノブの回転にともなう段階的な磁束密度の変化に基づいて第1ノブの段階的なスイッチポジションが検出され、第2ノブの回転にともなう連続的な磁束密度の変化に基づいて第2ノブの連続的なスイッチポジションが検出される。このように、段階的な磁束密度の変化及び連続的な磁束密度の変化をそれぞれ検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。
【0061】
請求項2記載の発明によれば、第1ノブにて、ワイパーのオフ、間欠駆動、連続駆動又はウオッシャモードのいずれかを選択的に切り替え、第2ノブにて、ワイパーの駆動速度を連続的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えは段階的な磁束密度の変化を利用するので複数のポジション切り替えに適合し、第2ノブによる切り替えは連続的な磁束密度の変化を利用するので連続的な速度制御に適合する。したがって、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいワイパースイッチを得ることができる。
【0062】
請求項3記載の発明によれば、この第1ノブの回転にともなって磁束密度検出素子が比較的小さな回転角度ステップで段階的に回転し、第2ノブの回転にともなって磁石が磁束密度検出素子の周りを磁束密度検出素子の回転角度ステップの2倍以上の回転角度ステップで段階的に回転する。そして、磁束密度検出素子により検出される磁束密度に基づいて、第1ノブ及び第2ノブのそれぞれのスイッチポジションが検出される。このように、小さな回転角度ステップで段階的に回転する磁束密度検出素子により、この周りを大きな回転角度ステップで段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。
【0063】
請求項4記載の発明によれば、上記第1ノブには磁束密度検出素子に替えて磁石が配置され、上記第2ノブには磁石に替えて磁束密度検出素子が配置される。すなわち、大きな回転角度ステップで段階的に回転する磁束密度検出素子により、この周りを小さな回転角度ステップで段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。また、非接触型の簡易な構成により信頼性も向上する。
【0064】
請求項5記載の発明によれば、第1ノブにて、車両のフロント部及びリア部に取り付けられた補助ランプのオンオフを選択的に切り替え、第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えでは大きな磁束密度差が検出されるので補助ランプのオンオフ制御に適合し、第2ノブによる切り替えでは小さな磁束密度差が検出されるので、多段階の全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードの切替制御に適合する。したがって、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいランプスイッチを得ることができる。
【0065】
請求項6記載の発明によれば、磁束密度を検出する磁束密度検出素子が回転軸上に固定的に配置されており、
第1ノブの回転にともなって磁石が磁束密度検出素子の周りを180°の回転角度ステップで段階的に回転し、第2ノブの回転にともなってこの磁石が磁束密度検出素子の周りを90°以下の回転角度ステップで、それぞれ独立的に回転する。そして、磁束密度検出素子により検出される磁束密度に基づいて、第1ノブ及び第2ノブのそれぞれのスイッチポジションが検出される。このように、大小の異なる回転角度ステップでそれぞれ段階的に回転する磁石の磁束密度を検出するようにしているので、非接触で複数のスイッチによる切り替え動作が可能となる。したがって、従来のように、複数の固定接点、可動接点、抵抗基板等が不要になり、構造が簡素化されるため、低コスト化が促進される。特に、第1ノブ及び第2ノブの回転にともなってひとつの磁石だけが回転すればよいのでより構造が簡素化されて、低コスト化がより促進される。更に、非接触型の簡易な構成により信頼性も向上する。
【0066】
請求項7記載の発明によれば、第1ノブにて、フォッグランプオン及びフォッグランプオフを選択的に切り替え、第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替えるようにしているので、非常に合理的である。すなわち、第1ノブによる切り替えでは大きな磁束密度差が検出されるのでフォッグランプのオンオフ制御に適合し、第2ノブによる切り替えでは小さな磁束密度差が検出されるので、多段階の全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードの切替制御に適合する。したがって、低コスト化が促進され、信頼性が高く、かつ使い勝手のよいランプスイッチを得ることができる。
【図面の簡単な説明】
【図1】図1(A)、図1(B)及び図1(C)はそれぞれ、本発明の第1実施形態に係るコンビネーションスイッチの平面図、XX線断面図及びYY線要部断面図である。
【図2】図1のコンビネーションスイッチにおける、INT/VOL用磁石、リアワイパー用磁石の回転動作を説明するための図である。
【図3】図1のコンビネーションスイッチにおける、両磁石の回転角度と磁束密度との関係を示す特性図である。
【図4】本発明の第2実施形態に係るコンビネーションスイッチの要部を示す図である。
【図5】図4のコンビネーションスイッチにおける、各ポジション、回転角度及び相対角度の関係を示す図である。
【図6】本発明の第3実施形態に係るコンビネーションスイッチに含まれる磁石及びホールICの、各ポジション毎の相対的な位置関係を示す図である。
【図7】図6のコンビネーションスイッチにおける、各ポジション毎のホールICにて検出される磁束密度を示す特性図である。
【図8】図8(A)及び図8(B)はそれぞれ、従来のコンビネーションスイッチの一例としてのワイパースイッチの平面図及びZZ線断面図である。
【符号の説明】
1 レバー本体
2 INT/VOLノブ
3 センタノブ
4 リアワイパーノブ
6、206、306 ホールIC
7、8n、8s、207、307 磁石
201 第1ノブ
202 第2ノブ
203 固定ノブ
204 内歯車

Claims (7)

  1. 複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、
    回転軸上に固定的に配置されて磁束密度を検出する磁束密度検出素子と、
    第1ノブに装着されて、この第1ノブの回転にともなって前記磁束密度検出素子の周りを段階的に回転する第1磁石と、
    第2ノブに装着されて、この第2ノブの回転にともなって前記磁束密度検出素子の周りを連続的に回転する第2磁石と、を有し、
    前記磁束密度検出素子にて検出される前記第1ノブの回転にともなう段階的な磁束密度の変化に基づいて、前記第1ノブの段階的なスイッチポジションを検出し、
    前記磁束密度検出素子にて検出される前記第2ノブの回転にともなう連続的な磁束密度の変化に基づいて、前記第2ノブの連続的なスイッチポジションを検出する、
    ことを特徴とするコンビネーションスイッチ。
  2. 請求項1記載のコンビネーションスイッチを用いた車載されるワイパースイッチであって、
    前記第1ノブにて、リアワイパーのオフ、間欠駆動、連続駆動又はウオッシャモードのいずれかを選択的に切り替え、
    前記第2ノブにて、フロントワイパーを連続的に割り当てられた所定の駆動速度に切り替える、
    ことを特徴とするワイパースイッチ。
  3. 複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、
    第1ノブの回転軸上に配置され、この第1ノブの回転にともなって比較的小さな回転角度ステップで段階的に回転する磁束密度検出素子と、
    第2ノブに装着され、この第2ノブの回転にともなって前記磁束密度検出素子の周りを、前記磁束密度検出素子の回転角度ステップの2倍以上の回転角度ステップで段階的に回転する磁石と、を有し、
    前記磁束密度検出素子により検出される磁束密度に基づいて、前記第1ノブ及び前記第2ノブのそれぞれのスイッチポジションを検出する、
    ことを特徴とするコンビネーションスイッチ。
  4. 請求項3記載のコンビネーションスイッチにおいて、
    前記第1ノブには、前記磁束密度検出素子に替えて、前記磁石が配置され、
    前記第2ノブには、前記磁石に替えて、前記磁束密度検出素子が配置される、
    ことを特徴とするコンビネーションスイッチ。
  5. 請求項3又は4記載のコンビネーションスイッチを用いた車載されるランプスイッチであって、
    前記第1ノブにて、車両のフロント部及びリア部に取り付けられた補助ランプのオンオフを選択的に切り替え、
    前記第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替える、
    ことを特徴とするランプスイッチ。
  6. 複数のノブの回転にともなう磁束密度の変化を利用して予め割り当てられたスイッチポジションを検出し、所定の切り替えを行う非接触型のコンビネーションスイッチであって、
    回転軸上に固定的に配置されて磁束密度を検出する磁束密度検出素子と、
    第1ノブの回転にともなって前記磁束密度検出素子の周りを180°の回転角度ステップで回転し、前記第1ノブと異なる第2ノブの回転にともなって前記磁束密度検出素子の周りを90°以下の回転角度ステップで、それぞれ独立的に回転する磁石と、を有し、
    前記磁束密度検出素子により検出される磁束密度に基づいて、前記第1ノブ及び前記第2ノブのそれぞれのスイッチポジションを検出する、
    ことを特徴とするコンビネーションスイッチ。
  7. 請求項6記載のコンビネーションスイッチを用いた車載されるランプスイッチであって、
    前記第1ノブにて、フォッグランプオン及びフォッグランプオフを選択的に切り替え、
    前記第2ノブにて、全ランプオフ、テールランプオン、ヘッドランプオン、及びオートランプモードを選択的に切り替える、
    ことを特徴とするランプスイッチ。
JP2002166979A 2002-06-07 2002-06-07 コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ Expired - Fee Related JP4053821B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166979A JP4053821B2 (ja) 2002-06-07 2002-06-07 コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166979A JP4053821B2 (ja) 2002-06-07 2002-06-07 コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ

Publications (2)

Publication Number Publication Date
JP2004014327A JP2004014327A (ja) 2004-01-15
JP4053821B2 true JP4053821B2 (ja) 2008-02-27

Family

ID=30434362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166979A Expired - Fee Related JP4053821B2 (ja) 2002-06-07 2002-06-07 コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ

Country Status (1)

Country Link
JP (1) JP4053821B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044235B2 (en) 2005-03-15 2011-10-25 Showa Denko K.K. (Meth) acryloyl group-containing aromatic isocyanate compound and production process thereof
JP4888202B2 (ja) 2007-04-10 2012-02-29 パナソニック株式会社 入力操作部品
JP4921276B2 (ja) * 2007-08-01 2012-04-25 ポリマテック株式会社 キースイッチ
JP2009224057A (ja) * 2008-03-13 2009-10-01 Alps Electric Co Ltd ストークスイッチ装置
JP5262701B2 (ja) * 2008-12-26 2013-08-14 オムロン株式会社 電動工具用スイッチ
JP6357647B2 (ja) * 2014-08-21 2018-07-18 パナソニックIpマネジメント株式会社 回転ダイヤル装置及び撮像装置

Also Published As

Publication number Publication date
JP2004014327A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3875562B2 (ja) コンビネーションスイッチ
JP2003148949A (ja) 回転角度検出装置
US7880572B2 (en) Lever switch
JP4053821B2 (ja) コンビネーションスイッチ、並びにこれを用いたワイパースイッチ及びランプスイッチ
US11686385B2 (en) Shift device
US20090231072A1 (en) Stalk switch device
CN108443483A (zh) 旋钮式汽车换挡开关
US20200173539A1 (en) Shift device
JP5226619B2 (ja) 位置検出装置及びシフト装置
JP2009140659A (ja) ストークスイッチ装置
JP2004319278A (ja) コンビネーションスイッチ
JP4965486B2 (ja) 近接スイッチ
JP5535858B2 (ja) 近接スイッチ
KR101271797B1 (ko) 칼럼 타입 변속 레버 장치
JP3979759B2 (ja) 転倒検出スイッチ
KR100366216B1 (ko) 안개등 스위치 겸용 헤드램프 스위치 장치
KR0127525Y1 (ko) 산업차량용 절환스위치
JP2001266703A (ja) スイッチ装置
JP2011249277A (ja) 近接スイッチ及びその製造方法
WO2004048813A1 (ja) チェンジレバーユニット
KR102604715B1 (ko) 칼럼 다이얼 타입 전자식 변속 레버
JP2009123366A (ja) ストークスイッチ装置
JP6478044B2 (ja) 回転入力装置
KR100656936B1 (ko) 시프트 바이 와이어 시스템
JP2001180509A (ja) 車両用操舵制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees