JP4043408B2 - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
JP4043408B2
JP4043408B2 JP2003171264A JP2003171264A JP4043408B2 JP 4043408 B2 JP4043408 B2 JP 4043408B2 JP 2003171264 A JP2003171264 A JP 2003171264A JP 2003171264 A JP2003171264 A JP 2003171264A JP 4043408 B2 JP4043408 B2 JP 4043408B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
substrate
treatment plate
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003171264A
Other languages
English (en)
Other versions
JP2005011851A (ja
Inventor
信幸 左田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003171264A priority Critical patent/JP4043408B2/ja
Publication of JP2005011851A publication Critical patent/JP2005011851A/ja
Application granted granted Critical
Publication of JP4043408B2 publication Critical patent/JP4043408B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱処理プレートに基板を載せて加熱処理あるいは冷却処理すると共に、放射温度計により基板表面の温度を測定してその測定値を温度制御系に取り込むようにした基板処理装置及び基板処理方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造プロセスにおいては、この半導体デバイスの表面に所望のレジストパターンを形成するためにフォトリソグラフィと呼ばれる技術が用いられる。この半導体デバイス用の露光マスクであるマスク基板に対しても同様にフォトリソグラフィが用いられ、基板の表面にレジスト液を塗布し、所定のパターンを用いてそのレジスト膜を露光し、更に現像することによってマスク基板の表面に所望のレジストパタ−ンを作製することが行われている。
【0003】
前記レジスト液は塗布膜の成分を溶剤に溶解させたものであり、レジスト液の塗布後には基板を所定温度に加熱して前記溶剤を揮発させるベークと呼ばれる熱処理が行われる。この加熱処理は例えば加熱手段を内部に備えた加熱プレートの表面に基板を載置することにより行われている。
【0004】
ここで加熱プレートを備えた加熱装置の一例について図11を用いて簡単に述べておく。図中1は基板Gを載置するための加熱プレートである。この加熱プレート1の表面には、基板Gの裏面にパーティクルが付着するのを抑えるために当該基板Gの裏面を加熱プレート1の表面から僅かに例えば0.5mm程度浮かせて支持するための突起部11が例えば3個設けられている。また加熱プレート1の内部には加熱手段であるヒータ12が設けられており、例えば熱電対からなる検知部13の検出結果に基づいて制御部14によりヒータ12の出力(加熱動作)を制御することにより、その表面に載置された基板Gが予定とする温度例えば130℃に加熱されるように構成されている。
【0005】
ところでレジスト液が表面に塗布された基板Gを加熱処理する場合、その表面に面内均一な塗布膜を形成するためには、被加熱体である基板Gの表面温度を実際に測定して、予定の温度に維持されているかを監視しながら加熱することが望ましい。例えば基板Gの表面と対向する位置に放射温度計を設けて加熱時の基板の表面の温度を測定した場合、放射温度計は例えば周りの雰囲気の温度、照度など周囲の環境(測定環境)の変化によっては、例えば図12に示すように測定温度と放射量との相関特性がいわば平行移動してしまうドリフトが起きて測定精度が低下するといった問題があった。そのため、放射温度計を簡単に精度良く校正できる手法の実現が求められていた。
【0006】
従来における放射温度計を校正する手法の一例としては、例えば校正用の放射温度計と、実際に加熱時の基板Gの温度を測定する測定用の放射温度計とを組み合わせた構成が知られている(例えば、特許文献1参照。)。より詳しくは特許文献1には、以下のような工程で測定用の放射温度計を校正することが記載されている。先ず、図13に示すように、予め所定の温度例えば25℃に維持された校正用ヒータ15の温度を校正用の放射温度計16で測定し、この温度計16の指示値がヒータ15と同じ温度を指示するように校正する。次いで基板Gを支持体18の表面に載置し、校正用の放射温度計16で測定する。更に続いて測定用の放射温度計17で基板Gの温度を測定し、この測定用の放射温度計17の指示値を、前記校正用の放射温度計16の指示値に合わせ込むことにより測定用の放射温度計18が校正され、例えば100℃で加熱される基板の温度を測定する。
【0007】
【特許文献1】
特開2001−274109号公報(段落0032〜0036、図1)
【0008】
【発明が解決しようとする課題】
しかしながら特許文献1に開示された手法には以下の問題がある。即ち、放射温度計は、既述のように例えば周囲の雰囲気温度、照度などの周囲の環境によりドリフトが起こるので、校正時の放射温度計の周囲の環境と、実際に加熱された基板の温度を測定する時の環境とが異なれば、その分ドリフトして測定精度が低下してしまう場合がある。更に、校正用の放射温度計16および測定用の放射温度計18の2種類の放射温度計と、校正用のヒータ15を備えているために、校正する際におけるこれらの動作が複雑になり、結果として校正に時間がかかる懸念がある。
【0009】
本発明はこのような事情の下になされたものであり、その目的は熱処理プレート上に基板を載置すると共に放射温度計による基板表面温度の測定値を温度制御系に組み込む、あるいは監視用データとして取得するにあたり、放射温度計の校正を簡単かつ短時間に校正することができ、その結果高精度な熱処理を行うことができる基板処理装置及び基板処理方法を提供することにある。
【0010】
本発明の基盤処理装置は、ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置して所定の熱処理を行うと共に当該基板の温度を測定するための放射温度計を有する基板処理装置において、
その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置したときに、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整するための手段と、
前記ヒータの供給電力を調整した後、放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する手段と、
前記熱処理プレートに設けられた温度検出部と、
前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により測定した当該熱処理プレートの表面放射量と、前記温度検出部の温度検出値と、に基づいて前記熱処理プレートの放射率を求める手段と、
この手段で求められた熱処理プレートの表面の放射率を記憶する記憶部と、
被加熱処理体である基板を順次前記熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量の測定結果と前記記憶部に記憶されている熱処理プレートの放射率とに基づいて当該熱処理プレートの表面の温度を求める手段と、
この手段で求めた熱処理プレートの表面の温度と前記温度検出部の温度検出値との差異に基づいて放射温度計を途中校正する手段と、を備えたことを特徴とする
【0011】
本発明の基板処理装置によれば、基板が所定の温度で処理されるように加熱された熱処理プレートの表面を放射温度計で測定し、この測定温度の結果と、そのときの温度検出部の検出温度に基づいて当該放射温度計の校正を行う構成とすることにより、放射温度計は基板の実際の処理温度付近にて校正することができるので、校正した後の測定環境の変化により放射温度計に測定誤差が生じるのを抑えることができる。このため簡単に正確な校正を行うことができる。また熱処理プレートを用いて校正を行う構成とすることにより、後続の基板が搬入される前に放射温度計を移動させずに校正することができるので、結果として短時間で校正をすることができる。
【0012】
本発明は、熱処理プレートの放射率を求めたときの熱処理プレートの温度と、放射温度計の途中校正時における熱処理プレートの温度とは例えば同じ場合に適用できる。また熱処理プレートの温度が複数用意され、前記記憶部には、各熱処理プレートの温度毎に放射率が記憶されていてもよい。更に所定のタイミングは、基板が加熱処理されて熱処理プレートから搬出された後、次の基板が当該熱処理プレートに搬入される前であってもよい。更にまた、放射温度計により測定された基板表面温度は、熱処理プレートの温度制御に用いられるかまたは監視データとして用いられる構成であってもよい。
【0013】
他の発明は、ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置して所定の熱処理を行うと共に当該基板の温度を測定するための放射温度計を有する基板処理装置において、
その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置したときに、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整するための手段と、
前記ヒータの供給電力を調整した後、放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する手段と、
前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により測定した当該熱処理プレートの表面放射量と、熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める手段と、
この手段で求められた熱処理プレートの表面の温度を記憶する記憶部と、
被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量と前記熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める手段と、
この手段で求めた熱処理プレートの表面の温度と前記記憶部に記憶されている熱処理プレートの表面温度との差異に基づいて放射温度計を途中校正する手段と、を備えたことを特徴とする基板処理装置。
【0014】
この発明においても上記の発明と同様の効果が得られる。本発明は、放射温度計が初期校正されたときに当該放射温度計により熱処理プレートの表面からの放射量を求めたときの熱処理プレートの温度と、放射温度計の途中校正時における熱処理プレートの温度とは例えば同じ場合に適用できる。
【0015】
本発明の基板処理方法は、ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置、放射温度計により当該基板の表面温度を測定しながら基板に対して所定の熱処理を行う基板処理方法において、
その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置し、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整する工程と、
次いで前記放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する工程と、
前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により熱処理プレートの表面放射量を測定する工程と、
この工程で測定した放射量と前記温度検出値とに基づいて前記熱処理プレートの表面の放射率を求める工程と、
この工程で求められた熱処理プレートの表面の放射率を記憶部に記憶する工程と、
その後、被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量の測定結果と前記記憶部に記憶されている熱処理プレートの放射率とに基づいて当該熱処理プレートの表面の温度を求める工程と、
この工程で求めた熱処理プレートの表面の温度と前記温度検出部の温度検出値との差異に基づいて放射温度計を途中校正する工程と、を含むことを特徴とする。
他の発明は、ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置、放射温度計により当該基板の表面温度を測定しながら基板に対して所定の熱処理を行う基板処理方法において、
その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置し、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整する工程と、
次いで前記放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する工程と、
前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により熱処理プレートの表面放射量を測定する工程と、
この工程で測定した前記熱処理プレートの表面放射量と、熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める工程と、
この工程で求められた熱処理プレートの表面の温度を記憶する工程と、
その後、被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量と前記熱処理プレートの表面の放射率とみなした値とに基づいて熱処理プレートの表面の温度を求める工程と、
この工程で求めた熱処理プレートの表面の温度と前記記憶部に記憶されている熱処理プレートの表面温度との差異に基づいて放射温度計を途中校正する工程と、を備えたことを特徴とする。
【0016】
【発明の実施の形態】
本発明は、熱処理プレートにより例えば多数枚の基板例えば表面に塗布液が塗布されたマスク基板を順次熱処理する場合に、基板を加熱処理する度に放射温度計の校正を行う、いわゆる定期校正を対象とする発明である。しかしながら高精度に定期校正を行うためには、先ずその前提として初期校正をしておかなければならないと考える。従って本発明の実施の形態を説明するにあたり、初期校正をするための装置構成および工程についても説明するが、これにより本発明が限定されるものではない。
【0017】
本発明の実施の形態に係る基板処理装置である加熱装置について図1〜図3を参照しながら説明すると、図中2は加熱装置の外装体をなす処理容器であり、その側面には例えば全周に亘って開口部20が形成され、この開口部20を介して図示しない基板搬送手段により基板Gの搬入出がされるように構成されている。また処理容器2の天井部の例えば中央には排気口21が形成されており、図示しない排気手段により当該排気口21を介して処理容器2内の雰囲気を外部に排気できるように構成されている。
【0018】
処理容器2の内部には、所定の載置領域に載置された基板を加熱するための加熱プレート3が設けられている。より詳しくは加熱プレート3の表面には突起部31が複数設けられており、基板Gは突起部31により加熱プレート3の表面から僅かに例えば0.5mm程度浮かせた状態で支持される。また加熱プレート3の例えば内部には、加熱手段である例えば抵抗発熱体からなるヒータ32が設けられている。このヒータ32は、例えば加熱プレート3に載置された基板Gの中央部に対応する位置に設けられた例えば四角形状の第1のヒータ32Aと、基板Gの周縁部に対応する位置に設けられたリング状の第2のヒータ32Bとを備えている。即ち、加熱プレート3はヒータ32の加熱動作により加熱され、この加熱プレート3の表面から僅かな隙間を介した熱伝導によって、より詳しくは突起部31を介した直接伝熱、および輻射熱が加わって基板Gが加熱されることとなる。また加熱プレート3の例えば下方側内部には温度検出部である例えば熱電対からなる温度センサ33が設けられている。33Aは、加熱プレート3における第1のヒータ32Aの加熱領域(受け持ち領域)の温度を検知するための温度センサであり、33Bは第2のヒータ32Bの加熱領域(受け持ち領域)の温度を検知するための温度センサである。
【0019】
加熱プレート3には上下に伸びる貫通孔34が例えば3ヵ所設けられており、この貫通孔34内には基板Gを裏面側から支持するための基板支持ピン35が挿設されている。更に基板支持ピン35は加熱プレート3の下方側に設けられた昇降機構36に連結されており、この昇降機構36により基板支持ピン35の先端が加熱プレート3の表面から突没自在なように構成されている。例えば図示しない基板搬送手段により開口部20を介して処理容器2内に水平姿勢で搬入された基板Gは、この基板搬送手段と基板支持ピン35との協働作用により加熱プレート3の表面に載置されるように構成されている。
【0020】
処理容器2内には加熱プレート3の側周を囲むようにして例えば上端側が内側に折り曲げられた筒状のシャッタ37が設けられている。このシャッタ37は支持部38を介して昇降部39と連結されており、昇降部39例えばエアシリンダにより所定の高さ例えば当該シャッタ37の上端面と、この上端面と対向する処理容器2の内壁面との間に僅かな隙間が形成される位置まで上昇して開口部20を概ね封鎖することにより加熱プレート3上の基板Gの周囲を囲む処理空間が形成される。
【0021】
また基板Gの表面と対向するようにして、基板Gの表面の温度を測定するための放射温度計4が設けられており、基板Gの中央部および周縁部である隅部に対応する位置であって前記温度センサ33A、33Bと対向する位置に放射温度計4A、4Bが図5のように夫々配置されている。即ち、放射温度計4A(4B)と温度センサ33A(33B)とは互いに対向する位置にて加熱プレート3の中央部あるいは周縁部の温度を各々測定可能なように構成されている。なお放射温度計4A、4Bの構成は特に限定されるものではないが、例えばサーモパイル素子が用いられる。
【0022】
図中5は制御部であり、この例ではコンピュータ及び温度コントローラ30を含めて制御部としている。51は初期校正時に求めた温度センサ33の温度検出値と加熱プレート3の表面(上面)の放射率とを記憶する記憶部である。図3では温度検出値T1〜T3に夫々対応して放射率ε1〜ε2を記載してあるが、ヒータ32のチャンネル数が例えば2個(32A、32B)であれば、それらヒータ32A、32Bの加熱制御領域の温度を夫々検出する温度センサ33A、33B毎に温度検出値と放射率とを対応付けたデータが記憶されることになる。また、この例では加熱プレート3の処理温度が加熱処理の種類や基板Gに塗布される塗布膜の種類などに応じて当該加熱装置のプロセス温度が種々設定される場合を想定して、その設定温度の数だけ温度センサ33の温度検出値と放射率との組を用意しているが、例えば130℃の一点だけでプロセスが行われる装置であれば、その組数は1つでよい。この記憶部51に記憶される放射率は、後述する装置の作用説明にて記載するが、処理を実施する前の初期段階にて、校正が終了した放射温度計4により加熱プレート3の表面の放射量を検出し、その放射量と、このときの温度センサ33の温度検出値に基づいて求めた値である。つまり加熱プレート3の表面温度が温度センサ33の温度検出値であると擬成して、表面温度と放射量とから加熱プレート3の放射率を求めたものである。従って、この放射率は真の放射率と同じである保証はないが、本例ではこの放射率の値そのものに意味があるのではなく、基板Gのプロセスを実施するときに後続の基板Gが加熱プレート3に置かれる前に、前記放射率を媒体として放射温度計4の狂いを見つけるために用いられるパラメータとして位置付けられる。
【0023】
52は、初期校正時に用いられるプログラム群の格納部である。52aはヒータの出力を調整するための出力調整プログラムである。52bは放射温度計4の測定結果に基づいて基板Gに対する放射温度計4のオフセットとゲインを演算により求めるための演算プログラムである。52cは温度センサ33の検出温度と、放射温度計4の測定温度とを取得して放射率を演算により取得するための放射率取得プログラムである。53は、放射温度計4の定期校正時に用いられるプログラム群の格納部である。53aは予め定められたタイミング例えば一の基板Gの加熱処理が終わって次の基板Gが加熱プレート3に搬入される前に放射温度計4により加熱プレート3の表面から放射量を検出し、その検出値と記憶部51に記憶されている、対応する放射率とを用いて加熱プレート3の表面温度を求めるためのデータ取得プログラムである。53bは、53aにより求めた加熱プレート3の表面温度と、そのときの温度センサ33の温度検出値とを比較して互いの温度が一致するか否かを判定するための判定プログラムである。53cは判定結果に基づいて放射温度計4のドリフト量を修正するための変更プログラムである。なお実際にはこれらのプログラム52a〜53c、53a〜53cはメモリ内に格納されているが、説明の便宜上プログラムに符号を付して説明してある。
【0024】
54はヒータ32の電力調整を行って加熱プレート3の温度を制御するための54aを格納した記憶部である。温度コントローラ30では温度目標値と温度センサ33からの温度検出値とに基づいて例えばPID制御が行われるが、温度制御プログラム54aは放射温度計4を用いて求めた基板Gの表面温度に基づいて温度目標値を修正するなどのステップ群を含むものである。その一例を挙げると、例えば基板Gを加熱プレート3に載置して基板Gの温度が昇温される段階において、放射温度計4A、4Bにて求めた夫々の基板表面温度差と所定のアルゴリズムとに基づいてヒータ32A、32Bに対する夫々の温度目標値を変更するなどの制御が行われる。また56はCPUであり、57はバスである。
【0025】
続いて初期校正をする工程について図4を用いて説明する。なお既述したようにどのような初期校正を行うかにより本発明が限定されるものではない。先ず、ステップS1に示すように、出力調整プログラム52aに基づいて、その表面にセンサが設けられた校正用の基板G1を加熱プレート3の表面に載置し、このセンサの検出温度が予定とするプロセス温度(加熱処理温度)例えば130℃になるように例えば供給電力を調整することによりヒータ32の出力を調整する。つまりこの加熱装置にあっては、基板Gの表面に塗布された塗布液例えばレジストを所定の温度でベークすることを目的としているので、基板G1の表面が予定とする加熱温度になるようにヒータ32の出力が調整される。続いてこのセンサ付きの基板G1を外部に搬出した後、別の基板Gを加熱プレート3上に載置して加熱する(ステップS2)。なお、センサ付きの基板G1と当該基板Gとは同種のものであり、表面の放射率は予め把握されている。更にこの場合、ステップS1にてヒータ32の出力が調整されていることから加熱された当該基板Gの温度は、前記センサー付き基板G1と同様にその表面の温度は130℃になっている。このように基板Gを2枚用いる理由は、基板Gに貼り付けられたセンサの領域と放射温度計4の測定領域とが重なるようになっているからであるが、例えば図4に示すようにセンサの貼り付け領域を放射温度計4の測定領域からずらすようにすれば、センサ付き基板G1を用い、基板G1のセンサからの指示値が設定温度になるようにヒータ32の出力を合わせ込めば足りる。このような構成とすればステップS1とステップS2を同時に行える点で有利である。更に続いて、未校正の放射温度計4で基板Gの表面の温度を測定し、演算プログラム52bにより、その指示温度が130℃となるように当該放射温度計4を校正する(ステップS3)。
【0026】
続いて基板Gを加熱プレート3から取り除いて外部に搬出し、各放射温度計4(4A、4B)により加熱プレート3の夫々対応する測定領域における表面の放射量を測定する(ステップS4)。そして放射温度計4にて検出した放射量と、各放射温度計4A(4B)の測定領域に対応する温度センサ33A(33B)の検出温度の結果に基づいて、放射率取得プログラム52cにより加熱プレート3の放射率を演算により求め(ステップS5)、記憶部51に記憶する(ステップS6)。この放射率は、既述のように加熱プレート3の真の放射率ではなく、次に述べる定期校正時において当該放射率を用いて放射温度計4の指示温度を換算し、温度センサ33の指示温度と一致しているか否かの判定を行ういわば換算係数に相当するものである。
【0027】
続いてステップS7、S8に示すように、基板Gの予定の温度を例えば10℃間隔、本例においては120℃、130℃、140℃に夫々設定してステップS1〜S6を繰り返し行うことにより、図6に一例を示すように、基板Gに対する放射温度計4(4A、4B)のオフセットとゲインとが校正される。なお実際には中央部と周縁部との間に温度差があったとしても例えば最大でも0.3℃と極めて僅かなものであるが、図6では作図の便宜上大きく記載してある。
【0028】
このように基板Gの表面温度を複数例えば3通りに設定し、各温度において放射温度計4で放射量を測定することにより、放射温度計4の初期校正を行うことができるが、この場合に設定される温度は、例えば基板Gのプロセス温度を含ませることが好ましい。例えばこの加熱装置が130℃以外に、基板G上の塗布膜の種類などに応じて100℃、150℃といった他のプロセス温度に設定して基板処理が行われるものであるとすると、100℃、130℃、150℃の夫々の夫々において加熱プレート3の放射率を求めておくことが好ましい。そしてこの場合には、後述の定期校正において、実施しているプロセス温度に対応する温度の放射率を記憶部51から読み出して加熱プレート3の表面温度が求められることになる。なお、加熱プレート3の放射率は例えば初期校正時において130℃のときの値のみを記憶部51に記憶して、100℃、150℃のプロセスを行うときであっても、その放射率を使用するようにしてもよいが、各温度毎に加熱プレート3の放射率を求めて使い分けた方が校正精度が高くなると考えられる。
【0029】
続いて放射温度計の定期校正をする工程について図7を用いて説明する。
先ず加熱プレート3が所定の温度となるようにヒータ32により加熱を行うが、既に一の基板Gの加熱処理を終えている場合には温度センサ33の検出結果が予定とする温度になるようにPID制御がされている。そして所定のタイミング例えば後続の基板Gが加熱プレート3上に載置される前に、放射温度計4で加熱プレート3の表面からの放射量を検出し、更に記憶部51から対応する放射率、この例では130℃に対応する放射率を読み出して演算により加熱プレート3の表面温度を求める(ステップ101)。次いで、判定プログラム53bにて、ステップS101にて求められた加熱プレート3の表面温度と、そのときの温度センサ33の温度検出値とを比較して、互いの温度が一致する場合には放射温度計4にドリフトは起きていないと判定する(ステップS102)。一方、互いの温度が異なる場合、例えば放射温度計4の測定温度が130.5℃、温度センサ33の検出温度が130℃であるときは、ドリフトにより0.5℃の誤差が生じていると判定し、実際に基板Gの温度を放射温度計4で測定した場合、その指示温度からこの差分を補正した値を出力しかつ表示するようにする(ステップS103)。
【0030】
前記ドリフトは放射エネルギーの検出値に載ってくるため、加熱プレート3の放射率と基板Gの放射率との違いから、温度に換算したドリフト量は加熱プレートと基板Gとの間で異なり、そのため前記温度差0.5℃に対して基板Gの温度誤差へ換算することが好ましい。例えば加熱プレート3の温度誤差Tep、基板Gの温度誤差をTerとすると、TerはTep*εp/εrとして計算するようにしてもよい。εp、εrは夫々加熱プレート3の放射率及び基板Gの放射率である。この式は、放射エネルギーをE、表面温度をT、放射率をε、比例定数をkとすると、E=ε・k・T4 が成り立つことから導かれる。
【0031】
続いてシャッタ37を下降させ、開口部20を介して図示しない基板搬送手段により前段の工程でその表面にレジスト液が塗布された基板Gを処理容器2内に搬入し、基板支持ピン35との協働作用により先ず基板Gが基板支持ピン35に受け渡しされ、次いで基板支持ピン35が下降して基板Gを加熱プレート3の表面に載置する。そして放射温度計4で温度を測定しながら基板Gの昇温を行い、更に目標温度で所定の時間基板Gを加熱処理した後、搬入時と反対の経路で基板Gを搬出する(ステップS104)。
【0032】
上述の実施の形態によれば、基板Gが所定の温度で処理されるように加熱された加熱プレート3の表面を放射温度計4で測定し、この測定温度の結果と、そのときの温度センサ33の検出温度に基づいて当該放射温度計4の校正を行う構成とすることにより、放射温度計4は基板Gの実際の処理温度付近にて校正することができる。従って基板温度を測定する時の測定環境と、校正時における測定環境とを略同じにすることができるので、校正した後の測定環境の変化により放射温度計4にドリフトが起きるのを抑えることができる。このため簡単に高精度な放射温度計4の校正を行うことができるので、結果として基板Gの温度を高精度に測定することができる。そのため、本例においては基板Gの表面に面内均一な厚みの塗布膜を形成することを実現することができる。なお、プロセス温度例えば130℃の一点で他の温度に設定することがない場合には、ステップS103にて温度センサ33の検出温度との比較を行う構成に限られず、例えば前回の校正時の放射温度計4の測定温度と比較して、前回と異なる測定結果であればドリフトが起きていると判定するようにしてもよい。
【0033】
更に上述の実施の形態によれば、温度センサ33の種々の温度に対応した放射率の情報を備えた構成とすることにより、いずれのプロセス温度に対してもドリフトが起きているか否か、どの位ドリフトしているのかを簡単かつ正確に把握することができる。このためどのように補正をすればよいのかを適切に決めることができるので、簡単かつ正確な校正をすることができる。既述のしたように放射温度計4の測定精度が低下する要因の殆どはドリフトによるものであり、ゲインが狂うことは稀であることから、例えば初期校正を行って基板Gに対するオフセットおよびゲインを予め把握しておけば、その後の定期校正においてはいかにしてドリフト量を簡単にかつ正確に把握できるかを実現しなければならない。即ち、本例においては温度センサ33の温度に対応した放射率の情報を記憶しておき、これを用いて校正することにより、より確実に簡単かつ正確な校正を短時間に行うことができる。
【0034】
更に上述の実施の形態によれば、被測温体である基板Gを載置する加熱プレート3の温度を測定して校正することにより、放射温度計4を移動させずに校正することができるので校正時の動作が簡単になり、結果として校正時間の短縮化を図ることができる。また「従来の技術」の欄に記載の手法のように、校正用の放射温度計16や校正用のヒータ15を別に設けなくとも校正することができるので、装置構成を簡単にすることができる。
【0035】
更に上述の実施の形態によれば、基板Gの中央部、および隅部に対応する放射温度計4を設けた構成とすることにより、各々の部位で高精度な温度測定をすることができる。そのため測定結果に基づいてヒータ32A、32Bの出力加減を調整することができるので、基板の面内でより均一な加熱処理をすることができる。なお本発明においては、ヒータ32Bはリング状のヒータに限られず、例えば図8に示すように、ヒータ32Aを囲むように四角形状のヒータを網の目状に配置してもよく、更に各ヒータ32毎あるいは四隅に対応するヒータ32に温度センサ32および放射温度計4を夫々割り当てるようにしてもよい。このような構成であっても上述の場合と同様の効果を得ることができる。
【0036】
なお本発明においては、放射温度計4の測定温度(測定結果)は、既述のように温度制御ループに組み込まれることに限られず、監視データとして記録する場合であってもよい。また本発明においては、ドリフト量が把握できた後、その値で放射温度計4の指示値を校正する構成(ステップS103)に限られず、例えば指示値はそのままにして制御部5側にてドリフト量を加えた値を温度制御ループに取り入れるようにしてもよい。
【0037】
更に本発明においては、熱板の放射率をある値εであるとみなし、検出した放射量と当該放射率εとに基づいて演算して、表面温度t0(この温度は実際の表面温度と異なるが)を求めて記憶部51に記憶し、その表面温度t0と、そのときの放射温度と放射率εとに基づいて求めた表面温度t1との差異をドリフト量としてもよく、この場合であっても先の例と実質同じである。
【0038】
前記放射率のある値としては、次のようなものが一例として挙げられる。例えば基板Gが熱容量の大きいガラス基板である場合には、既述のステップS1において基板Gの表面の温度が130℃になるように加熱プレート3の出力を調整した際、加熱プレート3は130℃よりも高い温度になることがある。このような場合に放射温度計4の測定温度が130℃と表示されるような放射率εの値を用いる。前記したように基板Gに対するオフセットおよびゲインがどれ位ドリフトしているかを把握することができれば、加熱プレート3の温度が正確に測定されていなくともよい点に着目すれば、このようにドリフトの判定の比較対象となる温度を一律に同じ温度としておくことより、複数の放射温度計4のいずれにドリフトが起きているかを容易に認識することができるので、結果として装置の操作が簡単になり作業員の負担を軽減できる点で有利である。
【0039】
更に本発明においては、基板Gに対して行われる熱処理は塗布液を塗布した基板Gを加熱する処理に限られず、例えば化学増幅型レジストの露光後かつ現像前の加熱処理であってもよい。また例えば層間絶縁膜、デバイスの保護膜をなす絶縁膜の加熱処理(ベーク)であってもよい。更には例えばヒータ32に代えて冷却手段例えばペルチェ素子を設けて基板Gを冷却する構成としてもよい。この場合であっても上述の場合と同様の効果を得ることができる。更に本発明においては、基板はマスク基板Gに限られず例えば半導体ウエハ、FPD基板の熱処理にも適用できる。
【0040】
最後に本発明の熱処理装置をユニット化して組み込んだ、塗布・現像装置の一例について図9および図10を参照しながら説明する。図中B1は複数枚の基板Gを収納したキャリア70を載置するキャリア載置部71と、受け渡し手段72を備えたキャリアブロックB1であり、このキャリアブロックB1の奥側には処理ブロックB2が接続されている。処理ブロックB2には主搬送手段例えば上述の搬送アーム5が設けられ、これを取り囲むように例えばキャリアブロックB1からみて右側には上述の塗布ユニットU1および露光処理後の基板Gを現像するための現像ユニットU2が設けられ、左側には基板Gを洗浄するための洗浄ユニットU3が設けられ、更に手前側および奥側には基板Gを加熱および冷却処理するための加熱・冷却ユニットおよび基板受け渡し用の受け渡しユニットなどを多段に積層した棚U4、U5が設けられている。また搬送アーム5は例えば昇降及び前後に移動自在で且つ鉛直軸周りに回転自在に構成されており、塗布ユニットU1、現像ユニットU2、洗浄ユニットU3および棚ユニットU4、U5間で基板Gの受け渡しが可能なように構成されている。更にまた、処理ブロックB2は、インターフェイスブロックB3を介して例えばレジスト膜が形成された基板Gに所定のマスクを用いて露光処理するための露光ブロックB4と接続されており、またこのインターフェイスブロックB3には受け渡し手段73が設けられ、棚ユニットU5の棚の一つである受け渡しユニットと、露光ブロックB4との間で基板Gの受け渡しが可能なように構成されている。
【0041】
この装置の基板Gの流れについて簡単に説明すると、先ず外部から基板Gが収納されたキャリア70がキャリア載置部71に搬入されると、受け渡し手段72によりカセットC内から基板Gが1枚が取り出され、棚ユニットU4の棚の一つである受け渡しユニットを介して搬送アーム5に渡され、洗浄ユニットU3→加熱ユニット→冷却ユニット→塗布ユニットU1に順次搬入されて上述の手法にて例えばレジスト膜が形成される。次いで加熱ユニットでプリベーク処理が行われ、冷却ユニットで所定の温度に調整された後、受け渡し手段73を介して露光ブロックB4に搬入されて露光が行われる。しかる後、基板Gは加熱ユニットに搬入されて所定の温度でポストエクスポージャーベーク処理が行われ、次いで冷却ユニットで所定の温度に温調された後、現像ユニットU2にて現像処理が行われる。こうして所定の処理が施され、その表面に例えばレジストマスクパターンが形成された基板Gは元のキャリア70内に戻される。
【0042】
【発明の効果】
以上のように本発明によれば、熱処理プレートを用いて校正を行う構成とすることにより、放射温度計は基板の実際の処理温度付近にて校正することができるので、校正した後の測定環境の変化により放射温度計に測定誤差が生じるのを抑えることができ、そのため簡単かつ正確な放射温度計の校正を行うことができる。また後続の基板が搬入される前に放射温度計を移動させずに校正することができるので、結果として短時間で校正をすることができ、装置構成を簡単にすることができる。よって簡単かつ短時間に校正することができ、その結果として高精度な基板の温度測定をすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る基板処理装置を示す縦断面図である。
【図2】上記基板処理装置の載置台を示す平面図である。
【図3】上記基板処理装置の制御部の制御回路を示す説明図である。
【図4】上記基板処理装置の放射温度計の初期校正をする工程を示す工程図である。
【図5】測定用のセンサ付き基板を示す説明図である。
【図6】上記初期設定により得られるデータの一例を示す。
【図7】上記熱処理装置の放射温度計の定期校正をする工程を示す工程図である。
【図8】加熱プレートのヒータの他の例を示す説明図である。
【図9】上記の熱処理装置を組み込んだ塗布・現像装置を示す平面図である。
【図10】上記の熱処理装置を組み込んだ塗布・現像装置を示す斜視図である。
【図11】従来の加熱装置を示す説明図である。
【図12】放射温度計の特性を示す説明図である。
【図13】従来の他の加熱装置を示す説明図である。
【符号の説明】
G 基板
3 載置台
32(32A、32B) ヒータ
33(33A、33B) 温度センサ
4(4A、4B) 放射温度計
5 制御部

Claims (9)

  1. ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置して所定の熱処理を行うと共に当該基板の温度を測定するための放射温度計を有する基板処理装置において、
    その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置したときに、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整するための手段と、
    前記ヒータの供給電力を調整した後、放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する手段と、
    前記熱処理プレートに設けられた温度検出部と、
    前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により測定した当該熱処理プレートの表面の放射量と、前記温度検出部の温度検出値と、に基づいて前記熱処理プレートの放射率を求める手段と、
    この手段で求められた熱処理プレートの表面の放射率を記憶する記憶部と、
    被加熱処理体である基板を順次前記熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量の測定結果と前記記憶部に記憶されている熱処理プレートの放射率とに基づいて当該熱処理プレートの表面の温度を求める手段と、
    この手段で求めた熱処理プレートの表面の温度と前記温度検出部の温度検出値との差異に基づいて放射温度計を途中校正する手段と、を備えたことを特徴とする基板処理装置。
  2. ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置して所定の熱処理を行うと共に当該基板の温度を測定するための放射温度計を有する基板処理装置において、
    その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置したときに、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整するための手段と、
    前記ヒータの供給電力を調整した後、放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する手段と、
    前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により測定した当該熱処理プレートの表面の放射量と、熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める手段と、
    この手段で求められた熱処理プレートの表面の温度を記憶する記憶部と、
    被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量と前記熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める手段と、
    この手段で求めた熱処理プレートの表面の温度と前記記憶部に記憶されている熱処理プレートの表面温度との差異に基づいて放射温度計を途中校正する手段と、を備えたことを特徴とする基板処理装置。
  3. 熱処理プレートの温度が複数用意され、前記記憶部には、各熱処理プレートの温度毎に放射率が記憶されていることを特徴とする請求項1記載の基板処理装置。
  4. 所定のタイミングは、基板が加熱処理されて熱処理プレートから搬出された後、次の基板が当該熱処理プレートに搬入される前であることを特徴とする請求項1ないし3のいずれかに記載の基板処理装置。
  5. 放射温度計により測定された基板表面温度は、熱処理プレートの温度制御に用いられるかまたは監視データとして用いられることを特徴とする請求項1ないし4のいずれかに記載の基板処理装置。
  6. ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置し、放射温度計により当該基板の表面温度を測定しながら基板に対して所定の熱処理を行う基板処理方法において、
    その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置し、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整する工程と、
    次いで前記放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する工程と、
    前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により熱処理プレートの表面の放射量を測定する工程と、
    この工程で測定した放射量と前記温度検出値とに基づいて前記熱処理プレートの表面の放射率を求める工程と、
    この工程で求められた熱処理プレートの表面の放射率を記憶部に記憶する工程と、
    その後、被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量の測定結果と前記記憶部に記憶されている熱処理プレートの放射率とに基づいて当該熱処理プレートの表面の温度を求める工程と、
    この工程で求めた熱処理プレートの表面の温度と前記温度検出部の温度検出値との差異に基づいて放射温度計を途中校正する工程と、を含むことを特徴とする基板処理方法。
  7. ヒータにより加熱される熱処理プレートの表面に被加熱処理体である基板を載置し、放射温度計により当該基板の表面温度を測定しながら基板に対して所定の熱処理を行う基板処理方法において、
    その表面に温度センサが設けられた校正用の基板を前記熱処理プレートの表面に載置し、このセンサの温度が予定とする温度となるように前記ヒータの供給電力を調整する工程と、
    次いで前記放射温度計により、前記熱処理プレート上における加熱された基板の表面の温度を測定し、当該放射温度計の指示温度が前記予定とする温度となるように校正する工程と、
    前記放射温度計の校正時に用いた基板を前記熱処理プレート上から取り除いた後に、当該放射温度計により熱処理プレートの表面の放射量を測定する工程と、
    この工程で測定した前記熱処理プレートの表面の放射量と、熱処理プレートの表面の放射率とみなした値とに基づいて前記熱処理プレートの表面の温度を求める工程と、
    この工程で求められた熱処理プレートの表面の温度を記憶する工程と、
    その後、被加熱処理体である基板を順次熱処理プレートに載置して熱処理するときに、基板が載置されていない所定のタイミングにおいて、放射温度計により測定した前記熱処理プレートの表面の放射量と前記熱処理プレートの表面の放射率とみなした値とに基づいて熱処理プレートの表面の温度を求める工程と、
    この工程で求めた熱処理プレートの表面の温度と前記記憶部に記憶されている熱処理プレートの表面温度との差異に基づいて放射温度計を途中校正する工程と、を備えたことを特徴とする基板処理方法
  8. 熱処理プレートの表面の放射率を求める工程は、互いに異なる熱処理プレートの温度毎に求め、各熱処理プレートの温度毎に放射率を記憶部に記憶することを特徴とする請求項6記載の基板処理方法。
  9. 所定のタイミングは、基板が加熱処理されて熱処理プレートから搬出された後、次の基板が当該熱処理プレートに搬入される前であることを特徴とする請求項6ないし8のいずれかに記載の基板処理方法。
JP2003171264A 2003-06-16 2003-06-16 基板処理装置及び基板処理方法 Expired - Fee Related JP4043408B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171264A JP4043408B2 (ja) 2003-06-16 2003-06-16 基板処理装置及び基板処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171264A JP4043408B2 (ja) 2003-06-16 2003-06-16 基板処理装置及び基板処理方法

Publications (2)

Publication Number Publication Date
JP2005011851A JP2005011851A (ja) 2005-01-13
JP4043408B2 true JP4043408B2 (ja) 2008-02-06

Family

ID=34095806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171264A Expired - Fee Related JP4043408B2 (ja) 2003-06-16 2003-06-16 基板処理装置及び基板処理方法

Country Status (1)

Country Link
JP (1) JP4043408B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707139B2 (ja) * 2005-06-28 2011-06-22 芝浦メカトロニクス株式会社 減圧処理装置及び減圧処理方法
JP5693573B2 (ja) * 2009-06-30 2015-04-01 ラム リサーチ コーポレーションLam Research Corporation 最適なエンドポイント・アルゴリズムを構築する方法
KR102175073B1 (ko) * 2018-08-21 2020-11-06 세메스 주식회사 기판 처리 장치 및 방법
JP7372074B2 (ja) * 2019-08-07 2023-10-31 株式会社Screenホールディングス 熱処理方法
CN112947634B (zh) * 2021-02-01 2022-12-30 泉芯集成电路制造(济南)有限公司 一种热盘温度调整方法及一种热盘装置

Also Published As

Publication number Publication date
JP2005011851A (ja) 2005-01-13

Similar Documents

Publication Publication Date Title
US7831135B2 (en) Method and system for controlling bake plate temperature in a semiconductor processing chamber
JP4444090B2 (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
US6229116B1 (en) Heat treatment apparatus
JP4509820B2 (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
US6622104B2 (en) Heat treatment apparatus, calibration method for temperature measuring system of the apparatus, and heat treatment system
JP4343151B2 (ja) 加熱プレートの温度測定方法、基板処理装置及び加熱プレートの温度測定用のコンピュータプログラム
JP4033809B2 (ja) 熱処理装置及び熱処理方法
JP4384538B2 (ja) 基板処理装置及び基板処理方法
JP6481636B2 (ja) 熱板の温度測定装置及び熱板の温度測定方法
TWI643246B (zh) Heat treatment device, abnormality detection method in heat treatment, and readable computer memory medium
US7957828B2 (en) Temperature setting method for thermal processing plate, temperature setting apparatus for thermal processing plate, and computer-readable storage medium
US20120275484A1 (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
TWI305932B (ja)
JP4043408B2 (ja) 基板処理装置及び基板処理方法
JP5485936B2 (ja) 温度校正装置及び温度校正方法
JP2008141071A (ja) 基板の熱処理装置
JP4282204B2 (ja) 熱処理方法
KR20120121852A (ko) 온도 측정 장치, 온도 교정 장치 및 온도 교정 방법
JP2000068224A (ja) 基板熱処理装置
JP2023051506A (ja) 温度校正システム、検査装置および温度校正方法
JP2002033254A (ja) 基板加熱装置及びその方法
Sun et al. New sensing wafer technique for artifact-free transient temperature measurements in PEB processes
JP2010170565A (ja) 熱処理装置、温度制御方法、半導体装置の製造方法及び補正値取得方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees