JP4043146B2 - Package substrate - Google Patents

Package substrate Download PDF

Info

Publication number
JP4043146B2
JP4043146B2 JP17924999A JP17924999A JP4043146B2 JP 4043146 B2 JP4043146 B2 JP 4043146B2 JP 17924999 A JP17924999 A JP 17924999A JP 17924999 A JP17924999 A JP 17924999A JP 4043146 B2 JP4043146 B2 JP 4043146B2
Authority
JP
Japan
Prior art keywords
package substrate
chip
ceramic plate
interlayer resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17924999A
Other languages
Japanese (ja)
Other versions
JP2001007248A (en
Inventor
直宏 広瀬
宏太 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP17924999A priority Critical patent/JP4043146B2/en
Publication of JP2001007248A publication Critical patent/JP2001007248A/en
Application granted granted Critical
Publication of JP4043146B2 publication Critical patent/JP4043146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
ICチップなどの電子部品を載置するパッケージ基板に関し、特にセラミック板上に、層間樹脂絶縁層及び配線層をビルドアップしてなるパッケージ基板に関するのもである。
【0002】
【従来の技術】
パッケージ基板として、セラミック板上に、層間樹脂絶縁層及び配線層をビルドアップしてなる多層配線板が知られている。かかる多層配線板では、図8に示すようにスルーホール212を配設して成るセラミック板210の上に、層間樹脂絶縁層240,340を配設してある。該層間樹脂絶縁層240には、ビア246及び導体回路248が形成され、層間樹脂絶縁層340には、ビア346が形成されている。当該多層配線板では、セラミック板210側にバンプ266を介してドーターボード280が接続され、層間樹脂絶縁層340側にバンプ266を介してICチップ270が接続されている。
【0003】
【発明が解決しようとする課題】
パッケージ基板は、ICチップと外部基板とを接続させると共に両者間の熱膨張差を吸収するために配設されている。しかしながら、上述した構成のパッケージ基板において、ICチップ270とドータボードとの間の熱膨張差により、ビア248、348、導体回路248、層間樹脂絶縁層240,340等にクラックが発生して、内部断線を生じることがあった。
【0004】
本発明は上述した課題を解決するためなされたものであり、その目的とするところは、ICチップと外部基板の熱膨張差により故障の発生しないパッケージ基板を提供することにある。
【0005】
【課題を解決するための手段】
上述した課題を解決するため、請求項1のパッケージ基板では、形成した通孔に銅めっきを充填してなるスルーホールを配設したセラミック板上に、層間樹脂絶縁層及び配線層をビルドアップしてなるパッケージ基板であって、
前記セラミック板上にICチップへの接続用のバンプを配設し、
前記層間樹脂絶縁層上の配線層に外部樹脂基板への接続用のバンプ又はピンを配設したことを技術的特徴とする。
【0007】
本発明者が研究したところ、上述したICチップと外部基板の熱膨張差によるクラックは、シリコンから成り熱膨張率の小さなICチップを、熱膨張率の大きな層間樹脂絶縁層上に取り付け、樹脂から成り熱膨張率の大きな外部基板を、熱膨張率の小さなセラミック板側に取り付けていることに起因することを発見した。
【0008】
このため、請求項1では、熱膨張率の小さなICチップを、熱膨張率の小さなセラミック板側に取り付け、樹脂から成り熱膨張率の大きな外部樹脂基板を、熱膨張率の大きな層間樹脂絶縁層上に取り付け、熱膨張率差に起因するクラック等の発生を防ぐ。また、平坦なセラミック板上にファインピッチなICチップのパッドを取り付けるため、接続信頼性を高めることができる。更に、熱伝導性、耐熱性の高いセラミック板側をICチップに取り付けるため、ICチップを効率的に冷却できると共に、高熱時の信頼性を高めることが可能となる。
【0009】
請求項では、セラミック板に形成した通孔に、銅めっきを充填してスルーホールを形成するため、メタライズインクを焼成して成るスルーホールと比較して、配線抵抗を低減することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について図を参照して説明する。
先ず、本発明の第1実施形態に係るパッケージ基板の構成について、断面図を示す図4、図5を参照して説明する。
図4に示すようにパッケージ基板100は、セラミック板10と、ビルドアップ層を構成する層間樹脂絶縁層40、140とからなる。セラミック板10には、スルーホール12が形成されて、該スルーホール12には、図5に示すようにICチップ70のパッド72への接続用のバンプ66が形成されている。一方、層間樹脂絶縁層40には、バイアホール46及び導体回路48が形成され、層間樹脂絶縁層140には、導体回路48へ接続されたバイアホール146が形成されている。該バイアホール146には、図5に示すようにドータボード80のパッド82への接続用のバンプ66が配設されている。
【0011】
図5で示すドータボード80のパッド82は、バンプ66−バイアホール146−導体回路48−バイアホール46−配線22−配線16−スルーホール12−バンプ66を介して、ICチップ70のパッド72へ接続されている。
【0012】
本実施形態のパッケージ基板100では、シリコンから成り熱膨張率の小さなICチップ70を、熱膨張率の小さなセラミック板10側に取り付け、樹脂から成り熱膨張率の大きなドータボード80を、熱膨張率の大きな層間樹脂絶縁層40、140側に取り付ける。このため、熱膨張差に起因するクラック等の発生を防げる。
【0013】
また、平坦なセラミック板上にファインピッチなICチップのパッド72を取り付けるため、接続信頼性を高めることができる。即ち、ICチップ70側のパッド72は、数十μmのピッチであるのに対して、ドータボード80側のパッド82は、数百μmのピッチである。図8を参照して上述した従来技術のパッケージ基板では、凹凸の有る層間樹脂絶縁層340側にファインピッチなICチップ側のパッドを取り付けていたのに対して、本実施形態では、凹凸のないセラミック板10側のバンプ66をICチップ70に取り付けるため、信頼性を高めることができる。
【0014】
更に、熱伝導性、耐熱性の高いセラミック板10側をICチップ70に取り付けるため、ICチップを効率的に冷却できると共に、樹脂の熱溶解が無くなり、高熱時の信頼性を高めることが可能となる。
【0015】
ひき続き、図4を参照して上述したパッケージ基板の製造方法について、図1〜図3を参照して説明する。
(1) アルミナ−ホウケイ酸鉛ガラス粉末を周知の方法で、200〜1000μmのグリーンシート10αにする。そして、該グリーンシート10αにスルーホール形成用の通孔10aを穿設する(図1に示す工程(A))。
【0016】
(2)グリーンシート10αの通孔10aに、Agペースト12αを充填する(工程(B))。
【0017】
(3)グリーンシート10αを空気中において950℃で30分間焼成し、スルーホール12を備えるセラミック板10を形成する(工程(C))。なお、焼成後、セラミック板10のICチップを載置する側の表面を研磨して平坦にすることもできる。
【0018】
(4)次に、セラミック板10の下面に絶縁樹脂40αを塗布する(図2に示す工程(G))。絶縁樹脂としては、エポキシ、BT、ポリイミド、オレフィン等の熱硬化性樹脂、又は、熱硬化性樹脂と熱可塑性樹脂との混合物を用いることができる。また、樹脂を塗布する代わりに、樹脂フィルムを貼り付けることも可能である。
【0019】
(5)絶縁樹脂40αを加熱して硬化させ層間樹脂絶縁層40とした後、CO2レーザ、YAGレーザ、エキシマレーザ又はUVレーザにより、層間樹脂絶縁層40に、スルーホール12へ至る開口径100〜250μmの非貫通孔40aを形成する(工程(E))。
【0020】
(6)デスミヤ処理を施した後、パラジウム触媒を付与し、無電解めっき液へ浸漬して、層間樹脂絶縁層40の表面に均一に厚さ15μmの無電解めっき膜42を析出させる(図2に示す工程(F))。ここでは、無電解めっきを用いているが、スパッタにより銅、ニッケル等の金属膜を形成することも可能である。スパッタはコスト的には不利であるが、樹脂との密着性を改善できる利点がある。
【0021】
(7)引き続き、無電解めっき膜42の表面に感光性ドライフィルムを張り付け、マスクを載置して、露光・現像処理し、厚さ15μmのめっきレジストレジスト43を形成する(工程(G))。そして、セラミック板10を無電解めっき液に浸漬し、無電解めっき膜42を介して電流を流してレジスト43の非形成部に電解めっき44を形成する(工程(H))。
【0022】
(8)そして、レジスト43を5%KOH で剥離除去した後、硫酸と過酸化水素混合液でエッチングし、めっきレジスト下の無電解めっき膜42を溶解除去し、無電解めっき42及び電解銅めっき44からなる厚さ18μm(10〜30μm)の導体回路48及びバイアホール46を得る(図3に示す工程(I))。
【0023】
更に、クロム酸に3分間浸漬して、導体回路48間の層間樹脂絶縁層40の表面を1μmエッチング処理し、表面のパラジウム触媒を除去する。更に、第2銅錯体と有機酸とを含有するエッチング液により、導体回路48及びバイアホール46の表面に粗化面(図示せず)を形成し、さらにその表面にSn置換を行う。
【0024】
(9)上述した(4)〜(8)の処理を繰り返し、層間樹脂絶縁層140及びバイアホール146を形成する(図3に示す工程(J))。
【0025】
上述したパッケージ基板にはんだバンプを形成する。基板の両面に、ソルダーレジスト組成物を20μmの厚さで塗布し、乾燥処理を行った後、円パターン(マスクパターン)が描画された厚さ5mmのフォトマスクフィルム(図示せず)を密着させて載置し、紫外線で露光し、現像処理する。そしてさらに、加熱処理し、はんだパッド部分(バイアホールとそのランド部分を含む)の開口60aを有するソルダーレジスト層(厚み20μm)60を形成する(工程(K))。
【0026】
その後、塩化ニッケル2.3 ×10−1mol/l、次亜リン酸ナトリウム2.8 ×10−1mol/l、クエン酸ナトリウム1.6 ×10−1mol/l、からなるpH=4.5の無電解ニッケルめっき液に、20分間浸漬して、開口部60aに厚さ5μmのニッケルめっき層62を形成する。さらに、その基板を、シアン化金カリウム7.6 ×10−3mol/l、塩化アンモニウム1.9 ×10−1mol/l、クエン酸ナトリウム1.2 ×10−1mol/l、次亜リン酸ナトリウム1.7 ×10−1mol/lからなる無電解金めっき液に80℃の条件で7.5分間浸漬して、ニッケルめっき層62上に厚さ0.03μmの金めっき層64を形成する(工程(L))。
【0027】
そして、ソルダーレジスト層60の開口部60aに、半田ペーストを充填する(図示せず)。その後、開口部62に充填された半田を 200℃でリフローすることにより、半田バンプ(半田体)66を形成する(図4参照)。
【0028】
次に、該パッケージ基板へのICチップの載置及び、ドータボードへの取り付けについて、図5を参照して説明する。完成したパッケージ基板100の半田バンプ66にICチップ70の半田パッド72が対応するように、ICチップ70を載置し、リフローを行うことで、ICチップ70の取り付けを行う。同様に、パッケージ基板100の半田バンプ66にドータボード80のパッド82をリフローすることで、ドータボード80へパッケージ基板100を取り付ける。
【0029】
引き続き、本発明の第2実施形態に係るパッケージ基板について、図6を参照して説明する。第2実施形態のパッケージ基板は、上述した第1実施形態とほぼ同様である。但し、この第2実施形態のパッケージ基板では、ドータボード側に導電性ピン166が配設され、該導電性ピン166を介してドータボードとの接続を取るように形成されている。図6では、導電性ピン166は、突起物のあるT型であるが、一般に使用されているT型ピンを用いてもよい。材質は42アロイなどの合金がよい。
【0030】
また、上述した第1実施形態では、セラミック板10のスルーホール12をAgメタライズインクを焼成することで形成した。これに対して、第2実施形態では、スルーホール12を銅めっきにより形成してある。
【0031】
この第2実施形態に係るパッケージ基板の製造工程について、図7を参照して説明する。先ず、200〜1000μmのグリーンシート10αに通孔10aを穿設し、下面にAgペースト11αを印刷する(図7に示す工程(A))。ここでは、にAgペーストを用いているが、Wなどのペーストを用いることもできる。グリーンシート10αを空気中において950℃で30分間焼成し、下面に導電層11を備えるセラミック板10を形成する(工程(B))。そして、電解めっき溶液中で、該導電層11を介して電流を流し、通孔10a内に銅めっき13を充填する(工程(C))。最後に、導電層11を研磨により削除し、銅めっきからなるスルーホール12を備えるセラミック板10を形成する。以降の工程は、上記第1実施形態と同様であるため、説明を省略する。
【0032】
この第2実施形態のセラミック体10を用いるパッケージ基板は、スルーホールの抵抗が第1実施形態とパッケージ基板と比較して低いため、配線抵抗を下げるれると共に、配線を全て銅で形成できるので、導電率の異なる界面で発生する信号の反射等を低減することが可能となる。
【0033】
【発明の効果】
本発明の構造のパッケージ基板により、熱膨張係数が整合されるために、層間樹脂絶縁層でのクラックが生じ難い。故に、信頼性が向上される。また、セラミック基板上にICチップが配置されているので、ICチップから放出される熱もセラミック基板からも拡散されるので、セラミック基板と樹脂層との界面付近でのクラックや剥離も防止される。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るパッケージ基板の製造工程図である。
【図2】本発明の第1実施形態に係るパッケージ基板の製造工程図である。
【図3】本発明の第1実施形態に係るパッケージ基板の製造工程図である。
【図4】本発明の第1実施形態に係るパッケージ基板の断面図である。
【図5】本発明の第1実施形態に係るパッケージ基板の断面図である。
【図6】本発明の第2実施形態に係るパッケージ基板の断面図である。
【図7】本発明の第2実施形態に係るパッケージ基板の製造工程図である。
【図8】従来技術に係るパッケージ基板の断面図である。
【符号の説明】
10 セラミック板
10a 通孔
12 スルーホール
22 配線
40 層間樹脂絶縁層
40a 非貫通孔
42 無電解めっき膜
43 レジスト
44 電解めっき
46 バイアホール
48 導体回路
60 ソルダーレジスト
60a 開口部
62 ニッケルめっき膜
64 金めっき膜
66 半田バンプ
70 ICチップ
72 パッド
80 ドータボード
82 パッド
140 樹脂層
146 バイアホール
166 導電性ピン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package substrate on which an electronic component such as an IC chip is placed, and more particularly to a package substrate in which an interlayer resin insulation layer and a wiring layer are built up on a ceramic plate.
[0002]
[Prior art]
As a package substrate, a multilayer wiring board formed by building up an interlayer resin insulation layer and a wiring layer on a ceramic board is known. In such a multilayer wiring board, as shown in FIG. 8, interlayer resin insulation layers 240 and 340 are arranged on a ceramic board 210 having a through hole 212. Vias 246 and conductor circuits 248 are formed in the interlayer resin insulation layer 240, and vias 346 are formed in the interlayer resin insulation layer 340. In the multilayer wiring board, a daughter board 280 is connected to the ceramic board 210 side via bumps 266, and an IC chip 270 is connected to the interlayer resin insulating layer 340 side via bumps 266.
[0003]
[Problems to be solved by the invention]
The package substrate is disposed to connect the IC chip and the external substrate and absorb the difference in thermal expansion between them. However, in the package substrate having the above-described configuration, cracks are generated in the vias 248 and 348, the conductor circuit 248, the interlayer resin insulating layers 240 and 340, and the like due to the difference in thermal expansion between the IC chip 270 and the daughter board. May occur.
[0004]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a package substrate in which no failure occurs due to a difference in thermal expansion between the IC chip and the external substrate.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, in the package substrate of claim 1, an interlayer resin insulation layer and a wiring layer are built up on a ceramic plate in which through holes formed by filling copper plating are formed in the formed through holes. A package substrate comprising:
Bumps for connection to the IC chip are disposed on the ceramic plate,
A technical feature is that bumps or pins for connection to an external resin substrate are disposed on the wiring layer on the interlayer resin insulation layer.
[0007]
As a result of research by the present inventor, the above-described crack due to the difference in thermal expansion between the IC chip and the external substrate is formed by attaching an IC chip made of silicon and having a small coefficient of thermal expansion on an interlayer resin insulating layer having a large coefficient of thermal expansion. It was discovered that this is due to the fact that an external substrate with a high coefficient of thermal expansion is attached to the ceramic plate with a low coefficient of thermal expansion.
[0008]
Therefore, in claim 1, an IC chip having a low coefficient of thermal expansion is attached to the ceramic plate side having a small coefficient of thermal expansion, and an external resin substrate made of resin and having a large coefficient of thermal expansion is used as an interlayer resin insulation layer having a large coefficient of thermal expansion. Installed on top to prevent the occurrence of cracks due to differences in thermal expansion coefficient. Further, since the fine pitch IC chip pads are mounted on the flat ceramic plate, the connection reliability can be improved. Furthermore, since the ceramic plate side having high thermal conductivity and heat resistance is attached to the IC chip, the IC chip can be efficiently cooled and the reliability during high heat can be improved.
[0009]
According to the first aspect of the present invention , the through-hole formed in the ceramic plate is filled with copper plating to form a through hole, so that the wiring resistance can be reduced as compared with a through-hole formed by firing metallized ink.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the configuration of the package substrate according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 5 showing cross-sectional views.
As shown in FIG. 4, the package substrate 100 includes a ceramic plate 10 and interlayer resin insulating layers 40 and 140 constituting a buildup layer. Through holes 12 are formed in the ceramic plate 10, and bumps 66 for connection to the pads 72 of the IC chip 70 are formed in the through holes 12 as shown in FIG. On the other hand, a via hole 46 and a conductor circuit 48 are formed in the interlayer resin insulation layer 40, and a via hole 146 connected to the conductor circuit 48 is formed in the interlayer resin insulation layer 140. In the via hole 146, bumps 66 for connection to the pads 82 of the daughter board 80 are disposed as shown in FIG.
[0011]
The pad 82 of the daughter board 80 shown in FIG. 5 is connected to the pad 72 of the IC chip 70 through the bump 66 -via hole 146 -conductor circuit 48 -via hole 46 -wiring 22 -wiring 16 -through hole 12 -bump 66. Has been.
[0012]
In the package substrate 100 of the present embodiment, an IC chip 70 made of silicon and having a low coefficient of thermal expansion is attached to the ceramic plate 10 side having a low coefficient of thermal expansion, and a daughter board 80 made of resin and having a high coefficient of thermal expansion is used. Attached to the large interlayer resin insulation layers 40 and 140 side. For this reason, generation | occurrence | production of the crack etc. resulting from a thermal expansion difference can be prevented.
[0013]
Further, since the fine pitch IC chip pads 72 are mounted on the flat ceramic plate, the connection reliability can be improved. That is, the pads 72 on the IC chip 70 side have a pitch of several tens of μm, whereas the pads 82 on the daughter board 80 side have a pitch of several hundreds of μm. In the package substrate of the prior art described above with reference to FIG. 8, the fine pitch IC chip side pads are attached to the uneven interlayer resin insulating layer 340 side, whereas in the present embodiment, there is no unevenness. Since the bumps 66 on the ceramic plate 10 side are attached to the IC chip 70, the reliability can be improved.
[0014]
Further, since the ceramic plate 10 side having high thermal conductivity and heat resistance is attached to the IC chip 70, the IC chip can be efficiently cooled, and the resin is not melted, so that the reliability during high heat can be improved. Become.
[0015]
Next, a method for manufacturing the package substrate described above with reference to FIG. 4 will be described with reference to FIGS.
(1) Alumina-lead borosilicate glass powder is made into a 200 to 1000 μm green sheet 10α by a known method. Then, through holes 10a for forming through holes are formed in the green sheet 10α (step (A) shown in FIG. 1).
[0016]
(2) The Ag paste 12α is filled into the through hole 10a of the green sheet 10α (step (B)).
[0017]
(3) The green sheet 10α is fired in air at 950 ° C. for 30 minutes to form the ceramic plate 10 provided with the through holes 12 (step (C)). After firing, the surface of the ceramic plate 10 on the side where the IC chip is placed can be polished and flattened.
[0018]
(4) Next, the insulating resin 40α is applied to the lower surface of the ceramic plate 10 (step (G) shown in FIG. 2). As the insulating resin, a thermosetting resin such as epoxy, BT, polyimide, or olefin, or a mixture of a thermosetting resin and a thermoplastic resin can be used. Moreover, it is also possible to affix a resin film instead of applying resin.
[0019]
(5) After the insulating resin 40α is heated and cured to form the interlayer resin insulating layer 40, the opening diameter 100 to the through hole 12 is formed in the interlayer resin insulating layer 40 by a CO2 laser, YAG laser, excimer laser or UV laser. A 250 μm non-through hole 40a is formed (step (E)).
[0020]
(6) After the desmear treatment, a palladium catalyst is applied and immersed in an electroless plating solution to deposit an electroless plating film 42 having a thickness of 15 μm uniformly on the surface of the interlayer resin insulation layer 40 (FIG. 2). Step (F)). Here, electroless plating is used, but a metal film such as copper or nickel can be formed by sputtering. Sputtering is disadvantageous in terms of cost, but has an advantage of improving adhesion with the resin.
[0021]
(7) Subsequently, a photosensitive dry film is pasted on the surface of the electroless plating film 42, a mask is placed, exposure and development are performed, and a plating resist resist 43 having a thickness of 15 μm is formed (step (G)). . Then, the ceramic plate 10 is immersed in an electroless plating solution, and an electric current is passed through the electroless plating film 42 to form the electrolytic plating 44 on the non-formed portion of the resist 43 (step (H)).
[0022]
(8) Then, the resist 43 is stripped and removed with 5% KOH and then etched with a mixed solution of sulfuric acid and hydrogen peroxide to dissolve and remove the electroless plating film 42 under the plating resist, and the electroless plating 42 and electrolytic copper plating. A conductor circuit 48 and a via hole 46 having a thickness of 18 μm (10 to 30 μm) made of 44 are obtained (step (I) shown in FIG. 3).
[0023]
Furthermore, it is immersed in chromic acid for 3 minutes, and the surface of the interlayer resin insulation layer 40 between the conductor circuits 48 is etched by 1 μm to remove the palladium catalyst on the surface. Further, a roughened surface (not shown) is formed on the surfaces of the conductor circuit 48 and the via hole 46 by an etching solution containing a cupric complex and an organic acid, and Sn substitution is performed on the surface.
[0024]
(9) The processes (4) to (8) described above are repeated to form the interlayer resin insulation layer 140 and the via hole 146 (step (J) shown in FIG. 3).
[0025]
Solder bumps are formed on the package substrate described above. A solder resist composition is applied to both sides of the substrate in a thickness of 20 μm, dried, and then a 5 mm thick photomask film (not shown) on which a circular pattern (mask pattern) is drawn is adhered. And exposed to ultraviolet light for development. Further, heat treatment is performed to form a solder resist layer (thickness 20 μm) 60 having openings 60a in solder pad portions (including via holes and land portions thereof) (step (K)).
[0026]
Then, an electroless nickel plating solution having a pH of 4.5 comprising nickel chloride 2.3 × 10 −1 mol / l, sodium hypophosphite 2.8 × 10 −1 mol / l, sodium citrate 1.6 × 10 −1 mol / l So as to form a nickel plating layer 62 having a thickness of 5 μm in the opening 60a. Furthermore, the substrate was made of potassium gold cyanide 7.6 × 10-3 mol / l, ammonium chloride 1.9 × 10-1 mol / l, sodium citrate 1.2 × 10-1 mol / l, sodium hypophosphite 1.7 × 10-1 mol / l. A gold plating layer 64 having a thickness of 0.03 μm is formed on the nickel plating layer 62 by immersing in an electroless gold plating solution made of l for 7.5 minutes at 80 ° C. (step (L)).
[0027]
Then, a solder paste is filled in the opening 60a of the solder resist layer 60 (not shown). Thereafter, solder bumps (solder bodies) 66 are formed by reflowing the solder filled in the openings 62 at 200 ° C. (see FIG. 4).
[0028]
Next, placement of the IC chip on the package substrate and attachment to the daughter board will be described with reference to FIG. The IC chip 70 is mounted so that the solder pads 72 of the IC chip 70 correspond to the solder bumps 66 of the completed package substrate 100, and the IC chip 70 is attached by performing reflow. Similarly, the package substrate 100 is attached to the daughter board 80 by reflowing the pads 82 of the daughter board 80 onto the solder bumps 66 of the package substrate 100.
[0029]
Subsequently, a package substrate according to a second embodiment of the present invention will be described with reference to FIG. The package substrate of the second embodiment is substantially the same as that of the first embodiment described above. However, in the package substrate of the second embodiment, conductive pins 166 are disposed on the daughter board side, and are formed so as to be connected to the daughter board via the conductive pins 166. In FIG. 6, the conductive pin 166 is a T-type having a protrusion, but a commonly used T-type pin may be used. The material is preferably an alloy such as 42 alloy.
[0030]
Moreover, in 1st Embodiment mentioned above, the through hole 12 of the ceramic board 10 was formed by baking Ag metallizing ink. In contrast, in the second embodiment, the through hole 12 is formed by copper plating.
[0031]
A manufacturing process of the package substrate according to the second embodiment will be described with reference to FIG. First, through-holes 10a are formed in a green sheet 10α of 200 to 1000 μm, and Ag paste 11α is printed on the lower surface (step (A) shown in FIG. 7). Here, an Ag paste is used, but a paste such as W can also be used. The green sheet 10α is fired in air at 950 ° C. for 30 minutes to form the ceramic plate 10 having the conductive layer 11 on the lower surface (step (B)). Then, current is passed through the conductive layer 11 in the electrolytic plating solution to fill the through holes 10a with the copper plating 13 (step (C)). Finally, the conductive layer 11 is removed by polishing, and the ceramic plate 10 having the through holes 12 made of copper plating is formed. Since the subsequent steps are the same as those in the first embodiment, description thereof will be omitted.
[0032]
In the package substrate using the ceramic body 10 of the second embodiment, the resistance of the through hole is lower than that of the first embodiment and the package substrate, so that the wiring resistance can be lowered and all the wiring can be formed of copper. It is possible to reduce the reflection of signals generated at interfaces having different conductivities.
[0033]
【The invention's effect】
Since the thermal expansion coefficient is matched by the package substrate having the structure of the present invention, cracks are hardly generated in the interlayer resin insulating layer. Therefore, reliability is improved. Further, since the IC chip is arranged on the ceramic substrate, the heat released from the IC chip is also diffused from the ceramic substrate, so that cracks and peeling near the interface between the ceramic substrate and the resin layer are prevented. .
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a package substrate according to a first embodiment of the present invention.
FIG. 2 is a manufacturing process diagram of the package substrate according to the first embodiment of the present invention.
FIG. 3 is a manufacturing process diagram of the package substrate according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view of the package substrate according to the first embodiment of the present invention.
FIG. 5 is a cross-sectional view of the package substrate according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view of a package substrate according to a second embodiment of the present invention.
FIG. 7 is a manufacturing process diagram of a package substrate according to a second embodiment of the present invention.
FIG. 8 is a cross-sectional view of a package substrate according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Ceramic board 10a Through-hole 12 Through-hole 22 Wiring 40 Interlayer resin insulation layer 40a Non-through-hole 42 Electroless plating film 43 Resist 44 Electroplating 46 Via hole 48 Conductor circuit 60 Solder resist 60a Opening 62 Nickel plating film 64 Gold plating film 66 Solder bump 70 IC chip 72 Pad 80 Daughter board 82 Pad 140 Resin layer 146 Via hole 166 Conductive pin

Claims (1)

形成した通孔に銅めっきを充填してなるスルーホールを配設したセラミック板上に、層間樹脂絶縁層及び配線層をビルドアップしてなるパッケージ基板であって、
前記セラミック板上にICチップへの接続用のバンプを配設し、
前記層間樹脂絶縁層上の配線層に外部樹脂基板への接続用のバンプ又はピンを配設したことを特徴とするパッケージ基板。
On a ceramic plate in which through holes formed by filling copper plating into the formed through holes are arranged, a package substrate formed by building up an interlayer resin insulation layer and a wiring layer,
Bumps for connection to the IC chip are disposed on the ceramic plate,
A package substrate, wherein bumps or pins for connection to an external resin substrate are disposed on a wiring layer on the interlayer resin insulation layer.
JP17924999A 1999-06-25 1999-06-25 Package substrate Expired - Lifetime JP4043146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17924999A JP4043146B2 (en) 1999-06-25 1999-06-25 Package substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17924999A JP4043146B2 (en) 1999-06-25 1999-06-25 Package substrate

Publications (2)

Publication Number Publication Date
JP2001007248A JP2001007248A (en) 2001-01-12
JP4043146B2 true JP4043146B2 (en) 2008-02-06

Family

ID=16062553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17924999A Expired - Lifetime JP4043146B2 (en) 1999-06-25 1999-06-25 Package substrate

Country Status (1)

Country Link
JP (1) JP4043146B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044769B2 (en) 2002-02-22 2008-02-06 富士通株式会社 Semiconductor device substrate, manufacturing method thereof, and semiconductor package
JP4844392B2 (en) * 2004-05-21 2011-12-28 日本電気株式会社 Semiconductor device and wiring board
WO2005114728A1 (en) * 2004-05-21 2005-12-01 Nec Corporation Semiconductor device, wiring board and manufacturing method thereof
JP2009200294A (en) * 2008-02-22 2009-09-03 Koa Corp Laminated substrate, and its manufacturing method
KR101195786B1 (en) 2008-05-09 2012-11-05 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Chip-size double side connection package and method for manufacturing the same
JP2011029308A (en) * 2009-07-23 2011-02-10 Noge Denki Kogyo:Kk Environment-considered plating method and structure thereof
US8709933B2 (en) * 2011-04-21 2014-04-29 Tessera, Inc. Interposer having molded low CTE dielectric
JP6433930B2 (en) * 2016-02-23 2018-12-05 太陽誘電株式会社 Elastic wave device
US10181447B2 (en) 2017-04-21 2019-01-15 Invensas Corporation 3D-interconnect
US12040284B2 (en) 2021-11-12 2024-07-16 Invensas Llc 3D-interconnect with electromagnetic interference (“EMI”) shield and/or antenna

Also Published As

Publication number Publication date
JP2001007248A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP4997105B2 (en) Printed wiring board and manufacturing method thereof
JPH11233678A (en) Manufacture of ic package
WO2007129545A1 (en) Circuit wiring board incorporating heat resistant substrate
JP4187352B2 (en) Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board
US8464423B2 (en) Method of manufacturing a printed circuit board having metal bumps
JP2000244127A (en) Wiring board and its manufacture
JP2007165810A (en) Multilayer printed wiring board, and method of manufacturing same
JP4043146B2 (en) Package substrate
JP4022405B2 (en) Circuit board for mounting semiconductor chips
JP4315580B2 (en) Printed wiring board and printed wiring board manufacturing method
JP4090151B2 (en) Package substrate
JP2012074487A (en) Method of manufacturing semiconductor package
JP4480207B2 (en) Resin package substrate
JP5942514B2 (en) Semiconductor package manufacturing method and semiconductor package
JP4437361B2 (en) Printed wiring board and printed wiring board manufacturing method
JPH07326853A (en) Ball bump forming method for printed wiring board
JP2002151622A (en) Semiconductor circuit component and its manufacturing method
JPH10261869A (en) Multilayer printed wiring board
JP2013122961A (en) Wiring board, method for manufacturing wiring board
JP4181149B2 (en) Semiconductor package
JP4696368B2 (en) Semiconductor package substrate and manufacturing method thereof, and semiconductor package and manufacturing method thereof
JP2001274204A (en) Bimetal substrate and bga structure
JP3405886B2 (en) Structure of solder bump and method of forming the same
JP2000353775A (en) Conductive connecting pin and package substrate
JP2000133946A (en) Multilayer printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4043146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term