JP4041048B2 - Flexible / rigid wiring board and method for manufacturing the same - Google Patents

Flexible / rigid wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP4041048B2
JP4041048B2 JP2003335148A JP2003335148A JP4041048B2 JP 4041048 B2 JP4041048 B2 JP 4041048B2 JP 2003335148 A JP2003335148 A JP 2003335148A JP 2003335148 A JP2003335148 A JP 2003335148A JP 4041048 B2 JP4041048 B2 JP 4041048B2
Authority
JP
Japan
Prior art keywords
layer
flexible
rigid
wiring
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003335148A
Other languages
Japanese (ja)
Other versions
JP2005101430A (en
Inventor
徹 斉藤
昇次 有泉
邦尚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Dai Nippon Printing Co Ltd
Yamaichi Electronics Co Ltd
Original Assignee
Elna Co Ltd
Dai Nippon Printing Co Ltd
Yamaichi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd, Dai Nippon Printing Co Ltd, Yamaichi Electronics Co Ltd filed Critical Elna Co Ltd
Priority to JP2003335148A priority Critical patent/JP4041048B2/en
Publication of JP2005101430A publication Critical patent/JP2005101430A/en
Application granted granted Critical
Publication of JP4041048B2 publication Critical patent/JP4041048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、リジッド配線層およびフレキシブル配線層を有する配線板およびその製造方法に関する。   The present invention relates to a wiring board having a rigid wiring layer and a flexible wiring layer, and a method for manufacturing the wiring board.

例えばCTスキャナーやカテーテルなどの医療機器、MTヘッドやPCカードなどのPC周辺機器、携帯電話等、電子機器類の短小軽薄化などに伴って、電気回路を形成する配線板についても、高密度配線化や短小軽薄化だけでなくフレキシブル性が要求されている。このような要求に対応して、図14に要部構成を拡大して断面的に示すように、フレキシブル配線層1、および折り曲げ難いリジッド配線層2,2を一体的に組み合わせた混成型の配線板が開発されている(例えば特許文献1参照)。   For example, high-density wiring is required for wiring boards that form electrical circuits as medical devices such as CT scanners and catheters, PC peripherals such as MT heads and PC cards, and mobile phones are becoming shorter, smaller, and thinner. There is a demand for flexibility as well as reduction in size and size. In response to such demands, as shown in an enlarged cross-sectional view of the main part configuration in FIG. 14, a hybrid wiring that integrally combines the flexible wiring layer 1 and the rigid wiring layers 2 and 2 that are difficult to bend. A plate has been developed (see, for example, Patent Document 1).

ここで、折り曲げ可能なフレキシブル配線層1は、フレキシブル性を奏する樹脂層、例えば厚さ12〜50μm程度のポリイミド樹脂フィルム1aを絶縁体層とし、主面に所要の配線パターン層1bを有している。一方、リジッド配線層2,2は、前記フレキシブル配線層1の一部領域に厚さ60〜160μm程度のガラスエポキシ樹脂系を層間絶縁体層2aとし、各層間絶縁体層2aの層間、および外表面に所要の配線パターン2bを多層的に配置させた構成を採っている。   Here, the bendable flexible wiring layer 1 has a flexible resin layer, for example, a polyimide resin film 1a having a thickness of about 12 to 50 μm as an insulator layer, and has a required wiring pattern layer 1b on the main surface. Yes. On the other hand, the rigid wiring layers 2 and 2 have a glass epoxy resin system having a thickness of about 60 to 160 μm as an interlayer insulator layer 2a in a partial region of the flexible wiring layer 1, and between the interlayer insulator layers 2a and outside. A configuration is adopted in which required wiring patterns 2b are arranged in multiple layers on the surface.

リジッド配線層2,2は、その外表面に所要の電子部品を実装する層で折り曲げ難いように硬い配線層になっており、また、フレキシブル配線層1およびリジッド配線層2,2の露出表面には、ソルダーレジスト層等の保護絶縁体層3が設けられている。さらに、フレキシブル配線層1は、リジッド配線層2,2間の接続に寄与する一方、リジッド配線層2,2の位置や方向など、任意に設定できるような折り曲げ可能になっている。   The rigid wiring layers 2 and 2 are hard wiring layers that are difficult to bend on the outer surfaces of the layers on which the required electronic components are mounted. The rigid wiring layers 2 and 2 are also formed on the exposed surfaces of the flexible wiring layer 1 and the rigid wiring layers 2 and 2. Is provided with a protective insulator layer 3 such as a solder resist layer. Furthermore, the flexible wiring layer 1 contributes to the connection between the rigid wiring layers 2 and 2, and can be bent so that the position and direction of the rigid wiring layers 2 and 2 can be arbitrarily set.

なお、上記フレキシブル・リジッド型配線板の構成においては、リジッド配線層2,2の層間絶縁体を成すポリイミド樹脂フィルム1a、およびガラスエポキシ樹脂系層2aは、熱硬化性接着剤層を介して接合している。また、配線パターン層2b間等の接続は、スルホール型やビア型があり、これらの層間接続導体4は、導電体の埋め込みやスルホール内壁面のメッキ膜化などで行われている。   In the configuration of the flexible / rigid wiring board, the polyimide resin film 1a and the glass epoxy resin layer 2a constituting the interlayer insulators of the rigid wiring layers 2 and 2 are bonded via a thermosetting adhesive layer. is doing. Further, the connection between the wiring pattern layers 2b and the like has a through hole type or a via type, and these interlayer connection conductors 4 are formed by embedding a conductor or forming a plating film on the inner wall surface of the through hole.

この種のフレキシブル・リジッド型の配線板は、次のようにして製造されている。先ず、厚さ12〜50μm程度のポリイミド樹脂フィルム1aの主面に、接着剤層を介して厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシートを用意する。次いで、この銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体4を形成する。その後、主面の銅箔について、フォトエッチング処理を施して配線パターン1bを形成し、主面の配線パターン1b間が接続されたフレキシブル配線層とする。   This type of flexible / rigid wiring board is manufactured as follows. First, a copper foil-bonded sheet is prepared by bonding a copper foil having a thickness of about 12 to 18 μm to the main surface of the polyimide resin film 1a having a thickness of about 12 to 50 μm via an adhesive layer. Next, a predetermined region of the copper foil-bonded sheet is subjected to perforation processing to provide a through hole for interlayer connection, and then the inner wall surface of the through hole is formed into a plated conductor or filled with a conductive composition to form an interlayer connection conductor. 4 is formed. Thereafter, the copper foil on the main surface is subjected to a photo-etching process to form a wiring pattern 1b, thereby forming a flexible wiring layer in which the wiring patterns 1b on the main surface are connected.

一方、厚さ60〜160μm程度のガラスエポキシ樹脂系シートの両面に、厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシート複数枚を用意する。ここで、ガラスエポキシ樹脂系シートは、リジッド配線層2,2の層間絶縁体を形成するものである。従って、前記フレキシブル配線層のフレキシブルな領域1に対応する部分が切欠かれた構成、もしくは切除可能な構成となっている。次いで、これらの銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体4を形成する。その後、銅箔についてフォトエッチング処理を施し、配線パターンに接続する層間接続導体4を有するリジッドな配線シートとする。   On the other hand, a plurality of copper foil-bonded sheets prepared by bonding a copper foil having a thickness of about 12 to 18 μm to both surfaces of a glass epoxy resin sheet having a thickness of about 60 to 160 μm is prepared. Here, the glass epoxy resin-based sheet forms an interlayer insulator of the rigid wiring layers 2 and 2. Accordingly, the flexible wiring layer has a configuration in which a portion corresponding to the flexible region 1 is cut out or a configuration that can be removed. Next, after drilling a predetermined region of these copper foil-bonded sheets and providing a through hole for interlayer connection, the inner wall surface of the through hole is made into a plated conductor or filled with a conductive composition to connect the interlayer. A conductor 4 is formed. Thereafter, the copper foil is subjected to a photo-etching process to obtain a rigid wiring sheet having an interlayer connection conductor 4 connected to the wiring pattern.

上記用意した、フレキシブル性配線層とリジッドな配線シートとを位置合わせし積層する。このときに熱硬化性の接着剤層を介在させる。   The flexible wiring layer prepared above and a rigid wiring sheet are aligned and laminated. At this time, a thermosetting adhesive layer is interposed.

この積層配置体に加熱加圧加工を施し、フレキシブル配線層とリジッド配線層とを接合し一体化させることにより、多層型のリジッド配線層2,2がフレキシブル配線層1を介して一体化した配線板となる。   A wiring in which the multilayer rigid wiring layers 2 and 2 are integrated through the flexible wiring layer 1 by subjecting the laminated arrangement to heat and pressure processing and bonding and integrating the flexible wiring layer and the rigid wiring layer. It becomes a board.

さらに、上記リジッド配線層2,2の構成を次のような手段で行うことも知られている。すなわち、配線パターン2b形成面に、厚さ60〜160μm程度の半硬化性ガラスエポキシ樹脂層、および所定領域面に導電性組成物などを素材として突起状導電体を設けた厚さ15μm程度の銅箔を位置決めして積層する。その後、この積層体を加熱・加圧して接合一体化して、銅箔が半硬化性ガラスエポキシ樹脂層を貫挿した突起状導電体で電気的に接続した回路板を製作し、次いで銅箔をエッチング処理して配線パターン化する。この方式は、層間接続導体を容易に、また、微細に形成できるので、生産性および高密度配線パターン化に適する手段として注目されている。
特開平11−204896号公報([0023]〜[0033])
It is also known that the rigid wiring layers 2 and 2 are configured by the following means. That is, a copper film having a thickness of about 15 μm in which a semi-curable glass epoxy resin layer having a thickness of about 60 to 160 μm is formed on the surface on which the wiring pattern 2 b is formed, and a protruding conductor is provided on a predetermined region surface using a conductive composition as a material. Position and laminate the foil. After that, the laminate is heated and pressurized to be joined and integrated, and a circuit board in which the copper foil is electrically connected by a projecting conductor through which the semi-curable glass epoxy resin layer is inserted is manufactured. Etching is performed to form a wiring pattern. This method is attracting attention as a means suitable for productivity and high-density wiring patterning because the interlayer connection conductor can be easily and finely formed.
JP-A-11-204896 ([0023] to [0033])

しかし、上記リジッド配線層2,2およびフレキシブル配線層1を有するフレキシブル・リジッド配線板には、次のような不具合が認められる。すなわち、絶縁体層を成すポリイミド樹脂フィルム1aは、一般的に、誘電率および吸水率が高く、高周波伝送用の配線板として不利であるという問題を抱えている。   However, the following problems are recognized in the flexible rigid wiring board having the rigid wiring layers 2 and 2 and the flexible wiring layer 1. That is, the polyimide resin film 1a constituting the insulator layer generally has a problem that it has a high dielectric constant and water absorption, and is disadvantageous as a wiring board for high-frequency transmission.

本発明は、上記事情に対処してなされたもので、接続の信頼性が高く、また、反り等を呈しないリジッド配線層を備えた高周波伝送に適するフレキシブル・リジッド配線板、およびその製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and has a connection reliability high and a flexible / rigid wiring board suitable for high-frequency transmission provided with a rigid wiring layer that does not exhibit warpage or the like, and a method of manufacturing the same. For the purpose of provision.

本発明の一態様のフレキシブル・リジッド型配線板は、所定のガラス転移点温度をもつ液晶ポリマーからなるフレキシブル絶縁体層とこのフレキシブル絶縁体層の面または層内に配置された第1の配線パターンとからなるフレキシブル配線層と、
前記フレキシブル配線層の一部の両面側に挟んで積層一体化され前記フレキシブル絶縁体層のガラス転移点温度よりもガラス転移点温度が低く繊維強化熱硬化性樹脂からなるリジッド絶縁体層とこのリジッド絶縁体層の面または層内に配置された第2の配線パターンからなるリジッド配線層と、
前記リジッド絶縁体層を貫通し前記第1の配線パターンと前記第2の配線パターンを電気的に接続する突起状導電体と
を具備し、前記リジッド絶縁体層は前記フレキシブル絶縁体層に常温時に圧縮歪を与えることを特徴とするものである。
A flexible rigid wiring board according to an aspect of the present invention includes a flexible insulating layer made of a liquid crystal polymer having a predetermined glass transition temperature, and a first wiring pattern disposed on the surface of the flexible insulating layer or in the layer. A flexible wiring layer comprising:
A rigid insulator layer made of a fiber reinforced thermosetting resin having a glass transition temperature lower than the glass transition temperature of the flexible insulator layer, which is laminated and integrated between both sides of a part of the flexible wiring layer, and the rigid A rigid wiring layer comprising a second wiring pattern disposed on the surface of the insulator layer or in the layer;
A protruding conductor that penetrates the rigid insulator layer and electrically connects the first wiring pattern and the second wiring pattern ;
The rigid insulator layer is characterized in that it gives compressive strain to the flexible insulator layer at room temperature .

さらに、前記フレキシブル絶縁体層に隣接する前記第2の配線パターンの面が粗面化されていることが好ましい。   Furthermore, it is preferable that the surface of the second wiring pattern adjacent to the flexible insulator layer is roughened.

さらに、前記リジッド配線層が積層されていない前記フレキシブル配線層面に保護絶縁体層が被覆され、その端縁の少なくとも一部が前記フレキシブル絶縁体層と前記リジッド配線層間の接着面に重なっているようにすると、配線板の信頼性を高めることができる。   Further, the surface of the flexible wiring layer on which the rigid wiring layer is not laminated is covered with a protective insulator layer, and at least a part of the edge thereof overlaps the adhesive surface between the flexible insulating layer and the rigid wiring layer. In this case, the reliability of the wiring board can be improved.

さらに、前記リジッド配線層が前記フレキシブル配線層の両面に形成されると、配線板内の応力歪が高温時において層内で相殺する方向に作用し、反りや膨れを抑制することができる。   Furthermore, when the rigid wiring layer is formed on both surfaces of the flexible wiring layer, the stress strain in the wiring board acts in a direction that cancels out in the layer at a high temperature, and warpage and swelling can be suppressed.

さらに、リジッド絶縁体層が前記繊維強化熱硬化性樹脂層がガラス転移点の選択幅の広いガラスクロス入りエポキシ樹脂層であることが好ましい。   Furthermore, it is preferable that the rigid insulator layer is an epoxy resin layer containing glass cloth having a wide selection range of the glass transition point of the fiber reinforced thermosetting resin layer.

本発明の一態様の製造方法は、所定のガラス転移点温度の液晶ポリマーフィルムからなるフレキシブル絶縁体層の両主面に第1の配線パターンが形成され、かつ前記フレキシブル絶縁体層を貫通するバンプ状の突起状導電体で前記第1の配線パターン同士が接続されたフレキシブル配線層を形成する工程と、
前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の繊維強化熱硬化性樹脂からなる一層以上のリジッド絶縁体層の両主面または層間に導電体箔または第2の配線パターンが形成され、かつ前記リジッド絶縁体層を貫通するバンプ状の突起状導電体で前記導電体箔または第2の配線パターン同士が接続されたリジッド配線層を形成する工程と、
前記リジッド配線層の一方の主面に導電性バンプを形成する工程と、
前記フレキシブル配線層の一部領域の両面側に挟むように、前記リジッド配線層を前記導電性バンプが形成された主面を向け、かつ前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の半硬化状の繊維強化熱硬化性樹脂の接着層を挟んで積層し、前記フレキシブル絶縁体層のガラス転移点温度よりも低温で前記繊維強化熱硬化性樹脂層のガラス転移点温度よりも高温で加熱、加圧し、前記フレキシブル配線層と前記リジッド配線層を接合するとともに、前記導電性バンプを前記第1の配線パターンに接続する工程と、
を具備し、常温時に前記リジッド絶縁体層の収縮により前記フレキシブル絶縁体層に圧縮歪を与えることを特徴とする。
The manufacturing method according to one aspect of the present invention is a bump in which first wiring patterns are formed on both main surfaces of a flexible insulator layer made of a liquid crystal polymer film having a predetermined glass transition temperature, and penetrates the flexible insulator layer. Forming a flexible wiring layer in which the first wiring patterns are connected with each other with a protruding conductor,
A conductor foil or a second wiring pattern is formed between both principal surfaces or layers of one or more rigid insulator layers made of a fiber reinforced thermosetting resin having a glass transition temperature lower than the glass transition temperature of the flexible insulator layer. Forming a rigid wiring layer formed by connecting the conductor foil or the second wiring patterns with bump-shaped protruding conductors that pass through the rigid insulator layer; and
Forming a conductive bump on one main surface of the rigid wiring layer;
The rigid wiring layer faces the main surface on which the conductive bumps are formed, and the glass transition temperature is lower than the glass transition temperature of the flexible insulator layer so as to be sandwiched between both surfaces of a part of the flexible wiring layer. From the glass transition temperature of the fiber reinforced thermosetting resin layer, laminated at a temperature lower than the glass transition temperature of the flexible insulator layer, sandwiching the adhesive layer of the semi-cured fiber reinforced thermosetting resin of the point temperature Heating and pressurizing at a high temperature, joining the flexible wiring layer and the rigid wiring layer, and connecting the conductive bumps to the first wiring pattern;
And compressive strain is applied to the flexible insulator layer by shrinkage of the rigid insulator layer at room temperature.

この方法において、前記リジッド絶縁体層は半硬化の状態でリジッド配線層が形成され、前記接着層とともに前記加熱、加圧により硬化されることが好ましい。   In this method, it is preferable that a rigid wiring layer is formed in a semi-cured state on the rigid insulator layer and cured by the heating and pressurizing together with the adhesive layer.

また本発明の一態様の製造方法は、所定のガラス転移点温度の液晶ポリマーフィルムからなるフレキシブル絶縁体層の両主面に第1の配線パターンが形成され、かつ前記フレキシブル絶縁体層を貫通するバンプ状の突起状導体で前記第1の配線パターン同士が接続されたフレキシブル配線層を形成する工程と、
導電体箔または第2の配線パターンに導電性バンプを形成する工程と、
前記フレキシブル配線層の一部領域の両面側に挟むように、前記導電体箔または第2の配線パターンを、前記導電性バンプ側を向け、かつ前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の半硬化状の繊維強化熱硬化性樹脂のリジッド絶縁体層となる接着層を挟んで積層し、前記フレキシブル絶縁体層のガラス転移点温度よりも低温で前記繊維強化熱硬化性樹脂層のガラス転移点温度よりも高温で加熱、加圧する工程と、
を具備し、常温時に前記リジッド絶縁体層の収縮により前記フレキシブル絶縁体層に圧縮歪を与えることを特徴とする。
In the manufacturing method of one embodiment of the present invention, the first wiring pattern is formed on both main surfaces of the flexible insulator layer made of a liquid crystal polymer film having a predetermined glass transition temperature, and penetrates the flexible insulator layer. Forming a flexible wiring layer in which the first wiring patterns are connected to each other by a bump-shaped protruding conductor;
Forming conductive bumps on the conductive foil or the second wiring pattern;
The conductive foil or the second wiring pattern is directed toward the conductive bump so as to be sandwiched between both surfaces of a part of the flexible wiring layer, and is lower than the glass transition temperature of the flexible insulating layer. The fiber reinforced thermosetting is carried out at a temperature lower than the glass transition temperature of the flexible insulator layer by laminating an adhesive layer as a rigid insulator layer of a semi-cured fiber reinforced thermosetting resin having a glass transition temperature. Heating and pressurizing at a temperature higher than the glass transition temperature of the resin layer; and
And compressive strain is applied to the flexible insulator layer by shrinkage of the rigid insulator layer at room temperature.

上記製造方法において、前記半硬化状の繊維強化熱硬化性樹脂の接着層が加熱加圧前に前記導電性バンプが挿通された状態に形成されていることが好ましい。   In the manufacturing method, it is preferable that the adhesive layer of the semi-cured fiber reinforced thermosetting resin is formed in a state where the conductive bumps are inserted before heating and pressing.

上記発明は、次のような知見に基づいてなされたものである。すなわち、本発明者らは、異種基材の積層で形成したリジッド配線層においては、フレキシブルな配線回路領域との接続性の低下、また、リジッド配線層における反りの発生、表面膨れ現象等の原因について検討した結果、材質、積層体の加熱、加圧のピーク温度の設定、および配線パターンと積層絶縁体との対接面(界面)の性状等に左右されることを確認した。   The above invention has been made based on the following findings. That is, the present inventors, in a rigid wiring layer formed by laminating different kinds of base materials, causes a decrease in connectivity with a flexible wiring circuit region, warpage in the rigid wiring layer, surface swelling phenomenon, etc. As a result, it was confirmed that it depends on the material, the heating of the laminated body, the setting of the peak temperature of pressurization, and the property of the contact surface (interface) between the wiring pattern and the laminated insulator.

さらに詳述すると、フレキシブル配線層に液晶ポリマーフィルムを用い、ソリッド配線層に繊維強化熱硬化性樹脂として例えばガラスエポキシ樹脂系シートを用いるのが最適との結果を得た。   More specifically, it was found that it is optimal to use a liquid crystal polymer film for the flexible wiring layer and, for example, a glass epoxy resin-based sheet as a fiber reinforced thermosetting resin for the solid wiring layer.

フレキシブル・リジッド配線板は各絶縁体層を積層接着するときは加熱加圧工程と配線板に素子を装着してリフローするときの加熱工程との2度の加熱処理を受ける。とくにリジッド絶縁体層を構成するガラスエポキシ(ガラスクロスに半硬化状態のエポキシ樹脂を含浸させたもの)などの熱硬化性樹脂のプリプレグシートはガラス転移点温度の前後で熱膨張係数が大きく変化しまた加熱とともに架橋硬化するため、接着するフレキシブル配線層との間で温度に応じて歪が発生する。すなわち硬化する過程では液晶ポリマーの状態にしたがい、硬化後はリジッドになりフレキシブル配線層との間で応力が発生する。一方フレキシブル配線層を構成する液晶ポリマーはガラス転移点温度が高く、はんだが溶けるリフロー温度以上の材料を選択することができる。液晶ポリマーはガラス転移点がリフロー温度より高くても、リフロー温度ではやや軟化状態になり、次第に熱膨張係数が増大する。   The flexible rigid wiring board is subjected to two heat treatments, that is, a heating and pressing process when laminating and bonding each insulator layer, and a heating process when the element is mounted on the wiring board and reflowed. In particular, the thermal expansion coefficient of prepreg sheets of thermosetting resins such as glass epoxy (glass cloth impregnated with semi-cured epoxy resin) constituting the rigid insulator layer changes greatly before and after the glass transition temperature. Since the resin is crosslinked and cured with heating, distortion occurs depending on the temperature between the flexible wiring layer to be bonded. That is, in the process of curing, according to the state of the liquid crystal polymer, after curing, it becomes rigid and stress is generated between the flexible wiring layer. On the other hand, the liquid crystal polymer constituting the flexible wiring layer has a high glass transition temperature, and a material having a temperature higher than the reflow temperature at which the solder melts can be selected. Even if the glass transition point of the liquid crystal polymer is higher than the reflow temperature, the liquid crystal polymer becomes slightly softened at the reflow temperature, and the thermal expansion coefficient gradually increases.

図7は、リジッド絶縁層にガラスエポキシの一例(特性A)を用い、フレキシブル絶縁層に液晶ポリマーの一例(特性B)を用いたときの、ガラス転移点、リフロー温度領域、積層接着のための加圧温度の関係を模式的に示したものである。ここにガラスエポキシのガラス転移点をT3(例えば140℃)、液晶ポリマーのガラス転移点をT2(例えば292℃)、リフロー温度領域260℃〜290℃、加圧温度T1をT1A(T3>T1A)、T1B(T2>T1B>T3)の場合とする。   FIG. 7 shows the glass transition point, the reflow temperature region, and the lamination adhesion when an example of glass epoxy (characteristic A) is used for the rigid insulating layer and an example of liquid crystal polymer (characteristic B) is used for the flexible insulating layer. The relationship of pressurization temperature is shown typically. Here, the glass transition point of the glass epoxy is T3 (for example, 140 ° C.), the glass transition point of the liquid crystal polymer is T2 (for example, 292 ° C.), the reflow temperature range is 260 ° C. to 290 ° C., and the pressurization temperature T1 is T1A (T3> T1A). , T1B (T2> T1B> T3).

なお、ガラス転移点は、通常、ガラス転移温度測定方法(JIS C 6493 付属図1,2,3)により、TMA法とDMA法の2方法で求められる。   In addition, a glass transition point is normally calculated | required by two methods, TMA method and DMA method, by the glass transition temperature measuring method (JIS C6493 attachment figure 1,2,3).

(1)TMA法は、試験片を室温から10℃/分の割合で昇温させ、熱分析装置にて厚さ方向の熱膨張量を測定し、ガラス転移点の前後の曲線に接線を引き、この接線の交点からTgを求める。 (1) In the TMA method, the test piece is heated from room temperature at a rate of 10 ° C./min, the amount of thermal expansion in the thickness direction is measured with a thermal analyzer, and a tangent line is drawn on the curves before and after the glass transition point. Tg is obtained from the intersection of the tangent lines.

(2)DMA法(引張り法)は、試験片を室温から2℃/分の割合で昇温させ、粘弾性測定装置にて試験片の動的粘弾性および損失正接を測定し、損失正接のピーク温度からTgを求める。 (2) In the DMA method (tensile method), the temperature of a test piece is raised from room temperature at a rate of 2 ° C./min, and the dynamic viscoelasticity and loss tangent of the test piece are measured with a viscoelasticity measuring device. Tg is obtained from the peak temperature.

本発明はDMA法に従う。   The present invention follows the DMA method.

(a)加圧温度がT1Aの場合、両層の基材自身の膨張が少ないため、この状態でプレスを行うとガラスエポキシと液晶ポリマーの膨張量とが同様の変化を呈し、膨張も少なく硬い状態で加圧一体化され、常温に戻しても内部応力を持たない状態になる。 (A) When the pressurization temperature is T1A, the base material itself of both layers is less expanded, so when pressed in this state, the glass epoxy and the liquid crystal polymer expand in the same manner and are harder with less expansion. The pressure is integrated in a state, and even if it is returned to room temperature, it has no internal stress.

(b)加圧温度がT1Bの場合、ガラスエポキシ層自身が大きく膨張しているが、膨張した柔らかい状態で加圧一体化される。従って、高温リフロー時では内部応力が緩和されるが、加圧一体化後の常温時には、内部応力を持った形となる。 (B) When the pressurizing temperature is T1B, the glass epoxy layer itself is greatly expanded, but is pressed and integrated in an expanded soft state. Therefore, the internal stress is relieved at the time of high temperature reflow, but at the normal temperature after the pressure integration, the shape has the internal stress.

このため、前記(a)によるリジッド化の場合は、低温時における内部応力が小さいけれども、高温時における内部応力(厚さ方向)が大きくなって、リフロー時に反りや膨れの発生が助長されることが確認された。   For this reason, in the case of the rigidization by (a), the internal stress at the low temperature is small, but the internal stress at the high temperature (thickness direction) is large, and the occurrence of warpage and swelling is promoted during the reflow. Was confirmed.

前記(b)によるリジッド化の場合は、低温時において内部応力(厚さ方向)を有するが、逆に、リフローの高温時(250℃以上)における内部応力が小さくなって、リフロー時の反りや膨れの発生が抑制乃至防止されることが確認された。すなわち、リフロー温度では、硬化したリジッド絶縁体層に対して液晶ポリマーのフレキシブル絶縁体層がやや軟化状態にあるため、リジッド絶縁体層の熱膨張を吸収し膨張差による歪の発生が低減する。リフロー後の常温状態でリジッド絶縁体層の収縮が大きくフレキシブル絶縁体層に圧縮歪を与えるが、この歪はリジッド配線層を膨らませる方向でなく、配線板の変形が抑制される。   In the case of the rigidification according to (b), the internal stress (thickness direction) is present at a low temperature, but conversely, the internal stress at a high temperature of reflow (250 ° C. or higher) is reduced, and warping during reflow is reduced. It was confirmed that the occurrence of blistering was suppressed or prevented. That is, at the reflow temperature, since the flexible insulating layer of the liquid crystal polymer is in a slightly softened state with respect to the cured rigid insulating layer, the thermal expansion of the rigid insulating layer is absorbed and the occurrence of distortion due to the expansion difference is reduced. In the normal temperature state after reflow, the rigid insulator layer contracts greatly and gives a compressive strain to the flexible insulator layer. This strain is not in the direction of expanding the rigid wiring layer, and the deformation of the wiring board is suppressed.

図8(a)は前記(a)の場合の常温とリフロー時の歪の状態を説明しており、常温で歪がなく、リフロー時に歪、特に図示矢印Sのように歪が発生していることを示している。一方、図8(b)は前記(b)の場合の常温とリフロー時の歪の状態を説明しており、常温で層内方に向かう矢印のような応力歪が発生し、リフロー時には歪が生じていないことを示している。個々にRがリジッド配線層、Fがフレキシブル配線層を示している。   FIG. 8 (a) illustrates the state of normal temperature and strain at the time of reflow in the case of (a). There is no distortion at normal temperature, and distortion occurs at the time of reflow, particularly, as shown by the arrow S in the figure. It is shown that. On the other hand, FIG. 8B illustrates the state of strain at normal temperature and reflow in the case of (b) described above. Stress strain occurs as indicated by an arrow toward the inside of the layer at normal temperature. It indicates that it has not occurred. R indicates a rigid wiring layer and F indicates a flexible wiring layer.

上記現象乃至性状から、リジッド配線層を構成する繊維強化熱硬化性樹脂のガラス転移点温度T3を液晶ポリマーのガラス転移点温度T2よりも低い材料とし、配線板の積層加圧温度(プレスピーク温度)T2を、T2>T1>T3の関係に設定することによって、反りや膨れのないリジッド配線層が容易に形成されることになる。   From the above phenomena and properties, the glass transition temperature T3 of the fiber reinforced thermosetting resin constituting the rigid wiring layer is made lower than the glass transition temperature T2 of the liquid crystal polymer, and the lamination pressure of the wiring board (press peak temperature). ) By setting T2 to a relationship of T2> T1> T3, a rigid wiring layer free from warping or swelling can be easily formed.

また、上記リジッド配線層の構成に当たっては、液晶ポリマーフィルムおよびガラスエポキシ樹脂系シートの熱膨張係数差に基づく接合一体化性、フレキシブル配線層とリジッド配線層との接続信頼性などの対策を講じることが好ましい。この対策としては、フレキシブル配線層に対する保護絶縁体層(ソルダーレジスト)の形成状態が重要視される。一方、積層するガラスエポキシ樹脂系シート同士の界面、特に、ガラスエポキシ樹脂系シートと配線パターン面との界面、すなわち、相互の対接面を予め粗化しておいて、積層時の加熱加圧で一体化した場合、容易に、所要の接続信頼性を確保できることを確認した。   In addition, in the construction of the above rigid wiring layer, measures such as joint integrity based on the difference in thermal expansion coefficient between the liquid crystal polymer film and the glass epoxy resin sheet, and connection reliability between the flexible wiring layer and the rigid wiring layer should be taken. Is preferred. As a countermeasure, the formation of a protective insulator layer (solder resist) on the flexible wiring layer is regarded as important. On the other hand, the interface between the glass epoxy resin sheets to be laminated, in particular, the interface between the glass epoxy resin sheet and the wiring pattern surface, that is, the mutual contact surface is roughened in advance, When integrated, it was confirmed that the required connection reliability could be easily secured.

本発明によれば、折り曲げ自在なフレキシブルな配線層および電子部品の実装に適するリジッド配線層を有し、かつ高周波信号伝送に適すると共に、構造的な安定性にも優れ、信頼性の高い機能を奏して小形電子機器類の回路構成に適する配線板を提供できる。   According to the present invention, a flexible wiring layer that can be bent and a rigid wiring layer that is suitable for mounting electronic components, and suitable for high-frequency signal transmission, have excellent structural stability, and have a highly reliable function. Thus, it is possible to provide a wiring board suitable for the circuit configuration of small electronic devices.

また、本発明の製造方法によれば、高周波信号伝送に適すると共に、構造的な安定性にも優れ、信頼性の高い機能を奏し、小形電子機器類の回路構成に適するフレキシブル・リジッド型配線板を歩留まりよく量産的に提供できる。   In addition, according to the manufacturing method of the present invention, a flexible / rigid wiring board suitable for high-frequency signal transmission, excellent in structural stability, highly reliable, and suitable for circuit configurations of small electronic devices. Can be mass-produced with good yield.

以下、図1乃至図6、図11乃至図13を参照して本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 6 and FIGS. 11 to 13.

図1は本実施形態に係るフレキシブル・リジッド型配線板10の要部を拡大して示す斜視図、図2はA−A線に沿う拡大断面図である。すなわち、本実施形態のフレキシブル・リジッド型配線板10は、一部をフレキシブル配線層(可撓性の機能を有する)11とし、このフレキシブル配線層11の一部領域11aがリジッド配線層12,12を形成し、するフレキシブル配線層をコア基材として挟んでいる。リジッド配線層12面に半導体層や受動素子の素子群10Aが実装される。ここで図2に示すように、フレキシブル配線層11は、厚さ25〜50μm程度の液晶ポリマーの絶縁体層13とし、その両主面に銅箔のエッチングで形成する配線パターン14が配置される。配線パターン14はリジッド配線層12,12間を電気的に接続する配線パターン14aと、リジッド配線層12のコアとなる部分の配線パターン14bとからなっている。   FIG. 1 is an enlarged perspective view showing a main part of a flexible / rigid wiring board 10 according to the present embodiment, and FIG. 2 is an enlarged sectional view taken along the line AA. That is, a part of the flexible / rigid wiring board 10 of the present embodiment is a flexible wiring layer (having a flexible function) 11, and a partial region 11 a of the flexible wiring layer 11 is a rigid wiring layer 12, 12. The flexible wiring layer to be formed is sandwiched as a core base material. An element group 10A of semiconductor layers and passive elements is mounted on the surface of the rigid wiring layer 12. Here, as shown in FIG. 2, the flexible wiring layer 11 is a liquid crystal polymer insulating layer 13 having a thickness of about 25 to 50 μm, and wiring patterns 14 formed by etching copper foil are disposed on both main surfaces thereof. . The wiring pattern 14 includes a wiring pattern 14 a that electrically connects the rigid wiring layers 12 and 12, and a wiring pattern 14 b that is a core of the rigid wiring layer 12.

また、前記一部がフレキシブル配線層11の一部領域に積層一体化させたリジッド配線層12は、厚さ400〜500μm程度の例えばガラスエポキシ樹脂層をリジッド絶縁体層16とし、所要の配線パターン層17を面や層内に形成した構成となっている。ここで、リジッド絶縁体層16はガラス転移点温度がフレキシブル絶縁体層13を成す液晶ポリマーのガラス転移点温度に比べて低い材質である。リジッド絶縁体層は繊維強化熱硬化樹脂すなわちガラスなどの布(クロス)に半硬化性(未硬化を含む)の熱硬化性樹脂を含浸させた繊維強化樹脂層である。ガラスエポキシはガラス繊維にエポキシ樹脂を含浸させてシート状になっておりプリプレグとして知られている。本実施形態のフレキシブル・リジッド配線板10のフレキシブル配線層11の厚さは例えば100μm、リジッド配線層12の厚さは例えば450μmである。   The rigid wiring layer 12 partially laminated and integrated with a part of the flexible wiring layer 11 has a thickness of about 400 to 500 μm, for example, a glass epoxy resin layer as a rigid insulator layer 16, and a required wiring pattern. The layer 17 is configured to be formed on the surface or in the layer. Here, the rigid insulator layer 16 is a material whose glass transition temperature is lower than the glass transition temperature of the liquid crystal polymer forming the flexible insulator layer 13. The rigid insulator layer is a fiber reinforced resin layer obtained by impregnating a fiber reinforced thermosetting resin, that is, a cloth (cloth) such as glass, with a semi-curable (including uncured) thermosetting resin. Glass epoxy is known as a prepreg because glass fiber is impregnated with an epoxy resin to form a sheet. The thickness of the flexible wiring layer 11 of the flexible / rigid wiring board 10 of the present embodiment is, for example, 100 μm, and the thickness of the rigid wiring layer 12 is, for example, 450 μm.

積層時の加圧温度(プレスピーク温度)を170〜250℃程度としたとき、液晶ポリマー(例えばガラス転移点温度292℃)と、ガラスエポキシ樹脂層(例えばガラス転移点温度140〜220℃程度)とを組み合わせる。さらに、上記プレスピーク温度に対する材質の組み合わせでは、前記プレスピーク温度で何れも良好なリフロー特性を呈するので、フレキシブル配線層11とリジッド配線層12、12との接合部も良好な界面構造を呈する。   When the pressing temperature (press peak temperature) at the time of lamination is about 170 to 250 ° C., a liquid crystal polymer (for example, glass transition temperature 292 ° C.) and a glass epoxy resin layer (for example, glass transition temperature 140 to 220 ° C.) And combine. Furthermore, since the combination of materials with respect to the press peak temperature exhibits good reflow characteristics at the press peak temperature, the joint between the flexible wiring layer 11 and the rigid wiring layers 12 and 12 also exhibits a good interface structure.

ここで、液晶ポリマーとしては、例えばベクスター(商品名.クラレ社製、ガラス転移点292℃)、バイアック(商品名.ジャパンゴアテックス社製、ガラス転移点310℃)などの多軸配向の熱可塑性ポリマーで、ガラス転移点が270℃〜320℃である。   Here, as the liquid crystal polymer, for example, multiaxially oriented thermoplastics such as Bexter (trade name, manufactured by Kuraray Co., Ltd., glass transition point 292 ° C.), and Biac (trade name, manufactured by Japan Gore-Tex Co., Ltd., glass transition point 310 ° C.). It is a polymer and has a glass transition point of 270 ° C to 320 ° C.

一方、繊維強化熱硬化性樹脂シートは、ガラスクロス入りエポキシ樹脂シート例えばガラスエポキシ(FR4)や(FR5)、BTレジン、ガラスポリイミド等の商品名で市販されているエポキシ樹脂やポリイミド樹脂に硬化剤を添加配合した組成物を樹脂分とするもので、ガラス転移点が140℃〜220℃のものが適している。   On the other hand, the fiber reinforced thermosetting resin sheet is an epoxy resin sheet containing glass cloth such as glass epoxy (FR4) and (FR5), BT resin, glass resin, and other commercially available epoxy resins and polyimide resins. A composition having a glass transition point of 140 ° C. to 220 ° C. is suitable.

なお、上記ガラスエポキシ樹脂層の選択組み合わせにおいて、耐熱性の点からガラス転移点温度(Тg値)の高い方が好ましいと考えられるが、加熱加圧による積層、一体化温度に対し、ガラス転移点温度がやや低く、このガラス転移点温度を超えてからの熱膨張係数α2が液晶ポリマーの熱膨張係数に近いほど、リジッド配線回路化した際の耐熱性も優れていることを確認した。   In addition, in the selective combination of the above glass epoxy resin layers, it is considered that the glass transition point temperature (Тg value) is higher from the viewpoint of heat resistance. It was confirmed that the heat resistance when a rigid wiring circuit was formed was better as the temperature was slightly lower and the coefficient of thermal expansion α2 after the glass transition temperature was exceeded was closer to the coefficient of thermal expansion of the liquid crystal polymer.

また、フレキシブル配線層の配線パターン14b間は突起状導電体18で接続される。また多層配線となるリジッド配線層の配線パターン16間は層間接続導体となる突起状導電体19で接続される。フレキシブル配線層のハインパターン14bリジッド配線層12の配線パターン17との接続は接着層となるソリッド絶縁体層16Bを貫通した突起状導電体19aでなされる。   Further, the wiring patterns 14b of the flexible wiring layer are connected by the protruding conductors 18. In addition, the wiring patterns 16 of the rigid wiring layer that is a multilayer wiring are connected by a protruding conductor 19 that is an interlayer connection conductor. Connection of the flexible wiring layer to the wiring pattern 17 of the rigid wiring layer 12 is made by a protruding conductor 19a penetrating the solid insulating layer 16B serving as an adhesive layer.

配線パターン17と絶縁体層16との積層界面は粗面化(図示省略)されて接合される。ここで、層間接続導体となる突起状導電体18,19は、例えば金、銀、銅、半田などの導電性金属、あるいはこの導電性金属粉とバインダー樹脂との混合系で構成されている。なお、バインダー樹脂は、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエステル樹脂、フェノキシ樹脂、フェノール樹脂、ポリイミド樹脂等である。さらに、フレキシブル配線層11およびリジッド配線層12,12の各表面は、例えば紫外線硬化型のソルダーレジスト等の保護絶縁体層20が設けられている。   The laminated interface between the wiring pattern 17 and the insulator layer 16 is roughened (not shown) and bonded. Here, the protruding conductors 18 and 19 serving as interlayer connection conductors are made of, for example, a conductive metal such as gold, silver, copper, or solder, or a mixed system of the conductive metal powder and a binder resin. The binder resin is a polycarbonate resin, a polysulfone resin, a polyester resin, a phenoxy resin, a phenol resin, a polyimide resin, or the like. Furthermore, each surface of the flexible wiring layer 11 and the rigid wiring layers 12 and 12 is provided with a protective insulator layer 20 such as an ultraviolet curable solder resist.

次に、図3乃至図6により上記構造のフレキシブル・リジッド配線板の製造方法を説明する。図3に示すように、フレキシブル配線層11の製造工程30とリジッド配線層12の製造工程40は別工程で作製準備され、その後に積層し、加熱加圧して一体化する工程50を経る。   Next, a method for manufacturing a flexible / rigid wiring board having the above structure will be described with reference to FIGS. As shown in FIG. 3, the manufacturing process 30 of the flexible wiring layer 11 and the manufacturing process 40 of the rigid wiring layer 12 are prepared and prepared in separate processes, followed by a process 50 of stacking, heating and pressing, and integrating.

先ず、基材ベースとなるフレキシブル配線層11を製作する。図4(a)〜(c)は、フレキシブル配線層の製造工程を説明する断面図であり、図4(a)に示すように、厚さ25〜50μmの液晶ポリマーシート(ガラス転移点温度292℃)13Aを用意し、この一主面側に突起状(円錐状)の導電性バンプ18を設けた厚さ12〜18μmの接着剤付銅箔14Aを、また、他主面側に単に接着剤を付けた銅箔14Bを積層配置する。その後、前記積層体の両銅箔14A、14B面にステンレス板などの当て板を配置して、加熱温度290〜320℃程度、圧力30〜80Kg/cm程度で加熱加圧する。 First, the flexible wiring layer 11 which becomes a base material base is manufactured. 4 (a) to 4 (c) are cross-sectional views illustrating the manufacturing process of the flexible wiring layer. As shown in FIG. 4 (a), a liquid crystal polymer sheet having a thickness of 25 to 50 μm (glass transition temperature 292). 13A), and a copper foil 14A with an adhesive having a thickness of 12 to 18 μm provided with a projecting (conical) conductive bump 18 on one main surface side is simply bonded to the other main surface side. The copper foil 14B with the agent is laminated and disposed. Thereafter, a backing plate such as a stainless steel plate is disposed on both copper foils 14A and 14B of the laminate, and heated and pressurized at a heating temperature of about 290 to 320 ° C. and a pressure of about 30 to 80 kg / cm 2 .

この加熱・加圧によって、図4(b)に示すような両面の銅箔14A、14B同士が層間絶縁体の液晶ポリマーシート13Aを貫通したバンプの突起状導電体18で電気的に接続した両面銅箔貼り板を作製する。   Both surfaces of the copper foils 14A and 14B on both sides as shown in FIG. 4 (b) are electrically connected by bump-shaped conductors 18 penetrating the liquid crystal polymer sheet 13A as an interlayer insulator by this heating and pressurization. A copper foil pasting board is produced.

次いで、前記両面の銅箔14A、14Bについて、フォトエッチング処理を施して配線パターン14にすることによって、図4(c)に示すようなフレキシブル配線層11を製作し、フレキシブル配線層11として可撓性をもたせる領域面をソルダーレジスト等の保護絶縁体層20で被覆する。突起状導電体18は配線層が配置される領域の両面の配線パターン14b、14b間の接続のために配置される。   Next, the copper foils 14 </ b> A and 14 </ b> B on both sides are subjected to a photo-etching process to form a wiring pattern 14, thereby producing a flexible wiring layer 11 as shown in FIG. The region surface having the property is covered with a protective insulator layer 20 such as a solder resist. The protruding conductor 18 is disposed for connection between the wiring patterns 14b and 14b on both sides of the region where the wiring layer is disposed.

一方、図5(a)〜(d)により、リジッド配線層12の製造工程を説明する。半硬化状(未硬化を含む)の厚さ60〜160μmのガラスエポキシ樹脂層(ガラス転移点温度140℃)16Aを用意する。このガラスエポキシ樹脂層16Aの一主面側に突起状(円錐状)の導電体バンプ19を設けた厚さ12〜18μmの銅箔17Aを配置し、加熱されたロール間を通過させ、導電体バンプ19先端部がガラスエポキシ樹脂層16Aを貫通した銅箔張り層を作成する。   On the other hand, the manufacturing process of the rigid wiring layer 12 will be described with reference to FIGS. A semi-cured (including uncured) glass epoxy resin layer (glass transition temperature 140 ° C.) 16A having a thickness of 60 to 160 μm is prepared. A copper foil 17A having a thickness of 12 to 18 μm provided with a protruding (conical) conductive bump 19 on one main surface side of the glass epoxy resin layer 16A is disposed, and is passed between heated rolls. A copper foil tension layer in which the tip of the bump 19 penetrates the glass epoxy resin layer 16A is formed.

その後、ガラスエポキシ樹脂層16Aの導電体バンプ19先端部貫通面に、厚さ12〜18μmの銅箔17Bを配置し、両面側にステンレス板の当て板を配置して、加熱温度170〜190℃程度、圧力30〜80Kg/cm程度で加熱加圧する。この加熱加圧によって、図5(b)に示すような両面の銅箔17A,17B同士が層間絶縁シート16Aを貫挿した突起状の導電性バンプ19で電気的に接続した両面銅箔貼り板を作製する。なお、この両面銅箔貼り板の作製は、導電体バンプ19を設けた銅箔17A、ガラスエポキシ樹脂層16Aおよび銅箔17Bを順次積層配置し、一度に一体的に加熱加圧するようにしてもよい。 Thereafter, a copper foil 17B having a thickness of 12 to 18 μm is disposed on the end surface of the conductive bump 19 of the glass epoxy resin layer 16A, a stainless steel plate is disposed on both sides, and a heating temperature of 170 to 190 ° C. Heating and pressurizing at a pressure of about 30 to 80 kg / cm 2 . By this heating and pressing, a double-sided copper foil-laminated plate in which both-sided copper foils 17A and 17B are electrically connected by protruding conductive bumps 19 having the interlayer insulating sheet 16A inserted therethrough as shown in FIG. 5 (b). Is made. The double-sided copper foil-clad plate may be manufactured by sequentially laminating and arranging the copper foil 17A provided with the conductor bumps 19, the glass epoxy resin layer 16A, and the copper foil 17B, and heating and pressurizing them all at once. Good.

次いで、前記両面の銅箔17A,17Bのうち一方について、フォトエッチング処理を施して配線パターン17化することによって、図5(c)に示すようなリジッド配線層12の層単位12Aを製作する。また、製作したリジッド配線層の配線パターン17面について粗面化の処理を施す。   Next, a layer unit 12A of the rigid wiring layer 12 as shown in FIG. 5C is manufactured by subjecting one of the copper foils 17A and 17B on both sides to a photo-etching process to form a wiring pattern 17. Further, the surface of the wiring pattern 17 of the manufactured rigid wiring layer is roughened.

その後、図5(d)に示すように、配線パターン17のうち、所要の配線パターン17面に突起状の導電性バンプ19aを設ける。なお、このリジッド配線層の製作工程において、フレキシブル配線層11が可撓性をもつ領域(f−f間領域)を予め打ち抜き(切り抜き)加工、あるいは切り離し(スリット付け)剥離ができるように加工しておく必要がある。この突起状導電体19aはフレキシブル配線層11の配線パターン14bに電気的に接続するためのものである。   After that, as shown in FIG. 5D, a protruding conductive bump 19 a is provided on the required wiring pattern 17 surface of the wiring pattern 17. In the rigid wiring layer manufacturing process, the flexible wiring layer 11 is processed so that the flexible region (region between ff) can be punched (cut out) or separated (slit) and peeled off in advance. It is necessary to keep. The protruding conductor 19a is for electrical connection to the wiring pattern 14b of the flexible wiring layer 11.

次に、図6(a)〜(c)により、フレキシブル・リジッド型配線板を製作する。すなわち、上記製作したフレキシブル配線層11に対してリジッド配線層単位12Aを、図6(a)に示すように、フレキシブル配線層11をコアとし、その両面側に、接着層16Bとして半硬化状の厚さ60〜160μmのガラスエポキシ樹脂層のプリプレグを介してサンドイッチ状に位置決めし積層配置する。ここで、フレキシブル配線層11の可撓性領域f−fに対応して接着層16Bを予め打ち抜き加工してある。   Next, a flexible / rigid wiring board is manufactured with reference to FIGS. That is, the rigid wiring layer unit 12A is formed on the flexible wiring layer 11 manufactured as described above, and the flexible wiring layer 11 is used as a core as shown in FIG. 6A, and a semi-cured adhesive layer 16B is formed on both sides thereof. The glass epoxy resin layer having a thickness of 60 to 160 μm is positioned and laminated in a sandwich manner through a prepreg. Here, the adhesive layer 16 </ b> B is punched in advance corresponding to the flexible region ff of the flexible wiring layer 11.

その後、上記積層体の両銅箔17A,17B面に、当て板を配置して、加熱温度170〜190℃程度、圧力30〜80Kg/cm程度で加熱加圧する。図6(b)に示すように、加熱加圧によりフレキシブル配線層11とソリッド配線層12が積層接合され、突起状導電体19aによりフレキシブル配線層の配線パターン14bとソリッド配線層の配線パターン17とが層間接続され、ソリッド配線層12の両面が銅箔17A,17Bで覆われた両面銅箔貼り板ができる。フレキシブル配線層上の保護絶縁体層20の端縁がリジッド絶縁体層内に食い込むようにされる。なお、ガラスエポキシ樹脂層13が打ち抜き加工してある場合は、その開口(切欠)領域に、ダミー片(樹脂片)を嵌合して組み込み、一体的、かつ同一平坦面を呈するようにしてから加熱加圧してもよく、接合後にダミー片を取り除くことにより、フレキシブル領域を確保してもよい。 Thereafter, a backing plate is disposed on both the copper foils 17A and 17B of the laminate, and heated and pressurized at a heating temperature of about 170 to 190 ° C. and a pressure of about 30 to 80 kg / cm 2 . As shown in FIG. 6B, the flexible wiring layer 11 and the solid wiring layer 12 are laminated and bonded by heating and pressing, and the wiring pattern 14b of the flexible wiring layer and the wiring pattern 17 of the solid wiring layer are formed by the protruding conductor 19a. Are connected to each other, and a double-sided copper foil-laminated plate in which both sides of the solid wiring layer 12 are covered with copper foils 17A and 17B can be obtained. The edge of the protective insulator layer 20 on the flexible wiring layer is bitten into the rigid insulator layer. If the glass epoxy resin layer 13 has been punched, a dummy piece (resin piece) is fitted and incorporated in the opening (notch) region so that the glass epoxy resin layer 13 has an integrated and flat surface. Heating and pressing may be performed, and the flexible region may be secured by removing the dummy piece after joining.

次いで、前記両面(表装)の銅箔17A,17Bについて、フォトエッチング処理を施して配線パターン17とすることによって、図6(c)に示すようなリジッド配線層12,12およびフレキシブル配線層11を一体的に具備する配線板を得、さらに、リジッド配線層12,12の外装面にソルダーレジスト等の保護絶縁体層20(図2参照)を設ける。このフレキシブル・リジッド型配線板の最終工程で、外形加工および特性試験を行って、図2に断面的に要部を示フレキシブル・リジッド型配線板を得る。   Next, the copper foils 17A and 17B on both sides (surface) are subjected to a photo-etching process to form a wiring pattern 17, whereby the rigid wiring layers 12 and 12 and the flexible wiring layer 11 as shown in FIG. A wiring board provided integrally is obtained, and a protective insulating layer 20 (see FIG. 2) such as a solder resist is provided on the exterior surface of the rigid wiring layers 12 and 12. In the final process of the flexible / rigid wiring board, an outer shape process and a characteristic test are performed to obtain a flexible / rigid wiring board whose main part is shown in cross section in FIG.

なお、本実施形態に係る配線板の製造方法において、銅箔14a,17A,17Bに対する円錐状の突起状導電体18,19,19aの形成は、たとえば次のよう手段で行われる。すなわち、銅箔の一主面側に、たとえばステンレス薄鋼板の所定箇所に0.1〜0.15mm径程度の孔を明けたメタルマスクを位置決め配置して銀ペーストなどの導電性ペーストを印刷する。   In the method for manufacturing a wiring board according to the present embodiment, the conical protruding conductors 18, 19, 19a are formed on the copper foils 14a, 17A, 17B by the following means, for example. That is, on one main surface side of the copper foil, for example, a metal mask having a hole having a diameter of about 0.1 to 0.15 mm is positioned and arranged at a predetermined position of a stainless steel sheet, and a conductive paste such as a silver paste is printed. .

上記フレキシブル・リジッド型配線板の製造において、リジッド配線層12,12の配線パターン17の層数を多くする場合は、図9のようにリジッド配線層単位12Aを複数重ねた構造とすればよい。   In the production of the flexible / rigid wiring board, when the number of wiring patterns 17 of the rigid wiring layers 12 and 12 is increased, a plurality of rigid wiring layer units 12A may be stacked as shown in FIG.

また、図10のようにリジッド配線層単位12Aをフレキシブル配線層の両主面に各1層だけ配置してもよい。この場合は銅箔17Aまたは配線パターン17に突起状導電体19aを印刷したものを、接着層16Bを介してフレキシブル配線層11に積層し一体化することによって得られる。   Further, as shown in FIG. 10, only one rigid wiring layer unit 12A may be arranged on both main surfaces of the flexible wiring layer. In this case, the copper foil 17A or the wiring pattern 17 printed with the protruding conductor 19a is laminated and integrated on the flexible wiring layer 11 via the adhesive layer 16B.

また、上記のようにフレキシブル配線層両面に同数層のリジッド配線層単位を形成することによって層厚方向に発生する歪がバランスし配線板の反りの防止に有効であるが、必ずしも同層数にする必要はなく、用途に応じて任意の層数を選ぶことができる。   In addition, by forming the same number of rigid wiring layer units on both surfaces of the flexible wiring layer as described above, the strain generated in the layer thickness direction is balanced and effective in preventing warping of the wiring board. The number of layers can be selected depending on the application.

表1に実施例1,2,3の評価を示す。ここでガラス転移点:Tg、熱膨張係数(Tg未満):α1、熱膨張係数(Tg以上):α2、積層時の加圧温度:℃リフロー温度:260−290℃とする。フレキシブル配線層11に、ガラス移転点が292℃、ガラス転移点以下の温度の層厚方向の熱膨張係数α1が40−70の液晶ポリマーを使用した。表中○は良、×は不良を表す。

Figure 0004041048
Table 1 shows the evaluation of Examples 1, 2, and 3. Here, the glass transition point: Tg, the thermal expansion coefficient (less than Tg): α1, the thermal expansion coefficient (Tg or more): α2, the pressurizing temperature during lamination: ° C, the reflow temperature: 260-290 ° C. As the flexible wiring layer 11, a liquid crystal polymer having a glass transition point of 292 ° C. and a thermal expansion coefficient α1 of 40 to 70 in the layer thickness direction at a temperature equal to or lower than the glass transition point was used. In the table, ○ indicates good and × indicates poor.
Figure 0004041048

図11乃至図13は本実施形態の特性を、液晶ポリマーのフレキシブル配線層の特性と比較して示している。   11 to 13 show the characteristics of the present embodiment in comparison with the characteristics of the flexible wiring layer of the liquid crystal polymer.

特性インピーダンスの測定(図11)
測定をТDR法による波形観察で、の伝送特性被測定試料の片端のテストポイントに高周波ブローブを接続して、測定周波数帯域10GHzで測定した。この測定の結果、本実施形態の特性Aと液晶ポリマー配線基板の特性Bは両者ほとんど変わらず、また本実施形態においてブローブの接触部以外に層間接続部などに不具合が認められず(不整合による反射もない)、高速周波数帯での高品位伝送が可能である。
Measurement of characteristic impedance (Fig. 11)
The measurement was performed by observing the waveform by the ТDR method. A high-frequency probe was connected to a test point at one end of the sample to be measured for transmission characteristics, and measurement was performed at a measurement frequency band of 10 GHz. As a result of this measurement, the characteristic A of the present embodiment and the characteristic B of the liquid crystal polymer wiring board are almost the same, and in the present embodiment, no defect is observed in the interlayer connection portion other than the contact portion of the probe (due to mismatching). High-quality transmission in the high-speed frequency band is possible.

挿入損失(図12)
スカラーネットワークアナライザにより8GHzまでの損失を測定した。本実施形態Aと液晶ポリマー基板Bの何れの場合も、伝送可能なレベルを−6dBmとすると、7GHzまで伝送可能と言える。つまり、本実施形態のように多層リジッド配線層を有するものでも、リジッド層のないフレキシブル基板と同等の特性を有しており、挿入損失測定の結果から見ても、高周波帯域での伝送が可能なことが確認された。
Insertion loss (Figure 12)
The loss up to 8 GHz was measured with a scalar network analyzer. In both cases of the embodiment A and the liquid crystal polymer substrate B, it can be said that transmission is possible up to 7 GHz, assuming that the level at which transmission is possible is -6 dBm. In other words, even if it has a multi-layer rigid wiring layer as in this embodiment, it has the same characteristics as a flexible board without a rigid layer, and transmission in the high frequency band is possible even when viewed from the results of insertion loss measurement It was confirmed.

スルー波形(図13)
実際の波形に及ぼす影響を見るため、スルー波形の入出力波形を測定した。入力側はスルーレート45psの立ち上がり波形とし、出力側の波形を確認すると本実施形態A、液晶ポリマー基板Bの特性ともに大きな差が見られない。つまり、高速伝送領域において、液晶ポリマー基板と同様に優れた特性を呈することが確認された。
Through waveform (Figure 13)
To see the effect on the actual waveform, we measured the input / output waveform of the through waveform. The input side has a rising waveform with a slew rate of 45 ps. When the waveform on the output side is confirmed, there is no significant difference between the characteristics of the embodiment A and the liquid crystal polymer substrate B. That is, in the high-speed transmission region, it was confirmed that the same excellent characteristics as the liquid crystal polymer substrate were exhibited.

本発明は、上記実施形態に限定されるものでなく、発明の主旨を逸脱しない範囲でいろいろの変形を含むことができる。例えばガラス転移点温度の異なる他の液晶ポリマーおよびガラスエポキシ樹脂系の組み合わせも用途などに応じて適宜選択できるものである。   The present invention is not limited to the above-described embodiment, and can include various modifications without departing from the spirit of the invention. For example, a combination of another liquid crystal polymer having a different glass transition temperature and a glass epoxy resin system can be appropriately selected depending on the application.

本発明の一実施形態の斜視図。The perspective view of one embodiment of the present invention. 図1のA‐A線にそう一部拡大断面図。FIG. 2 is a partially enlarged cross-sectional view taken along line AA in FIG. 1. 本発明の一実施形態の製造方法の工程を説明する略図。The schematic diagram explaining the process of the manufacturing method of one Embodiment of this invention. (a)、(b)、(c)は本発明の一実施形態のフレキシブル配線板の製造工程を説明する断面図。(A), (b), (c) is sectional drawing explaining the manufacturing process of the flexible wiring board of one Embodiment of this invention. (a)、(b)、(c)、(d)は本発明の一実施形態のリジッド配線板の製造工程を説明する断面図。(A), (b), (c), (d) is sectional drawing explaining the manufacturing process of the rigid wiring board of one Embodiment of this invention. (a)、(b)、(c)は本発明の一実施形態のフレキシブル・リジッド型配線板の製造工程を説明する断面図。(A), (b), (c) is sectional drawing explaining the manufacturing process of the flexible rigid type | mold wiring board of one Embodiment of this invention. 本発明の作用を説明する曲線図。The curve figure explaining the effect | action of this invention. (a)、(b)は本発明による配線板と比較例の配線板の歪について説明する略図。(A), (b) is the schematic explaining the distortion of the wiring board by this invention, and the wiring board of a comparative example. 本発明の他の実施形態を説明する断面略図。Sectional drawing explaining other embodiment of this invention. 本発明の他の実施形態を説明する断面略図。The cross-sectional schematic diagram explaining other embodiment of this invention. 本発明の実施形態とフレキシブル配線板の特性インピーダンスを対比して示す曲線図。The curve figure which compares and shows the characteristic impedance of embodiment of this invention and a flexible wiring board. 本発明の実施形態とフレキシブル配線板の伝送特性を対比して示す曲線図。The curve figure which compares and shows the transmission characteristic of embodiment of this invention and a flexible wiring board. 本発明の実施形態とフレキシブル配線板のスルー波形を対比して示す曲線図。The curve figure which compares and shows the through waveform of embodiment of this invention and a flexible wiring board. 従来の配線板の一部拡大断面図。The partial expanded sectional view of the conventional wiring board.

符号の説明Explanation of symbols

10:フレキシブル・リジッド配線板
11:フレキシブル配線層
12:リジッド配線層
12A:リジッド配線層単位
13:フレキシブル絶縁体層
14(14a、14b):配線パターン
14A、14B:銅箔
16:リジッド絶縁体層
16A:リジッド絶縁体層(半硬化性)
16B:接着層(半硬化性)
17:配線パターン
17A、17B:銅箔
18、19、19a:突起状導電体
20:保護絶縁体層
DESCRIPTION OF SYMBOLS 10: Flexible rigid wiring board 11: Flexible wiring layer 12: Rigid wiring layer 12A: Rigid wiring layer unit 13: Flexible insulator layer 14 (14a, 14b): Wiring pattern 14A, 14B: Copper foil 16: Rigid insulator layer 16A: Rigid insulator layer (semi-curing)
16B: adhesive layer (semi-curing)
17: Wiring pattern 17A, 17B: Copper foil 18, 19, 19a: Protruding conductor 20: Protective insulator layer

Claims (9)

所定のガラス転移点温度をもつ液晶ポリマーからなるフレキシブル絶縁体層とこのフレキシブル絶縁体層の面または層内に配置された第1の配線パターンとからなるフレキシブル配線層と、
前記フレキシブル配線層の一部の両面側に挟んで積層一体化され前記フレキシブル絶縁体層のガラス転移点温度よりもガラス転移点温度が低く繊維強化熱硬化性樹脂からなるリジッド絶縁体層とこのリジッド絶縁体層の面または層内に配置された第2の配線パターンからなるリジッド配線層と、
前記リジッド絶縁体層を貫通し前記第1の配線パターンと前記第2の配線パターンを電気的に接続する突起状導電体と、
を具備し、前記リジッド絶縁体層は前記フレキシブル絶縁体層に常温時に圧縮歪を与えることを特徴とするフレキシブル・リジッド型配線板。
A flexible wiring layer comprising a flexible insulating layer made of a liquid crystal polymer having a predetermined glass transition temperature and a first wiring pattern disposed in the surface of the flexible insulating layer or in the layer;
A rigid insulator layer made of a fiber reinforced thermosetting resin having a glass transition temperature lower than the glass transition temperature of the flexible insulator layer, which is laminated and integrated between both sides of a part of the flexible wiring layer, and the rigid A rigid wiring layer comprising a second wiring pattern disposed on the surface of the insulator layer or in the layer;
A protruding conductor that penetrates the rigid insulator layer and electrically connects the first wiring pattern and the second wiring pattern;
And the rigid insulator layer applies compressive strain to the flexible insulator layer at room temperature.
前記フレキシブル絶縁体層に隣接する前記第2の配線パターンの面が粗面化されていることを特徴とする請求項1に記載のフレキシブル・リジッド型配線板。   2. The flexible rigid wiring board according to claim 1, wherein a surface of the second wiring pattern adjacent to the flexible insulating layer is roughened. 3. 前記リジッド配線層が積層されていない前記フレキシブル配線層面に保護絶縁体層が被覆され、その端縁の少なくとも一部が前記フレキシブル絶縁体層と前記リジッド配線層間の接着面に重なっていることを特徴とする請求項1に記載のフレキシブル・リジッド型配線板。   A surface of the flexible wiring layer on which the rigid wiring layer is not laminated is covered with a protective insulating layer, and at least a part of an edge thereof overlaps an adhesive surface between the flexible insulating layer and the rigid wiring layer. The flexible rigid wiring board according to claim 1. 前記リジッド配線層が前記フレキシブル配線層の両面に形成されてなる請求項1ないし請求項3に記載のフレキシブル・リジッド型配線板。   4. The flexible rigid wiring board according to claim 1, wherein the rigid wiring layer is formed on both surfaces of the flexible wiring layer. 前記繊維強化熱硬化性樹脂層がガラスクロス入りエポキシ樹脂層である請求項1ないし請求項4に記載のフレキシブル・リジッド型配線板。   The flexible / rigid wiring board according to claim 1, wherein the fiber reinforced thermosetting resin layer is an epoxy resin layer containing glass cloth. 所定のガラス転移点温度の液晶ポリマーフィルムからなるフレキシブル絶縁体層の両主面に第1の配線パターンが形成され、かつ前記フレキシブル絶縁体層を貫通するバンプ状の突起状導電体で前記第1の配線パターン同士が接続されたフレキシブル配線層を形成する工程と、
前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の繊維強化熱硬化性樹脂からなる一層以上のリジッド絶縁体層の両主面または層間に導電体箔または第2の配線パターンが形成され、かつ前記リジッド絶縁体層を貫通するバンプ状の突起状導電体で前記導電体箔または第2の配線パターン同士が接続されたリジッド配線層を形成する工程と、
前記リジッド配線層の一方の主面に導電性バンプを形成する工程と、
前記フレキシブル配線層の一部領域の両面側に挟むように、前記リジッド配線層を前記導電性バンプが形成された主面を向け、かつ前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の半硬化状の繊維強化熱硬化性樹脂の接着層を挟んで積層し、前記フレキシブル絶縁体層のガラス転移点温度よりも低温で前記繊維強化熱硬化性樹脂層のガラス転移点温度よりも高温で加熱、加圧し、前記フレキシブル配線層と前記リジッド配線層を接合するとともに、前記導電性バンプを前記第1の配線パターンに接続する工程と、
を具備し、常温時に前記リジッド絶縁体層の収縮により前記フレキシブル絶縁体層に圧縮歪を与えることを特徴とするフレキシブル・リジッド型配線板の製造方法。
A first wiring pattern is formed on both principal surfaces of a flexible insulator layer made of a liquid crystal polymer film having a predetermined glass transition temperature, and the bump-like projecting conductor penetrates the flexible insulator layer. Forming a flexible wiring layer in which the wiring patterns are connected to each other;
A conductor foil or a second wiring pattern is formed between both principal surfaces or layers of one or more rigid insulator layers made of a fiber reinforced thermosetting resin having a glass transition temperature lower than the glass transition temperature of the flexible insulator layer. Forming a rigid wiring layer formed by connecting the conductor foil or the second wiring patterns with bump-shaped protruding conductors that pass through the rigid insulator layer; and
Forming a conductive bump on one main surface of the rigid wiring layer;
The rigid wiring layer faces the main surface on which the conductive bumps are formed, and the glass transition temperature is lower than the glass transition temperature of the flexible insulator layer so as to be sandwiched between both surfaces of a part of the flexible wiring layer. From the glass transition temperature of the fiber reinforced thermosetting resin layer, laminated at a temperature lower than the glass transition temperature of the flexible insulator layer, sandwiching the adhesive layer of the semi-cured fiber reinforced thermosetting resin of the point temperature Heating and pressurizing at a high temperature, joining the flexible wiring layer and the rigid wiring layer, and connecting the conductive bumps to the first wiring pattern;
And a compressive strain is applied to the flexible insulator layer by shrinkage of the rigid insulator layer at room temperature.
前記リジッド絶縁体層は半硬化の状態でリジッド配線層が形成され、前記接着層とともに前記加熱、加圧により硬化される請求項6に記載のフレキシブル・リジッド型配線板の製造方法。   The method of manufacturing a flexible / rigid wiring board according to claim 6, wherein a rigid wiring layer is formed in a semi-cured state of the rigid insulator layer, and is cured by the heating and pressing together with the adhesive layer. 所定のガラス転移点温度の液晶ポリマーフィルムからなるフレキシブル絶縁体層の両主面に第1の配線パターンが形成され、かつ前記フレキシブル絶縁体層を貫通するバンプ状の突起状導体で前記第1の配線パターン同士が接続されたフレキシブル配線層を形成する工程と、
導電体箔または第2の配線パターンに導電性バンプを形成する工程と、
前記フレキシブル配線層の一部領域の両面側に挟むように、前記導電体箔または第2の配線パターンを、前記導電性バンプ側を向け、かつ前記フレキシブル絶縁体層のガラス転移点温度よりも低いガラス転移点温度の半硬化状の繊維強化熱硬化性樹脂のリジッド絶縁体層となる接着層を挟んで積層し、前記フレキシブル絶縁体層のガラス転移点温度よりも低温で前記繊維強化熱硬化性樹脂層のガラス転移点温度よりも高温で加熱、加圧する工程と、
を具備し、常温時に前記リジッド絶縁体層の収縮により前記フレキシブル絶縁体層に圧縮歪を与えることを特徴とするフレキシブル・リジッド型配線板の製造方法。
A first wiring pattern is formed on both main surfaces of the flexible insulator layer made of a liquid crystal polymer film having a predetermined glass transition temperature, and the bump-like projecting conductors penetrate the flexible insulator layer. Forming a flexible wiring layer in which wiring patterns are connected to each other;
Forming conductive bumps on the conductive foil or the second wiring pattern;
The conductive foil or the second wiring pattern is directed toward the conductive bump so as to be sandwiched between both surfaces of a part of the flexible wiring layer, and is lower than the glass transition temperature of the flexible insulating layer. The fiber reinforced thermosetting is carried out at a temperature lower than the glass transition temperature of the flexible insulator layer by laminating an adhesive layer as a rigid insulator layer of a semi-cured fiber reinforced thermosetting resin having a glass transition temperature. Heating and pressurizing at a temperature higher than the glass transition temperature of the resin layer; and
And a compressive strain is applied to the flexible insulator layer by shrinkage of the rigid insulator layer at room temperature.
前記半硬化状の繊維強化熱硬化性樹脂の接着層が加熱加圧前に前記導電性バンプが挿通された状態に形成されてなる請求項6または請求項8に記載のフレキシブル・リジッド型配線板の製造方法。 The flexible rigid wiring board according to claim 6 or 8, wherein the adhesive layer of the semi-cured fiber-reinforced thermosetting resin is formed in a state where the conductive bumps are inserted before heating and pressing. Manufacturing method.
JP2003335148A 2003-09-26 2003-09-26 Flexible / rigid wiring board and method for manufacturing the same Expired - Fee Related JP4041048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335148A JP4041048B2 (en) 2003-09-26 2003-09-26 Flexible / rigid wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335148A JP4041048B2 (en) 2003-09-26 2003-09-26 Flexible / rigid wiring board and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005101430A JP2005101430A (en) 2005-04-14
JP4041048B2 true JP4041048B2 (en) 2008-01-30

Family

ID=34462611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335148A Expired - Fee Related JP4041048B2 (en) 2003-09-26 2003-09-26 Flexible / rigid wiring board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4041048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687307A (en) * 2012-09-07 2014-03-26 富葵精密组件(深圳)有限公司 Pressing fixture, pressing device and method for pressing stiffening plates by adopting pressing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351590A (en) * 2005-06-13 2006-12-28 Sony Corp Substrate with built-in microdevice, and its manufacturing method
US7309173B2 (en) * 2005-06-27 2007-12-18 Intel Corporation Optical transponder module with dual board flexible circuit
KR100722621B1 (en) * 2005-10-28 2007-05-28 삼성전기주식회사 Method for manufacturing Rigid-flexible Printed Circuit Board
US8759687B2 (en) 2010-02-12 2014-06-24 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
CN102946687B (en) * 2012-10-31 2015-04-22 深圳崇达多层线路板有限公司 Local-fitting hole-avoiding flex-rigid combined board and manufacturing method thereof
CN103384444B (en) * 2013-07-30 2016-04-20 博敏电子股份有限公司 A kind ofly protect rigid-flex combined board of internal layer windowed regions and preparation method thereof
JP6480289B2 (en) * 2015-08-21 2019-03-06 株式会社クラレ Method for producing thermoplastic liquid crystal polymer film with metal vapor-deposited layer, thermoplastic liquid crystal polymer film with metal vapor-deposited layer using the production method, method for producing metal-clad laminate, and metal-clad laminate
WO2021020701A1 (en) * 2019-07-30 2021-02-04 삼성전자 주식회사 Rigid flexible printed circuit board and electronic device including same
KR20210073805A (en) * 2019-12-11 2021-06-21 삼성전기주식회사 Printed circuit board, display device comprising the same, and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687307A (en) * 2012-09-07 2014-03-26 富葵精密组件(深圳)有限公司 Pressing fixture, pressing device and method for pressing stiffening plates by adopting pressing device
CN103687307B (en) * 2012-09-07 2016-08-10 富葵精密组件(深圳)有限公司 Tool for stitching, press fit device and use the stiffening plate compression method of this press fit device

Also Published As

Publication number Publication date
JP2005101430A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US8178191B2 (en) Multilayer wiring board and method of making the same
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
WO2009113202A1 (en) Flexible wiring board, and its manufacturing method
JP2012119446A (en) Flexible wiring board
WO2004066697A1 (en) Multilayer printed wiring board and process for producing the same
JP4041048B2 (en) Flexible / rigid wiring board and method for manufacturing the same
WO2015014048A1 (en) Rigid-flex printed circuit board and manufacturing method therefor
JP2009200113A (en) Shield wiring circuit board
JP4195619B2 (en) Multilayer wiring board and manufacturing method thereof
JP2004319962A (en) Flex rigid printed wiring board and its manufacturing method
JP2005268505A (en) Multilayer wiring board and its manufacturing method
JP2002158445A (en) Rigid-flexible printed wiring board and its manufacturing method
JPH0923067A (en) Multilayered printed wiring board and its manufacture
JP2006332280A (en) Double-sided printed wiring board and its manufacturing method, and rigid-flex printed wiring board
JP4033114B2 (en) Manufacturing method of multilayer printed wiring board
JP3329756B2 (en) Multilayer wiring board and method of manufacturing the same
JPH06252555A (en) Multilayered wiring board
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3230727B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2006073819A (en) Printed board and method for manufacturing the same
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005236196A (en) Manufacturing method for multilayered wiring board
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3989820B2 (en) Multilayer wiring board and manufacturing method thereof
JP3474896B2 (en) Printed wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060323

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4041048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees