JP4038677B2 - 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 - Google Patents

高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 Download PDF

Info

Publication number
JP4038677B2
JP4038677B2 JP2003131084A JP2003131084A JP4038677B2 JP 4038677 B2 JP4038677 B2 JP 4038677B2 JP 2003131084 A JP2003131084 A JP 2003131084A JP 2003131084 A JP2003131084 A JP 2003131084A JP 4038677 B2 JP4038677 B2 JP 4038677B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
acid
bis
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131084A
Other languages
English (en)
Other versions
JP2004331854A (ja
Inventor
畠山  潤
睦雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003131084A priority Critical patent/JP4038677B2/ja
Publication of JP2004331854A publication Critical patent/JP2004331854A/ja
Application granted granted Critical
Publication of JP4038677B2 publication Critical patent/JP4038677B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子などの製造工程における微細加工に用いられるポジ型レジスト材料のベース樹脂として好適な珪素含有高分子化合物、及び遠紫外線、KrFエキシマレーザー光(248nm)、F2レーザー光(157nm)、EUV光(13nm、8nm)、電子線、X線などの高エネルギー線を露光光源として用いる際に好適なポジ型レジスト材料、特に化学増幅ポジ型レジスト材料、並びにパターン形成方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。微細化が急速に進歩した背景には、投影レンズの高NA化、レジストの性能向上、短波長化が挙げられる。特にi線(365nm)からKrF(248nm)への短波長化は大きな変革をもたらし、0.18ミクロンルールのデバイスの量産化も可能となってきている。
【0003】
レジストの高解像度化、高感度化に対して、酸を触媒とした化学増幅ポジ型レジスト材料(特許文献1:特公平2−27660号公報、特許文献2:特開昭63−27829号公報等に記載)は、優れた特徴を有するもので、遠紫外線リソグラフィーに特に主流なレジスト材料となった。
【0004】
KrFエキシマレーザー用レジスト材料は、一般的に0.3ミクロンプロセスに使われ始め、0.25ミクロンルールを経て、現在0.18ミクロンルールの量産化への適用、更に0.15ミクロンルールの試作も始まり、0.13ミクロンルールの検討が行われており、微細化の勢いはますます加速されている。KrFからArF(193nm)への波長の短波長化は、デザインルールの微細化を0.13μm以下にすることが期待されるが、従来用いられてきたノボラックやポリビニルフェノール系の樹脂が193nm付近に非常に強い吸収を持つため、レジスト用のベース樹脂として用いることができない。透明性と、必要なドライエッチング耐性の確保のため、アクリル樹脂やシクロオレフィン系の脂環族系の樹脂が検討された(特許文献3:特開平9−73173号公報、特許文献4:特開平10−10739号公報、特許文献5:特開平9−230595号公報、特許文献6:国際公開第97/33198号パンフレット)。更に0.10μm以下の微細化が期待できるF2(157nm)に関しては、透明性の確保がますます困難になり、アクリル樹脂では全く光を透過せず、シクロオレフィン系においてもカルボニル結合を持つものは強い吸収を持つことがわかった。ベンゼン環を持つポリマーは、波長160nm付近の吸収が若干向上するが、実用的な値にはほど遠く、単層レジストにおいて、ベンゼン環に代表される炭素炭素2重結合とカルボニル基に代表される炭素酸素2重結合を低減することが透過率確保のための必要条件であることが判明した(非特許文献1:InternationalWork Shop 157nm Lithography MIT−LL Boston, MA May 5(1999))。透過率を向上するためにはフッ素の導入が効果的であることが示され(非特許文献2:J. Vac. Sci. Technol. B 17(6), Nov/Dec 1999)、レジスト用に多くのフッ素含有ポリマーが提案された(非特許文献3:J. Photopolymer Sci. and Technol. Vol.13No.4(2000)p657−664 and Vol.13 No.4(2000)p451−458)が、KrF露光におけるポリヒドロキシスチレン及びその誘導体、ArF露光におけるポリ(メタ)アクリル誘導体あるいはポリシクロオレフィン誘導体の透過率には及ばない。
【0005】
一方、従来段差基板上に高アスペクト比のパターンを形成するには2層レジト法が優れていることが知られており、更に、2層レジスト膜を一般的なアルカリ現像液で現像するためには、ヒドロキシ基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
【0006】
シリコーン系化学増幅ポジ型レジスト材料として、安定なアルカリ可溶性シコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrFエキシマレーザー用シリコーン系化学増幅ポジ型レジスト材料が提案された(特許文献7:特開平6−118651号公報、非特許文献4:SPIE vol.1925(1993)p377等)。ArFエキシマレーザー用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジストが提案されている(特許文献8:特開平10−324748号公報、特許文献9:特開平11−302382号公報、非特許文献5:SPIE vol.3333(1998)p62)。更に、F2レーザー用としては、ヘキサフルオロイソプロパノールを溶解性基として持つシルセスキオキサンをベースにしたポジ型レジストが提案されている(特許文献10:特開2002−55456号公報)。
【0007】
珪素が側鎖にペンダントされたレジスト用ベースポリマーとしては、珪素含有(メタ)アクリルエステル系のポリマーが提案されている(特許文献11:特開平9−110938号公報、非特許文献6:J. Photopolymer Sci. and Technol. Vol.9 No.3(1996)p435−446)。
【0008】
(メタ)アクリルエステル型の珪素含有ポリマーの欠点として、酸素プラズマおけるドライエッチング耐性がシルセスキオキサン系ポリマーに比べて弱いというところが挙げられる。これは珪素含有率が低いことと、ポリマー主骨格の違いが理由として挙げられる。また、(メタ)アクリルエステルのシロキサンペンダント型は、現像液をはじき易く、現像液の濡れ性が悪いという欠点もある。そこで、トリシランあるいはテトラシランペンダント型で、珪素含有率を高め、更に珪素含有基に酸脱離性を持たせてアルカリ溶解性を向上させた(メタ)アクリルエステルを含むポリマーの提案がなされている(非特許文献7:SPIE vol.3678(1999)p214、p241、p562)。このものは珪素−珪素結合があるため、200nm以下の波長では強い吸収があるが、248nmのKrFエキシマレーザー用としては十分高透明で、エッチング耐性に優れる珪素含有酸脱離基として用いられている。上記以外の珪素含有酸不安定基の検討も行われている(非特許文献8:SPIE vol.3678(1999)p420)。
【0009】
ポリシルセスキオキサンベース珪素含有レジストの問題点の一つとして分子量が低く、ガラス転移点(Tg)が低いことが挙げられる。ガラス転移点が低いとポストエクスポジュアーベーク(PEB)中に酸が拡散し易くなり、解像度の低下や、孤立パターンと密パターンとの寸法差(プロキシミティーバイアス)が大きくなり、実用的な不具合が生じる。Tgを上げるためには、分子量を上げることが必要であるが、ポリシルセスキオキサンの分子量を上げるとゲル生成物になり、溶媒への溶解性が低下したり、スピンコート後の膜厚の均一性が極端に低下する。
【0010】
もう一つの方法としては、側鎖に剛直な置換基を設けることであり、SPIEvol.3333(1998)p62(特許文献:5)において、シクロヘキシル基よりもトリシクロデカニル基の方が好適であると報告されている。
【0011】
【特許文献1】
特公平2−27660号公報
【特許文献2】
特開昭63−27829号公報
【特許文献3】
特開平9−73173号公報
【特許文献4】
特開平10−10739号公報
【特許文献5】
特開平9−230595号公報
【特許文献6】
国際公開第97/33198号パンフレット
【特許文献7】
特開平6−118651号公報
【特許文献8】
特開平10−324748号公報
【特許文献9】
特開平11−302382号公報
【特許文献10】
特開2002−55456号公報
【特許文献11】
特開平9−110938号公報
【非特許文献1】
International Work Shop 157nm Lithography MIT−LL Boston, MA May 5(1999)
【非特許文献2】
J. Vac. Sci. Technol. B 17(6), Nov/Dec 1999
【非特許文献3】
J. Photopolymer Sci. and Technol. Vol.13 No.4(2000)p657−664 and Vol.13 No.4(2000)p451−458
【非特許文献4】
SPIE vol.1925(1993)p377
【非特許文献5】
SPIE vol.3333(1998)p62
【非特許文献6】
J. Photopolymer Sci. and Technol. Vol.9 No.3(1996)p435−446
【非特許文献7】
SPIE vol.3678(1999)p214、p241、p562
【非特許文献8】
SPIE vol.3678(1999)p420
【0012】
【発明が解決しようとする課題】
本発明はこのような背景のもと、従来のポジ型レジスト材料を上回る高感度及び高解像度、露光余裕度、プロセス適応性を有し、露光後のパターン形状が良好であり、特にラインエッジラフネスが小さく、更に優れたエッチング耐性を示すポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として有用な高分子化合物、この高分子化合物をベース樹脂として配合したポジ型レジスト材料、及びこのレジスト材料を用いたパターン形成方法を提供することを目的とする。
【0013】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、置換又は無置換のヒドロキシインダンをペンダントしたポリシルセスキオキサンを有する下記一般式(1)で示される繰り返し単位を有する高分子化合物が、ポジ型、特に化学増幅ポジ型レジスト材料のベース樹脂として使用されて、高感度、高解像度、露光余裕度、プロセス適応性を与え、更にラインエッジラフネスが小さく、良好なエッチング耐性を与えることを知見し、本発明をなすに至ったものである。
【0014】
従って、本発明は、下記の高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法を提供する。
【0015】
請求項1:
下記一般式(2)で示される繰り返し単位からなる高分子化合物。
【化6】
Figure 0004038677
〔式中、R1は下記式(A−1)〜(A−3)で示される基から選ばれる酸不安定基を表す。mは1〜4の正の整数である。a、bは各繰り返し単位の存在比を示し、a+b=1、aは0.1〜0.9、bは0.1〜0.9であり、xは1≦x≦1.5の範囲である。
【化54】
Figure 0004038677
(式中、R30は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、a1は0〜6の整数である。
31、R32は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示し、R33は炭素数1〜18のヘテロ原子を有してもよい1価の炭化水素基を示す。R31とR32、R31とR33、R32とR33とはこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、ヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。)〕
請求項2:
下記一般式(3)で示される繰り返し単位からなる高分子化合物。
【化7】
Figure 0004038677
〔式中、R2は炭素数3〜20の直鎖状、分岐状又は環状のアルキレン基、又は炭素数6〜20のアリーレン基、R3は下記式(A−1)〜(A−3)で示される基から選ばれる酸不安定基を表す。mは1〜4の正の整数、nは1又は2である。b、cは各繰り返し単位の存在比を示し、b+c=1、bは0.1〜0.9、cは0.1〜0.9であり、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。
【化55】
Figure 0004038677
(式中、R30は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、a1は0〜6の整数である。
31、R32は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示し、R33は炭素数1〜18のヘテロ原子を有してもよい1価の炭化水素基を示す。R31とR32、R31とR33、R32とR33とはこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、ヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。)〕
請求項3:
下記一般式(4)で示される繰り返し単位からなる請求項2記載の高分子化合物。
【化8】
Figure 0004038677
(式中、R3は上記と同様の酸不安定基を表す。R4、R5は水素原子又はR4とR5が結合して−CH2−、−CH2CH2−、−O−、又は−S−を形成していてもよい。nは1又は2である。b、cは各繰り返し単位の存在比を示し、b+c=1、bは0.1〜0.9、cは0.1〜0.9であり、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。)
請求項4:
請求項1乃至3のいずれか1項に記載の高分子化合物をベース樹脂として含むものであることを特徴とするポジ型レジスト材料。
請求項5:
(1)ベース樹脂として、請求項1乃至3のいずれか1項に記載の高分子化合物、
(2)有機溶剤、
(3)酸発生剤
を含有してなる化学増幅ポジ型レジスト材料。
請求項6:
(1)ベース樹脂として、請求項1乃至3のいずれか1項に記載の高分子化合物、
(2)有機溶剤、
(3)酸発生剤、
(4)溶解阻止剤
を含有してなる化学増幅ポジ型レジスト材料。
請求項7:
更に、添加剤として塩基性化合物及び/又は界面活性剤を配合してなる請求項5又は6に記載の化学増幅ポジ型レジスト材料。
請求項8:
(1)請求項4乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、
(2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
(3)必要に応じて加熱処理した後、現像液を用いて現像する工程を含むことを特徴とするパターン形成方法。
請求項9:
請求項8において、パターン形成後、酸素プラズマエッチングにより下地の加工を行うレジストパターン形成方法。
請求項10:
請求項8において、パターン形成後、塩素又は臭素を含むハロゲンガスによるエッチングにより下地の加工を行うレジストパターン形成方法。
【0016】
以下、本発明につき更に詳しく説明する。
本発明者らは、近年要望される高感度及び高解像度、露光余裕度等を有し、特にラインエッジラフネスが小さく、更に優れた酸素ガスによるエッチング耐性を示す珪素含有バイレイヤープロセス用ポジ型レジスト材料を得るべく鋭意検討を重ねた結果、これには置換又は無置換のヒドロキシインダンがペンダントされたポリシロキサン、特にはポリシルセスキオキサンをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いれば極めて有効であることを知見し、本発明を完成させたものである。
【0017】
即ち、本発明者らは、酸素ガスエッチング耐性向上、ポリマーの低分子化と共に高Tg化を達成することを検討した。通常、オレフィンポリマーのTgに比べてシクロオレフィンポリマーのTgが高いことが知られている。例えば、ポリメタクリル酸メチルに比べて、ノルボルネン/無水マレイン酸共重合体の方がTgが100℃以上も高い。シクロオレフィンポリマーは、主鎖の自由回転がなく剛直なため、Tgが高いのである。側鎖に剛直なシクロ基を導入することによってもTgを上げることができる。例えばMw10,000のメチルメタクリレートのTgは100℃程度であるが、同程度の分子量のアダマンタンメタクリレートのTgは180℃である。
【0018】
一方、ポリシルセスキオキサンは主鎖が剛直なラダー型の構造であるが、分子量(Mw)が1,000〜4,000の範囲であることからTgが低いことが問題であった。Mw3,000のp−ヒドロキシベンジルシルセスキオキサンはTgが140℃であり、酸不安定基の置換によって100℃にまで低下する。分子量Mw10,000の単分散p−ヒドロキシスチレンのTgが180℃で酸不安定基の置換により140℃であるのに対して、40℃も低い。酸不安定基で置換されたポリヒドロキシスチレン、あるいはアクリル酸t−ブチルとポリヒドロキシスチレンの共重合体のTgは130〜140℃であり、実用的なレジストのTgは130℃以上とされている。酸不安定基を脱保護するためのPEB(ポストエクスポージャベーク)温度は100℃以上が一般的であり、100℃前後のTgではPEB温度が100℃以上において酸拡散距離が急に増大にする。より低温で脱保護化する酸不安定基を用いて、低温でPEBを行う方法も考えられるが、脱保護化反応の活性化エネルギーの低い保護基を使うと露光中に脱保護が進行し、脱保護によって生成したガス成分が露光装置やマスクに吸着し、レンズやマスクの透過率の低下を引き起こすおそれがある。露光中の脱ガスを防止するには活性化エネルギーの高い酸不安定基を用い、高いPEB温度によって脱保護させるのが望ましく、そのためにもTgの高いベースポリマーが望まれているのである。
【0019】
ここで剛直な構造で、かつフェノール性水酸基を持つヒドロキシインダンをペンダント基にすることによって、Tgが高く、分子量が低くても、PEB時に酸拡散が増大することもなく、ラインエッジラフネスを小さくすることができる効果を見出した。
【0020】
以上のことから、本発明者らは、ヒドロキシ基の水素原子を酸不安定基で置換したヒドロキシインダン、あるいはカルボン酸の水素原子を酸不安定基で置換したノルボルナンとヒドロキシインダンがそれぞれペンダントされたシルセスキオキサンをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いることが有効であることを知見したものである。
【0021】
即ち、本発明に係る高分子化合物は、下記一般式(1)で示される繰り返し単位を有する高分子化合物である。この場合、かかる高分子化合物としては、下記一般式(2)、(3)で示される繰り返し単位を有するものが好ましく、また一般式(3)の繰り返し単位としては、下記一般式(4)で示される繰り返し単位を有するものが用いられる。
【化9】
Figure 0004038677
(式中、R1 酸不安定基を表す。mは1〜4の正の整数である。xは1≦x≦1.5の範囲である。)
【化10】
Figure 0004038677
(式中、R1 酸不安定基を表す。mは1〜4の正の整数である。a、bは正数であり、好ましくは0.1≦a≦0.9、0.1≦b≦0.9、0.1≦a+b≦1、好ましくは0.2≦a+b≦1、xは1≦x≦1.5の範囲である。)
【化11】
Figure 0004038677
(式中、R2は炭素数3〜20の直鎖状、分岐状又は環状のアルキレン基、又は炭素数6〜20のアリーレン基、R3は酸不安定基を表す。mは1〜4の正の整数、nは1又は2である。b、cは正数であり、好ましくは0.1≦b≦0.9、0.1≦c≦0.9、0.1≦b+c≦1、好ましくは0.2≦b+c≦1、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。)
【化12】
Figure 0004038677
(式中、R3は酸不安定基を表す。R4、R5は水素原子又はR4とR5が結合して−CH2−、−CH2CH2−、−O−、又は−S−を形成していてもよい。nは1又は2である。b、cは正数であり、好ましくは0.1≦b≦0.9、0.1≦c≦0.9、0.1≦b+c≦1、好ましくは0.2≦b+c≦1、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。)
【0022】
このような高分子化合物をベース樹脂とし、これに有機溶剤、酸発生剤、溶解阻止剤、塩基性化合物、界面活性剤等を目的に応じ適宜組み合わせて配合してポジ型レジスト材料を構成することによって、レジスト膜の溶解コントラスト及び解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示すと共に、特にラインエッジラフネスが小さく、これらのことから実用性が高く、超LSI用レジスト材料として非常に有効なものとすることができる。特に、酸発生剤を含有させ、酸触媒反応を利用した化学増幅ポジ型レジスト材料とすると、より高感度のものとすることができると共に、諸特性が一層優れたものとなり、極めて有用なものとなる。
【0023】
ここで、一般式(1)で示される繰り返し単位、一般式(2)、(3)、(4)で示される繰り返し単位a、bは、置換ヒドロキシインデン誘導体にアルコキシシラン又はハロゲン化シランとの付加反応によって得られたシランを重合して得ることができる。ヒドロキシインデン誘導体は、具体的には下記一般式(5)で示されるものを挙げることができる。
【0024】
【化13】
Figure 0004038677
【0025】
ここで、R6はR1と同様の酸不安定基であっても、水素原子であってもよい。R6が水素原子である場合、シラン化した後あるいは重合後にヒドロキシ基の水素原子を酸不安定基で置換してもよい。また、R6がアセチル基やピバロイル基であり、重合後アルカリ水で加水分解してヒドロキシ基にしてから、ヒドロキシ基の水素原子を酸不安定基で置換してもよい。シランとの反応の時に、クロロシランを用いる場合はヒドロキシル基とクロロシランとが反応するので、ヒドロキシル基はアセチル化又はピバロイル化しておく方が好ましい。なお、mは1〜4の整数である。
【0026】
ヒドロキシインデンとしては、下記に示すものが挙げられる。下記式において、右から4−ヒドロキシインデン、5−ヒドロキシインデン、6−ヒドロキシインデン、7−ヒドロキシインデンである。
【化14】
Figure 0004038677
【0027】
ヒドロキシインデンの合成法を下記に示す。
【化15】
Figure 0004038677
【0028】
5−ヒドロキシ−1−インダノンを出発とした場合は、上記式に示すように、まず5−ヒドロキシ−1−インダノンのヒドロキシ基をピバロイル化し、白金あるいはパラジウム触媒による還元、KHSO4による脱水、オレフィン生成、NaOMeメタノリシスによって6−ヒドロキシインデンを得ることができる。
なお、5−ヒドロキシインデンを得るためには4−ヒドロキシ−1−インダノン、7−ヒドロキシインデンを得るためには6−ヒドロキシ−1−インダノンを原料に用いる。
【0029】
インデン誘導体のシリル化反応の例を下記に示す。
【化16】
Figure 0004038677
【0030】
上記に示すように、一般式(5)におけるR6が水素原子の場合、該水素原子はアセチル基又はピバロイル基で置換しておいた方がヒドロキシ基とシランとの反応を防ぐことができる。
【0031】
Zは同一又は異種の炭素数1〜10のアルキル基、アリール基、トリフルオロプロピル基であり、ヒドロキシ基、炭素数1〜4のアルコキシ基、又はハロゲン原子であり、3つのZ基の内少なくとも2つがヒドロキシ基、炭素数1〜4のアルコキシ基、又はハロゲン原子である。上記ハイドロシリレーション反応は、白金又はパラジウム触媒存在下、室温又は加温しながら常圧条件あるいはオートクレーブを用いた加圧条件下で行う。
【0032】
一般式(3)又は(4)中の繰り返し単位cに用いられるシランモノマーを得る場合は、酸不安定基で置換されたシクロブテンカルボン酸、シクロペンテンカルボン酸、シクロヘキセンカルボン酸あるいは酸不安定基で置換されたノルボルネンカルボキシレート、7−オキソノルボルネンカルボキシレートに同様の方法でハイドロシリレーション反応を行う(下記反応式)。
【0033】
【化17】
Figure 0004038677
(R3、Zは上記の通り。)
【0034】
酸不安定基で置換されたカルボキシレートを有するシクロオレフィン化合物を下記に例示する。
【0035】
【化18】
Figure 0004038677
【0036】
一般式(1)〜(4)の高分子化合物の合成方法としては、上記ハイドロシリレーションによって得られたシランモノマーを用いて加水分解による共縮合を行う。加水分解反応における水の量は、モノマー1モル当たり0.2〜10モルを添加することが好ましい。この時に、触媒を用いることもでき、酢酸、プロピオン酸、オレイン酸、ステアリン酸、リノール酸、サリチル酸、安息香酸、ギ酸、マロン酸、フタル酸、フマル酸、クエン酸、酒石酸、塩酸、硫酸、硝酸、スルホン酸、メチルスルホン酸、トシル酸、トリフルオロメタンスルホン酸などの酸、アンモニア、トリメチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリンヒドロキシド、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)、1,5−ジアザビシクロ[4.3.0]−5−ノネノン(DBN)、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウムなどの塩基、テトラアルコキシチタン、トリアルコキシモノ(アセチルアセトナート)チタン、テトラアルコキシジルコニウム、トリアルコキシモノ(アセチルアセトナート)ジルコニウムなどの金属キレート化合物を挙げることができる。
【0037】
なお、触媒の使用量は、モノマー1モル当たり0.0001〜1モルの範囲であり、触媒の種類や反応条件によって使用量が異なる。
【0038】
反応操作としては、モノマーを有機溶媒に溶解させ、水を添加し、加水分解反応を開始させる。触媒は水に添加していてもよいし、有機溶媒中に添加しておいてもよい。反応温度は0〜100℃、好ましくは10〜80℃である。水の滴下時に10〜50℃に加熱し、その後40〜80℃に昇温させて熟成させる方法が好ましい。有機溶媒としては、水に難溶あるいは不溶のものが好ましく、テトラヒドロフラン、トルエン、ヘキサン、酢酸エチル、シクロヘキサノン、メチル−2−n−アミルケトン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート、γ−ブチロラクトンなどが好ましい。
【0039】
その後、触媒の中和反応を行い、有機溶媒層を分別し、脱水する。水分の残存は、残存したシラノールの縮合反応を進行させるため、水分の除去は十分に行う必要がある。水分の除去には、硫酸マグネシウムなどの塩やモレキュラーシーブによる吸着法や、溶媒を除去しながらの共沸脱水法が好ましく挙げられる。
【0040】
本発明は、置換又は無置換のヒドロキシインダンペンダントシラン化合物の共縮合、あるいは前記ヒドロキシインダンペンダントシラン化合物と酸不安定基で置換されたノルボルネンカルボキシレートペンダントシラン化合物と置換又は無置換のヒドロキシインダンペンダントシラン化合物との共縮合を特徴とするが、下記に示すシラン化合物(S−1)を共縮合させてもよい。
【0041】
【化19】
Figure 0004038677
【0042】
【化20】
Figure 0004038677
【0043】
上記式において3つのZの内1つがアルキル基、又はアリール基で、残りの2つがヒドロキシ基、アルコキシ基、又はハロゲン原子の場合、縮合によって得られる結合単位は鎖状のシロキサンであり、Zの3つがヒドロキシ基、アルコキシ基、又はハロゲン原子の場合は縮合によって得られる単位はラダー骨格のシロキサンであり、シルセスキオキサンである。
【0044】
更に、下記に示す4シラン化合物(S−2)を共重合することもできる。
【化21】
Figure 0004038677
【0045】
ここで、本発明の高分子化合物における酸不安定基は、一般式(1)及び一般式(2)における繰り返し単位a中のR1、一般式(3)、(4)における繰り返し単位cのR3であり、また上記R6が酸不安定基であり得、かかる酸不安定基としては、下記式(A−1)〜(A−3)で示すものが挙げられる。
【化22】
Figure 0004038677
【0046】
式(A−1)において、R30は炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、三級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。a1は0〜6の整数である。
【0047】
式(A−2)において、R31、R32は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R33は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状もしくは環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
【0048】
【化23】
Figure 0004038677
【0049】
31とR32、R31とR33、R32とR33とはこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示し、好ましくは環の炭素数は3〜10、特に4〜10である。
【0050】
上記式(A−1)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
【0051】
更に、下記式(A−1)−1〜(A−1)−9で示される置換基を挙げることもできる。
【化24】
Figure 0004038677
【0052】
ここで、R37は互いに同一又は異種の炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基、R38は水素原子、又は炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基である。
【0053】
また、R39は互いに同一又は異種の炭素数2〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基である。
上記式(A−2)で示される酸不安定基のうち、直鎖状又は分岐状のものとしては、下記式(A−2)−1〜(A−2)−23のものを例示することができる。
【0054】
【化25】
Figure 0004038677
【0055】
【化26】
Figure 0004038677
【0056】
上記式(A−2)で示される酸不安定基のうち、環状のものとしては、テトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が挙げられる。
【0057】
また、一般式(A−2a)あるいは(A−2b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。
【化27】
Figure 0004038677
【0058】
式中、R40、R41は水素原子又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R40とR41は結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR40、R41は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R42は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b1、d1は0又は1〜10、好ましくは0又は1〜5の整数、c1は1〜7の整数である。Aは、(c1+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。
【0059】
この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、c1は好ましくは1〜3の整数である。
【0060】
一般式(A−2a)、(A−2b)で示される架橋型アセタール基は、具体的には下記式(A−2)−24〜(A−2)−31のものが挙げられる。
【0061】
【化28】
Figure 0004038677
【0062】
次に、式(A−3)においてR34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。
【0063】
式(A−3)に示される三級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。
【0064】
また、三級アルキル基としては、下記に示す式(A−3)−1〜(A−3)−18を具体的に挙げることもできる。
【化29】
Figure 0004038677
【0065】
式(A−3)−1〜(A−3)−18中、R43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基等のアリール基を示す。R44、R46は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R45は炭素数6〜20のフェニル基等のアリール基を示す。
【0066】
更に、下記式(A−3)−19、(A−3)−20に示すように、2価以上のアルキレン基、アリーレン基であるR47を含んで、ポリマーの分子内あるいは分子間が架橋されていてもよい。
【化30】
Figure 0004038677
【0067】
式(A−3)−19、(A−3)−20中、R43は前述と同様、R47は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はフェニレン基等のアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。e1は1〜3の整数である。
【0068】
更に、式(A−3)中のR34、R35、R36は酸素、窒素、硫黄などのヘテロ原子を有していてもよく、具体的には下記式(A)−1〜(A)−7に示すものを挙げることができる。
【0069】
式(A−1)、(A−2)、(A−3)中のR30、R33、R36は、フェニル基、p−メチルフェニル基、p−エチルフェニル基、p−メトキシフェニル基等のアルコキシ置換フェニル基等の非置換又は置換アリール基、ベンジル基、フェネチル基等のアラルキル基等や、これらの基に酸素原子を有する、あるいは炭素原子に結合する水素原子が水酸基に置換されたり、2個の水素原子が酸素原子で置換されてカルボニル基を形成する下記式で示されるようなアルキル基、あるいはオキソアルキル基を挙げることができる。
【0070】
【化31】
Figure 0004038677
【0071】
また、酸不安定基として用いられる各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基としてはトリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基等が挙げられる。
【0072】
また、下記式(A−4)、(A−5)、(A−6)で示される珪素含有酸不安定基を用いることができる。
【化32】
Figure 0004038677
【0073】
ここで、R51、R52は水素原子、又は炭素数1〜20のアルキル基、R53、R54、R55は同一又は異種の炭素数1〜20のアルキル基、ハロアルキル基、又は炭素数6〜20のアリール基、あるいは式中の珪素原子とシロキサン結合、シルメチレン結合で結合している珪素含有基である。R51とR52は結合してこれらが結合する炭素原子と共に炭素数3〜10の環を形成してもよい。
また、R53とR54、R53とR55又はR54とR55は、これらが結合する珪素原子と共に珪素原子数3〜10のシロキサン環を形成してもよい。
【0074】
式(A−4)、(A−5)、(A−6)として具体的には、下記式(A−4)−1〜(A−4)−12、(A−5)−1、(A−6)−1のものが例示される。
【化33】
Figure 0004038677
【0075】
本発明の高分子化合物の酸不安定基が炭素数1〜6のトリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられる。
【0076】
上記一般式(1)の高分子化合物は、当該繰り返し単位のみからなる構成としてもよく、他の単位を含有していてもよい。また、式(2)において、aは正数、bは0又は正数で、好ましくは0.1≦a≦0.9、0≦b≦0.9、0.2≦a+b≦1であり、より好ましくは0.2≦a≦0.8、0.2≦b≦0.8、0.2≦a+b≦1.0である。また、式(3)、(4)において、b、cは正数で、好ましくは0.1≦b≦0.9、0.1≦c≦0.9、0.2≦b+c≦1、より好ましくは0.2≦b≦0.8、0.15≦c≦0.8、0.25≦b+c≦1.0である。
更に、式(1)〜(4)において、x、yは1≦x≦1.5、1≦y≦1.5である。
【0077】
本発明の高分子化合物は、更に他の組成と共重合させたものとしてもよい。そして、上記のような範囲で繰り返し単位a、b、あるいはcを有することで、高い溶解コントラストと解像度特性、基板密着性、ラインエッジラフネスを改善する効果を発揮する。
【0078】
なお、式(1)の高分子化合物が他の単位を含む場合、また式(2)〜(4)において、a+b、b+cが1に満たない場合、他の単位としては、上記のシラン(S−1)及び/又はシラン(S−2)に由来する単位とすることができるほか、密着性やドライエッチング耐性、透明性を向上させるため、(メタ)アクリル誘導体、スチレン誘導体、ヒドロキシスチレン誘導体、ビニルシラン誘導体、アリルシラン誘導体、ベンゾフラン、インドール、ベンゾチオフェン、メチレンインダン、ノルボルネン誘導体、アセナフテン誘導体、ビニルナフタレン誘導体、ビニルアントラセン誘導体、酢酸ビニル、(メタ)アクリロニトリル、ビニルピロリドン、ジヒドロピラン、ビニルエーテル誘導体、ノルボルネン、ノルボルナジエン、メチレンノルボルネン、プロピレン、イソプロピレンなどに由来する単位とすることができる。
【0079】
なお、ヒドロキシ基がアセチル基あるいはピバロイル基などで置換されたインダンがペンダントされたシラン化合物を用いて縮合した場合は、アセチル基又はピバロイル基をアルカリ加水分解によってヒドロキシ基にする必要がある。
【0080】
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また、反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。縮合後ポリマーにしてからアルカリ加水分解することもできるし、アルコキシシランはアルカリ触媒によっても縮合が進行するので、ポリマー化と加水分解とを同時に行うことができる。
【0081】
水酸基部分に対して酸不安定基を導入する方法は、例えば、高分子化合物のフェノール性水酸基をアルケニルエーテル化合物と酸触媒下反応させる方法を採用し得る。
この時、反応溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、酢酸エチル等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。触媒の酸としては、塩酸、硫酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、p−トルエンスルホン酸ピリジニウム塩等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して0.1〜10モル%であることが好ましい。反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
【0082】
また、ハロゲン化アルキルエーテル化合物を用いて、塩基の存在下、高分子化合物と反応させることにより、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることも可能である。
【0083】
この時、反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。塩基としては、トリエチルアミン、ピリジン、ジイソプロピルアミン、炭酸カリウム等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して10モル%以上であることが好ましい。反応温度としては−50〜100℃、好ましくは0〜60℃であり、反応時間としては0.5〜100時間、好ましくは1〜20時間である。
【0084】
上記式(A−1)の酸不安定基を高分子重合後のヒドロキシ基に導入する方法は、二炭酸ジアルキル化合物又は、アルコキシカルボニルアルキルハライドと高分子化合物を、溶媒中において塩基の存在下反応を行うことで可能である。
【0085】
反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。
【0086】
塩基としては、トリエチルアミン、ピリジン、イミダゾール、ジイソプロピルアミン、炭酸カリウム等が好ましく、その使用量は元の高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して10モル%以上であることが好ましい。反応温度としては0〜100℃、好ましくは0〜60℃である。反応時間としては0.2〜100時間、好ましくは1〜10時間である。
【0087】
二炭酸ジアルキル化合物としては、二炭酸ジ−tert−ブチル、二炭酸ジ−tert−アミル等が挙げられ、アルコキシカルボニルアルキルハライドとしてはtert−ブトキシカルボニルメチルクロライド、tert−アミロキシカルボニルメチルクロライド、tert−ブトキシカルボニルメチルブロマイド、tert−ブトキシカルボニルエチルクロライド等が挙げられる。
但し、これら合成手法に限定されるものではない。
【0088】
本発明の高分子化合物は、それぞれ重量平均分子量が5,000〜500,000、好ましくは1,000〜30,000である必要がある。重量平均分子量が小さすぎるとレジスト材料の耐熱性やTgが劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなってしまう。
【0089】
更に、本発明の高分子化合物においては、一般式(1)〜(4)の高分子化合物の分子量分布(Mw/Mn)が広い場合は、低分子量や高分子量のポリマーが存在するために、露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする場合がある。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する高分子化合物の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
【0090】
また、組成比率や分子量分布、分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
【0091】
本発明のポジ型レジスト材料は、本発明の高分子化合物をベース樹脂として用いるもので、有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができる。
【0092】
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ−ブチロラクトン等のラクトン類が挙げられるが、これらに限定されるものではない。
【0093】
これらの有機溶剤は、1種を単独で又は2種以上を混合して使用することができる。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
【0094】
有機溶剤の使用量は、本発明の高分子化合物(ベース樹脂)100部(重量部、以下同じ)に対して200〜5,000部、特に400〜2,000部が好適である。
【0095】
本発明で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。
【0096】
【化34】
Figure 0004038677
(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。)
【0097】
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネートが挙げられる。
【0098】
【化35】
Figure 0004038677
(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
【0099】
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。
【0100】
【化36】
Figure 0004038677
(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
【0101】
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
【0102】
【化37】
Figure 0004038677
(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。)
【0103】
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
【0104】
【化38】
Figure 0004038677
(式中、R101a、R101bは上記と同様である。)
【0105】
【化39】
Figure 0004038677
(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
【0106】
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
【0107】
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
【0108】
具体的には、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩。
【0109】
ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体。
【0110】
ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体。
【0111】
ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体。
【0112】
2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体。
p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体。
1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体。
【0113】
N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられるが、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
【0114】
なお上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
【0115】
酸発生剤の添加量は、ベース樹脂100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
【0116】
更に、本発明のレジスト材料には、塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
【0117】
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
【0118】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0119】
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0120】
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0121】
更に、下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。
N(X)n(Y)3-n (B)−1
(式中、nは1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子もしくは直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。)
【0122】
【化40】
Figure 0004038677
【0123】
ここで、R300、R302、R305は炭素数1〜4の直鎖状もしくは分岐状のアルキレン基であり、R301、R304は水素原子、又は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。
303は単結合、炭素数1〜4の直鎖状もしくは分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル、エステル基、ラクトン環を1あるいは複数含んでいてもよい。
【0124】
上記一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−フォルミルオキシエチル)アミン、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
【0125】
更に、下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。
【0126】
【化41】
Figure 0004038677
(式中、Xは前述の通り、R307は炭素数2〜20の直鎖状もしくは分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1個あるいは複数個含んでいてもよい。)
【0127】
上記一般式(B)−2として具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチルで挙げることができる。
【0128】
更に、下記一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる
【0129】
【化42】
Figure 0004038677
(式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状もしくは分岐状のアルキレン基である。)
【0130】
シアノ基を含む塩基性化合物は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)が例示される。
【0131】
なお、本発明の塩基性化合物の配合量は全ベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果がなく、2部を超えると感度が低下しすぎる場合がある。
【0132】
溶解阻止剤としては、重量平均分子量が100〜1,000で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均10〜100モル%の割合で置換した化合物が好ましい。
【0133】
このような好適に用いられる溶解阻止剤の例としては、ビス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、ビス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、ビス(4−tert−ブトキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルオキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)メタン、ビス(4−(1’−エトキシエトキシ)フェニル)メタン、ビス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、2,2−ビス(4’−(2’’−テトラヒドロピラニルオキシ))プロパン、2,2−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)プロパン、2,2−ビス(4’−tert−ブトキシフェニル)プロパン、2,2−ビス(4’−tert−ブトキシカルボニルオキシフェニル)プロパン、2,2−ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)プロパン、2,2−ビス(4’−(1’’−エトキシエトキシ)フェニル)プロパン、2,2−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)プロパン、4,4−ビス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシフェニル)吉草酸tert−ブチル、4,4−ビス(4−tert−ブトキシカルボニルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシカルボニルメチルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシエトキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)吉草酸tert−ブチル、トリス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、トリス(4−(2’−テトラヒドロフラニルオキシ)フェニルメタン、トリス(4−tert−ブトキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシメチルフェニル)メタン、トリス(4−(1’−エトキシエトキシ)フェニル)メタン、トリス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、1,1,2−トリス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−tert−ブトキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルオキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルメチルオキシフェニル)エタン、1,1,2−トリス(4’−(1’−エトキシエトキシ)フェニル)エタン、1,1,2−トリス(4’−(1’−エトキシプロピルオキシ)フェニル)エタン等が挙げられる。
【0134】
なお上記化合物の重量平均分子量は100〜1,000、好ましくは150〜800である。
【0135】
溶解阻止剤の配合量は、ベース樹脂100部に対して0〜50部、好ましくは5〜50部、より好ましくは10〜30部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。
【0136】
分子内に≡C−COOHで示される基を有する化合物としては、例えば下記I群及びII群から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED安定性が向上し、窒化膜基板上でのエッジラフネスが改善されるのである。
【0137】
[I群]
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
【0138】
【化43】
Figure 0004038677
(但し、式中R408は水素原子又はメチル基を示す。R402、R403はそれぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409h−COOR’基(R’は水素原子又は−R409−COOH)を示す。R405は−(CH2i−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。jは0〜3、s1〜s4、t1〜t4はそれぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。κは式(A6)の化合物を重量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を重量平均分子量1,000〜10,000とする数である。)
【0139】
[II群]
下記一般式(A11)〜(A15)で示される化合物。
【化44】
Figure 0004038677
(R402、R403、R411は上記と同様の意味を示す。R412は水素原子又は水酸基を示す。s5、t5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h’は0又は1である。)
【0140】
本成分として、具体的には下記一般式(AI−1)〜(AI−14)及び(AII−1)〜(AII−10)で示される化合物を挙げることができるが、これらに限定されるものではない。
【0141】
【化45】
Figure 0004038677
(式中、R’’は水素原子又はCH2COOH基を示し、各化合物においてR’’の10〜100モル%はCH2COOH基である。α、κは上記と同様の意味を示す。)
【0142】
【化46】
Figure 0004038677
【0143】
なお、上記分子内に≡C−COOHで示される基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
【0144】
上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100部に対して0〜5部、好ましくは0.1〜5部、より好ましくは0.1〜3部、更に好ましくは0.1〜2部である。5部より多いとレジスト材料の解像性が低下する場合がある。
【0145】
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431、FC−4430(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S−382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)が挙げられ、中でもFC430、FC−4430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30、KP−341、X−70−092、X−70−093が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
【0146】
本発明のレジスト材料を使用してパターンを形成するには、公知のリソグラフィー技術を採用して行うことができ、例えば基板上にスピンコーティング等の手法で膜厚が0.1〜1.0μmとなるように塗布し、これをホットプレート上で60〜200℃、10秒〜10分間、好ましくは80〜150℃、30秒〜5分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、波長300nm以下の遠紫外線、エキシマレーザー、X線等の高エネルギー線もしくは電子線を露光量1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2程度となるように照射した後、ホットプレート上で60〜150℃、10秒〜5分間、好ましくは80〜130℃、30秒〜3分間ポストエクスポージャベーク(PEB)する。更に、0.1〜5%、好ましくは2〜3%、通常2.38重量%のテトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ水溶液の現像液を用い、10秒〜3分間、好ましくは30秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明材料は、特に高エネルギー線の中でも254〜120nmの遠紫外線又はエキシマレーザー、特に193nmのArF、146nmのKr2、134nmのKrAr2等のエキシマレーザー、157nmのF2、126nmのAr2等のレーザー、13nm及び8nmのEUV、X線及び電子線による微細パターンニングに最適である。また、上記範囲を上限及び下限から外れる場合は、目的のパターンを得ることができない場合がある。
【0147】
本発明のパターン形成方法を図示する。
図1は、露光、PEB、現像によって珪素含有レジストパターンを形成し、酸素ガスエッチングによって下地の有機膜パターンを形成し、ドライエッチングによって被加工膜の加工を行う方法を示す。ここで、図1(A)において、1は下地基板、2は被加工基板(SiO2、SiN等)、3は有機膜(ノボラック、ポリヒドロキシスチレン等)、4は本発明に係る珪素含有高分子化合物を含むレジスト材料によるレジスト層であり、図1(B)に示したように、このレジスト層の所用部分を露光5し、更に図1(C)に示したようにPEB、現像を行って露光領域を除去し、更に図1(D)に示したように酸素プラズマエッチング、図1(E)に示したように被加工基板エッチング(CF系ガス)を行って、パターン形成することができる。
【0148】
ここで、酸素ガスエッチングは酸素ガスを主成分とした反応性プラズマエッチングであり、高いアスペクト比で下地の有機膜を加工することができる。酸素ガスの他にオーバーエッチングによるT−トップ形状を防止するために、側壁保護を目的とするSO2、N2、NO2、NH3、CO、CO2ガスを添加してもよい。また、現像後のレジストのスカムを除去し、ラインエッジを滑らかにしてラフネスを防止するために、酸素ガスエッチングを行う前に、短時間のフロン系ガスでエッチングすることも可能である。次に、被加工膜のドライエッチング加工は、被加工膜がSiO2やSi34であれば、フロン系のガスを主成分としたエッチングを行う。フロン系ガスはCF4、CHF3、CH22、C26、C38、C410、C512などが挙げられる。この時は被加工膜のドライエッチングと同時に、珪素含有レジスト膜を剥離することが可能である。被加工膜がポリシリコン、タングステンシリサイド、TiN/Alなどの場合は、塩素、臭素ガスを主成分としたエッチングを行う。
【0149】
本発明の珪素含有レジスト材料は、塩素、臭素ガスを主成分としたエッチングに対して優れた耐性を示し、単層レジストと同じ加工方法を用いることもできる。
図2は、これを示すもので、図2(A)において、1は下地基板、6は被加工基板、4は上記したレジスト層であり、図2(B)、(C)に示したように、露光5及びPEB、現像を行った後、図2(D)に示したように被加工基板エッチング(Cl系ガス)を行うことができるもので、このように被加工膜直上に本発明の珪素含有レジスト膜をパターン形成し、塩素、臭素ガスを主成分としたエッチングで被加工膜の加工を行うことができる。
【0150】
【実施例】
以下、合成例、比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例等に制限されるものではない。
【0151】
[合成例1]
テトラヒドロフラン200g、純水100gに5−アセトキシ−2(3)−トリメトキシシリルインダン30gを溶解させ、液温を35℃にし、テトラメチルアンモニウムハイドロオキサイド9.1gを1時間かけて滴下し、その後60℃に昇温し、シラノールの縮合反応とアセチル基の脱離反応を行った。
前記反応液にジエチルエーテル200gを加え、水層を分別し、有機液層を1%の酢酸水溶液で2回、超純水で2回洗浄し、減圧乾燥によって5−ヒドロキシインダン−ポリシルセスキオキサンを得た。
得られたポリマーをゲルパーミエーションクロマトグラフィー(GPC)によってポリスチレン換算の分子量(Mw)4,800を求め、1H−NMRによってアセトキシ基がヒドロキシ基に脱保護されていることを確認した。
200mLのフラスコに得られた5−ヒドロキシインダン−ポリシルセスキオキサン20gをジメチルホルムアミド100mLに溶解させ、触媒量のp−トルエンスルホン酸を添加した後、20℃で撹拌しながらエチルビニルエーテル5.0gを添加した。1時間反応させた後、濃アンモニア水により中和し、水10Lに中和反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン500mLに溶解させ、水10Lに滴下し、濾過後、真空乾燥した。
GPCと1H−NMR解析の結果、得られたポリマーが下記構造であることが確認された(ポリマー1)。
【0152】
【化47】
Figure 0004038677
【0153】
[合成例2]
テトラヒドロフラン200g、純水100gに5−アセトキシ−2(3)−トリメトキシシリルインダン15gと2−tert−ブトキシカルボニル−5(6)−トリメトキシシリルノルボルナン16.6gを溶解させ、液温を35℃にし、テトラメチルアンモニウムハイドロオキサイド9.1gを1時間かけて滴下し、その後60℃に昇温し、シラノールの縮合反応とアセチル基の脱離反応を行った。
前記反応液にジエチルエーテル200gを加え、水層を分別し、有機液層を1%の酢酸水溶液で2回、超純水で2回洗浄し、減圧乾燥によって5−ヒドロキシインダン−co−2−tert−ブトキシカルボニル−ノルボルナン−ポリシルセスキオキサンを得た。
GPCと1H−NMR解析の結果、得られたポリマーが下記構造であることが確認された(ポリマー2)。
【0154】
【化48】
Figure 0004038677
【0155】
[合成例3]
テトラヒドロフラン200g、純水100gに5−アセトキシ−2(3)−トリメトキシシリルインダン15gと2−エチルシクロペンチルカルボニル−5(6)−トリメトキシシリルノルボルナン18.1gを溶解させ、液温を35℃にし、テトラメチルアンモニウムハイドロオキサイド9.1gを1時間かけて滴下し、その後60℃に昇温し、シラノールの縮合反応とアセチル基の脱離反応を行った。
前記反応液にジエチルエーテル200gを加え、水層を分別し、有機液層を1%の酢酸水溶液で2回、超純水で2回洗浄し、減圧乾燥によって5−ヒドロキシインダン−co−2−エチルシクロペンチルカルボニル−ノルボルナン−ポリシルセスキオキサンを得た。
GPCと1H−NMR解析の結果、得られたポリマーが下記構造であることが確認された(ポリマー3)。
【0156】
【化49】
Figure 0004038677
【0157】
[比較合成例1]
反応器に1,200mLの水を仕込み、30℃で撹拌しながらp−メトキシベンジルトリクロロシラン487.2g(2.0mol)及びトルエン600mLの混合液を2時間かけて滴下し、加水分解を行った。その後分液操作により水層を除去し、有機層は水層が中性になるまで水洗を行った。有機層へヘキサメチルシラザン80gを添加し、5時間還流を行った。冷却後、トルエン並びに未反応のヘキサメチルシラザンをエバポレーターによって留去し、次いで、アセトニトリル400gに溶解した。この溶液中に60℃以下でトリメチルシリルアイオダイド480gを滴下し、60℃で10時間反応させた。反応終了後、水200gを加えて加水分解を行い、次いでデカントによりポリマー層を得た。溶媒をエバポレーターで除去後、ポリマーを真空乾燥することにより、ポリ(p−ヒドロキシベンジルシルセスキオキサン)330gを得た。このポリマーの分子量をGPCによって測定したところ、ポリスチレン換算でMw=3,500であった。
2Lのフラスコに合成例1で得られたポリ(p−ヒドロキシベンジルシルセスキオキサン)160gをジメチルホルムアミド1,000mLに溶解させ、触媒量のp−トルエンスルホン酸を添加した後、20℃で撹拌しながらエチルビニルエーテル19.0g、トリエチレングリコールジビニルエーテル6.0gを添加した。1時間反応させた後、濃アンモニア水により中和し、水10Lに中和反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン500mLに溶解させ、水10Lに滴下し、濾過後、真空乾燥した。
GPCと1H−NMR解析の結果、このものは下記式で示される比較ポリマー1であることが確認された。
【0158】
【化50】
Figure 0004038677
【0159】
[実施例、比較例]
上記で合成した高分子化合物を用いて、下記表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
表1中の各組成は次の通りである。
ポリマー1〜3:合成例1〜3
比較ポリマー1:比較合成例1
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
酸発生剤:PAG1、PAG2、PAG3(下記構造式参照)
塩基性化合物:トリブチルアミン、TMMEA、AAA、AACN(下記構造式参照)
溶解阻止剤:DRI1(下記構造式参照)
【0160】
【化51】
Figure 0004038677
【0161】
ドライエッチング試験
合成例1〜3で得られたポリマー1g、m−クレゾール/p−クレゾール比が6/4のMw8,000のノボラック3gをプロピレングリコールモノメチルエーテルアセテート10gに十分に溶解させ、0.2μmのフィルターで濾過して、ポリマー溶液を作製した。
ポリマー溶液をスピンコーティングでシリコンウエハーに塗布して、110℃で60秒間ベークして200nm厚みのポリマー膜を、ノボラックの場合は1,000nm厚みの膜を作製した。
次に、ポリマー膜を作製したウエハーを下記2つの条件でドライエッチングし、エッチング前後のポリマー膜の膜厚差を求めた。
(1)O2ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマーの膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 450mTorr
RFパワー 600W
Arガス流量 40sccm
2ガス流量 60sccm
ギャップ 9mm
時間 60sec
(2)Cl2/BCl3系ガスでのエッチング試験
日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のポリマーの膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 300mTorr
RFパワー 300W
ギャップ 9mm
Cl2ガス流量 30sccm
BCl3ガス流量 30sccm
CHF3ガス流量 100sccm
2ガス流量 2sccm
時間 60sec
エッチング試験結果を表1に示す。この評価では、膜厚差の少ないもの、即ち減少量が少ないものが高いエッチング耐性であることを示している。
【0162】
【表1】
Figure 0004038677
【0163】
レジスト評価例
表2に示す組成で、ポリマー1〜3及び比較ポリマー1のシリコーンポリマー、PAG1〜3で示される酸発生剤、DRI1で示される溶解阻止剤を配合し、FC−430(住友スリーエム製)0.01重量%を含むプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶剤1,000重量部に十分に溶解させ、0.2μmのテフロン製のフィルターを濾過することによってレジスト液をそれぞれ調製した。
シリコンウエハーに下層ノボラック系レジスト材料としてOFPR−800(東京応化工業(株)製)を塗布し、300℃で5分間加熱し,硬化させて0.5μmの厚みにした。その上にブリューワーサイエンス社製反射防止膜(DUV−30)をスピンコートして100℃で30秒間、200℃で60秒間ベークして55nmの厚みにした。
レジスト液を硬化させたDUV−30/ノボラックレジスト上へスピンコーティングし、ホットプレートを用いて110℃で60秒間ベークして0.2μmの厚さにした。これをKrFエキシマレーザーステッパー(ニコン社製、S203B、NA0.68、σ0.75、2/3輪帯照明)を用いて露光し、110℃で60秒間ベーク後、2.38重量%のテトラメチルアンモニウムヒドロキシド(TMAH)で60秒間現像を行うと、ポジ型のパターンを得ることができた。
得られたレジストパターンを次のように評価した。結果を表2に示す。
評価方法
0.15μmのラインアンドスペースを1:1で解像する露光量を最適露光量(Eop)として、この露光量において分離しているラインアンドスペースの最小線幅を評価レジストの解像度とした。
【0164】
【表2】
Figure 0004038677
【0165】
表1,2の結果から、本発明の珪素含有高分子化合物を用いたレジスト材料は、KrFエキシマレーザーリソグラフィーにおける高い解像力と、酸素ガスを用いたエッチングにおいて下地のノボラックに比べて高い選択比、塩素ガスエッチングにおけるノボラック並の高いエッチング耐性が確認された。
従って、本発明の高分子化合物を用いたポジ型レジスト材料は、十分な解像力と感度を満たしている上に、ラインエッジラフネスが小さく、エッチング後の膜厚差が小さいことから、非常に優れた耐ドライエッチング性を有していることがわかる。
【0166】
【発明の効果】
本発明によれば、酸不安定基で置換されたヒドロキシインダンがペンダントされたポリシルセスキオキサンをベース樹脂としてポジ型レジスト材料に配合することにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、ラインエッジラフネスが小さく、その上優れたエッチング耐性を示す。従って、特に超LSI製造用の微細パターン形成材料として好適なポジ型レジスト材料、特にはバイレイヤープロセス用化学増幅ポジ型レジスト材料を得ることができる。
【図面の簡単な説明】
【図1】酸素エッチングを用いた加工プロセスの説明図である。
【図2】塩素系エッチングを用いた加工プロセスの説明図である。
【符号の説明】
1 下地基板
2 被加工基板
3 有機膜
4 レジスト層
5 露光
6 被加工基板

Claims (10)

  1. 下記一般式(2)で示される繰り返し単位からなる高分子化合物。
    Figure 0004038677
    〔式中、R1は下記式(A−1)〜(A−3)で示される基から選ばれる酸不安定基を表す。mは1〜4の正の整数である。a、bは各繰り返し単位の存在比を示し、a+b=1、aは0.1〜0.9、bは0.1〜0.9であり、xは1≦x≦1.5の範囲である。
    Figure 0004038677
    (式中、R30は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、a1は0〜6の整数である。
    31、R32は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示し、R33は炭素数1〜18のヘテロ原子を有してもよい1価の炭化水素基を示す。R31とR32、R31とR33、R32とR33とはこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
    34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、ヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。)〕
  2. 下記一般式(3)で示される繰り返し単位からなる高分子化合物。
    Figure 0004038677
    〔式中、R2は炭素数3〜20の直鎖状、分岐状又は環状のアルキレン基、又は炭素数6〜20のアリーレン基、R3は下記式(A−1)〜(A−3)で示される基から選ばれる酸不安定基を表す。mは1〜4の正の整数、nは1又は2である。b、cは各繰り返し単位の存在比を示し、b+c=1、bは0.1〜0.9、cは0.1〜0.9であり、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。
    Figure 0004038677
    (式中、R30は炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、a1は0〜6の整数である。
    31、R32は水素原子又は炭素数1〜18の直鎖状、分岐状又は環状のアルキル基を示し、R33は炭素数1〜18のヘテロ原子を有してもよい1価の炭化水素基を示す。R31とR32、R31とR33、R32とR33とはこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。
    34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状の1価炭化水素基であり、ヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。)〕
  3. 下記一般式(4)で示される繰り返し単位からなる請求項2記載の高分子化合物。
    Figure 0004038677
    (式中、R3は上記と同様の酸不安定基を表す。R4、R5は水素原子又はR4とR5が結合して−CH2−、−CH2CH2−、−O−、又は−S−を形成していてもよい。nは1又は2である。b、cは各繰り返し単位の存在比を示し、b+c=1、bは0.1〜0.9、cは0.1〜0.9であり、xは1≦x≦1.5、yは1≦y≦1.5の範囲である。)
  4. 請求項1乃至3のいずれか1項に記載の高分子化合物をベース樹脂として含むものであることを特徴とするポジ型レジスト材料。
  5. (1)ベース樹脂として、請求項1乃至3のいずれか1項に記載の高分子化合物、
    (2)有機溶剤、
    (3)酸発生剤
    を含有してなる化学増幅ポジ型レジスト材料。
  6. (1)ベース樹脂として、請求項1乃至3のいずれか1項に記載の高分子化合物、
    (2)有機溶剤、
    (3)酸発生剤、
    (4)溶解阻止剤
    を含有してなる化学増幅ポジ型レジスト材料。
  7. 更に、添加剤として塩基性化合物及び/又は界面活性剤を配合してなる請求項5又は6に記載の化学増幅ポジ型レジスト材料。
  8. (1)請求項4乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、
    (2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
    (3)必要に応じて加熱処理した後、現像液を用いて現像する工程を含むことを特徴とするパターン形成方法。
  9. 請求項8において、パターン形成後、酸素プラズマエッチングにより下地の加工を行うレジストパターン形成方法。
  10. 請求項8において、パターン形成後、塩素又は臭素を含むハロゲンガスによるエッチングにより下地の加工を行うレジストパターン形成方法。
JP2003131084A 2003-05-09 2003-05-09 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 Expired - Fee Related JP4038677B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131084A JP4038677B2 (ja) 2003-05-09 2003-05-09 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131084A JP4038677B2 (ja) 2003-05-09 2003-05-09 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2004331854A JP2004331854A (ja) 2004-11-25
JP4038677B2 true JP4038677B2 (ja) 2008-01-30

Family

ID=33506358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131084A Expired - Fee Related JP4038677B2 (ja) 2003-05-09 2003-05-09 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Country Status (1)

Country Link
JP (1) JP4038677B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI332122B (en) 2005-04-06 2010-10-21 Shinetsu Chemical Co Novel sulfonate salts and derivatives, photoacid generators, resist compositions and patterning process
JP5124805B2 (ja) 2006-06-27 2013-01-23 信越化学工業株式会社 光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
CN114728275B (zh) * 2019-11-29 2024-02-20 日东化成株式会社 用于聚合物固化的固化催化剂、湿气固化型组合物、以及固化物的制造方法

Also Published As

Publication number Publication date
JP2004331854A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
US7651829B2 (en) Positive resist material and pattern formation method using the same
JP4025162B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4662049B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
KR101103199B1 (ko) 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP4539847B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4424500B2 (ja) ポジ型レジスト材料及びパターン形成方法
JP4636276B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4666177B2 (ja) 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP5398966B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5223168B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2003261529A (ja) 光酸発生剤化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP4305637B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5182468B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5067523B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4302585B2 (ja) 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4328951B2 (ja) レジスト材料及びパターン形成方法
JP4247164B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4769410B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4133376B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4032249B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4038677B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4433160B2 (ja) 高分子化合物、レジスト材料及びパターン形成方法
JP4241535B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2004252405A (ja) 珪素含有レジスト材料及びパターン形成方法
JP4008322B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4038677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees