JP4033976B2 - Method for producing cycloolefin - Google Patents
Method for producing cycloolefin Download PDFInfo
- Publication number
- JP4033976B2 JP4033976B2 JP22642498A JP22642498A JP4033976B2 JP 4033976 B2 JP4033976 B2 JP 4033976B2 JP 22642498 A JP22642498 A JP 22642498A JP 22642498 A JP22642498 A JP 22642498A JP 4033976 B2 JP4033976 B2 JP 4033976B2
- Authority
- JP
- Japan
- Prior art keywords
- ruthenium
- compound
- catalyst
- cycloolefin
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000001925 cycloalkenes Chemical class 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000003054 catalyst Substances 0.000 claims description 118
- 229910052751 metal Inorganic materials 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 52
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 46
- 229910052707 ruthenium Inorganic materials 0.000 claims description 46
- 238000005984 hydrogenation reaction Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 150000003377 silicon compounds Chemical class 0.000 claims description 20
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 18
- -1 monocyclic aromatic hydrocarbons Chemical class 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 229910052726 zirconium Inorganic materials 0.000 claims description 17
- 239000011701 zinc Substances 0.000 claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052725 zinc Inorganic materials 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 13
- 150000003304 ruthenium compounds Chemical class 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 8
- 150000003755 zirconium compounds Chemical class 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 6
- 150000003752 zinc compounds Chemical class 0.000 claims description 5
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical group [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 5
- 229960001763 zinc sulfate Drugs 0.000 claims description 5
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 78
- 230000000694 effects Effects 0.000 description 59
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 41
- 230000007423 decrease Effects 0.000 description 28
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229910001928 zirconium oxide Inorganic materials 0.000 description 15
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 150000004679 hydroxides Chemical class 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical group CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 238000012958 reprocessing Methods 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 3
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 3
- 229940007718 zinc hydroxide Drugs 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical class [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001935 cyclohexenes Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- JDNQPKBFOBQRBN-UHFFFAOYSA-N ruthenium monohydride Chemical compound [RuH] JDNQPKBFOBQRBN-UHFFFAOYSA-N 0.000 description 1
- VDRDGQXTSLSKKY-UHFFFAOYSA-K ruthenium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Ru+3] VDRDGQXTSLSKKY-UHFFFAOYSA-K 0.000 description 1
- FZHCFNGSGGGXEH-UHFFFAOYSA-N ruthenocene Chemical class [Ru+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 FZHCFNGSGGGXEH-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000008096 xylene Chemical group 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ルテニウム触媒存在下に単環芳香族炭化水素を水素添加してシクロオレフィンを製造する方法に関するものである。
シクロオレフィン類、特にシクロヘキセン類は、有機化学工業製品の中間原料としてその価値が高く、特にポリアミド原料、リジン原料などとして有用である。
【0002】
【従来の技術】
シクロオレフィン類の製造方法としては様々の方法が知られており、その中でも単環芳香族炭化水素をルテニウム触媒を用いて部分的に水素添加する方法が最も一般的であり、選択率及び収率の向上や安定化をはかる方法について多くの報告がなされている。
【0003】
その中でもシクロオレフィンの収率が比較的高く、水及び亜鉛が共存する反応系においては、例えば、単環芳香族炭化水素を水及び少なくとも一種の水溶性亜鉛化合物の存在下、酸性条件の液相において水素により部分還元するに際し、水素化触媒があらかじめ亜鉛化合物を含有したルテニウム化合物を還元することによって得られる亜鉛をルテニウムに対し0.1〜50wt%含有する金属ルテニウムであり、かつ、該金属ルテニウムの平均結晶子径が200Å以下である非担持型触媒を使用することを特徴とするシクロオレフィンを製造する方法(特公平2−16736号公報)が提案されている。
【0004】
さらに、シクロオレフィン類の収率が高く、かつ工業的に安定な触媒系を得るための方法として、該触媒が、反応器や他の触媒接触部などに付着や堆積を起こしたり、触媒が物理的変化を起こさないように金属酸化物、金属水酸化物などの添加を行う例として、(1)水素化触媒とは別に酸化ジルコニウムもしく酸化ハフニウムの少なくとも一種を添加し、さらに少なくとも一種の固体塩基性硫酸亜鉛の共存下、中性または酸性の条件下に反応を行う方法(特公平3−5371号公報)、(2)水素化触媒とは別に、ホウ素を除くIIIA族元素、バナジウムを除くVB族元素、クロム、鉄、コバルト、チタン、もしくは珪素より選ばれた少なくとも一種の金属酸化物を添加して反応を行う方法(特公平3−35298号公報)、(3)200Å以下の平均結晶子径を有する金属ルテニウムを主成分とする水素化触媒粒子とは別にチタン、ニオブ、タンタル、クロム、鉄、コバルト、アルミニウム、ガリウム、珪素より選ばれた少なくとも一種の金属酸化物を添加し、さらに少なくとも1種の固体塩基性亜鉛の共存下、中性または酸性の条件下で反応する方法(特公平3−7646号公報)、(4)単環芳香族炭化水素を水の共存下、水素により部分還元するに際し、200Å以下の平均結晶子径を有する金属ルテニウムを主成分とする水素化触媒を用い、該触媒粒子とは別に、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、鉄、コバルト、アルミニウム、ガリウム、珪素より選ばれた少なくとも一種の金属の水酸化物もしくは、酸化物の水和物を添加し、中性または酸性の条件下に反応を行うことにより、安定した触媒系として使用できるシクロオレフィンを製造する方法(特公平8−16073号公報)などが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、本発明者の検討によると、これらの従来公知の方法により、単環芳香族炭化水素の水素化反応を連続的に、かつ長期にわたって行った場合は、触媒活性が経時的に低下してくることが確認された。しかも、この触媒活性の低下は、かかる触媒の物理的変化や被毒とは、全く別の原因によるものと思われ、公知の安定化技術である、触媒系に金属酸化物や水酸化物を添加する一連の方法では抑制することが困難であることがわかった。また、その触媒活性の低下挙動は、長期にわたる連続反応下では経時的に増大していくことが観測され、さらに、反応温度を上昇させることにより、その増大傾向は、顕著になることがわかった。
【0006】
一般に、長期連続反応において、触媒活性の低下原因とされるものは、その触媒の物理的変化にみられる凝集および金属結晶子径の増大等による触媒活性表面の減少作用によるものや、反応器並びに触媒の接触部などの材質由来の金属被毒作用によるものがあげられる。しかし、本触媒活性の低下に関しては、上記原因を示唆する触媒上の変化が観測されないことより、従来より認識される触媒活性の低下と異なる原因があると考えられる。この触媒活性の低下現象は、反応が水素の共存下で、かつ連続的に行うことによってのみ発生し、回分式の繰り返し反応のように一旦反応を停止させたり、触媒スラリーが空気中に開放されるようなことがあると、あたかも再生されたかのように活性低下が確認できないことがある。また、活性低下挙動は、反応温度によっても変化し、反応温度が低温では確認されにくいなど、その現象はきわめて不明瞭である。したがって、前述する触媒活性の低下は、公知記載の方法では、確認することができなかったものと思われる。
【0007】
このような触媒活性の低下の理由については、十分な説明がなされていないが、反応が水素の共存下に行われる場合に生じることや、連続反応下において観測されること等により、本発明者は、水素とルテニウム触媒の相互作用がもたらす何らかの反応阻害因子が、反応条件下において経時的に増大していくものと推察している。この触媒活性の低下は、単環芳香族炭化水素の水素化を長期連続反応により工業的に実施していく場合、反応系の安定性及び生産効率を高める上で問題となる。また、反応温度により活性低下度が変化することから、シクロオレフィンの選択率に有利な反応温度条件を必ずしも選定できないという問題もある。また、触媒が活性低下した場合には、触媒再処理方法、もしくはルテニウム触媒の活性回復方法などの活性回復に伴う操作が必要となり、簡便性の面でも問題がある。これらのことから、前述の活性低下がなく、シクロオレフィンが高選択率で得られる有利な反応条件を設定できる、工業的に安定した触媒が強く望まれている。
【0008】
【課題を解決するための手段】
本発明者は、かかる問題を解決し、シクロオレフィンの選択率の向上、および工業的に有利な安定した触媒系を得るため、金属ルテニウムを主成分とする水素化触媒粒子とその他の成分からなる系について鋭意検討し、本発明に到達したものである。
【0009】
すなわち、本発明の特許請求の範囲は下記の通りである。
1)単環芳香族炭化水素を水及び金属硫酸塩の存在下、水素により部分還元するに際し、(1)金属ルテニウムを主成分とする水素化触媒粒子、(2)ジルコニウム化合物、(3)珪素化合物を含み、珪素化合物の含有量が、ジルコニウム化合物に対して1×10-2重量倍以上4倍以下である触媒系を使用し、中性または酸性の条件下に長時間連続反応させることを特徴とするシクロオレフィンの製造方法。
【0010】
2)水素化触媒粒子が、ルテニウム化合物を還元することによって得られる金属ルテニウムであることを特徴とする上記1記載のシクロオレフィンの製造方法。
3)水素化触媒粒子が、あらかじめ亜鉛を含有せしめたルテニウムの還元物であり、該金属ルテニウムの結晶子径が200Å以下の非担持型触媒であることを特徴とする上記1、2記載のシクロオレフィンの製造方法。
【0011】
4)水素化触媒粒子が、あらかじめ亜鉛化合物を含有したルテニウム化合物を還元することによって得られる亜鉛含有ルテニウムであって、かつ亜鉛含有量が、主成分であるルテニウムに対し0.1〜50重量%であることを特徴とする上記1〜3いずれかに記載のシクロオレフィンの製造方法。
5)ジルコニウム化合物が、ジルコニウムの酸化物もしくは水酸化物であり、その添加量が、水に対して1×10-3〜0.1重量倍であることを特徴とする上記1記載のシクロオレフィンの製造方法。
【0012】
6)珪素化合物が、珪素の酸化物もしくは水酸化物であり、その添加量が、水に対して1×10-5〜0.1重量倍であることを特徴とする上記1記載のシクロオレフィンの製造方法。
【0013】
7)ジルコニウム化合物が、酸化物もしくは水酸化物であり、珪素化合物が、珪素の酸化物もしくは水酸化物であり、それぞれの元素化合物を触媒系に各々添加し、物理的に混合した状態で反応を行うことを特徴とする上記1〜6のいずれかに記載のシクロオレフィンの製造方法。
8)水が、単環芳香族炭化水素の0.5〜20重量倍存在することを特徴とする上記1〜7のいずれかに記載のシクロオレフィンの製造方法。
【0014】
9)金属硫酸塩が、硫酸亜鉛であり、水の1.0×10-4〜0.5重量倍であることを特徴とする上記1及び5〜10のいずれかに記載のシクロオレフィンの製造方法。
以下、本発明を詳細に説明する。本発明は、単環芳香族炭化水素を水及び金属硫酸塩の存在下、水素により部分還元する方法にかかわるものである。
【0015】
本発明における単環芳香族炭化水素とは、ベンゼン環を1個有する芳香族炭化水素であり、例えば、ベンゼン、トルエン、キシレン、及び通常炭素数1〜4の低級アルキル基で置換されたベンゼン等を具体的にあげることができる。
本発明の水素化触媒粒子とは、金属ルテニウムを主成分とする触媒粒子であり、そのルテニウム触媒は、数々のルテニウム化合物を予め還元して得られる金属ルテニウムを含む触媒である。ルテニウム化合物は、例えば、塩化物、臭化物、ヨウ化物などのハロゲン化物、あるいは、硝酸塩、硫酸塩、水酸化物、あるいは各種のルテニウムを含む錯体、例えばルテニウムカルボニル錯体、ルテニウムアセチルアセトナート錯体、ルテノセン錯体、ルテニウムアンミン錯体、及び、かかる錯体から誘導される化合物を用いることができる。さらにこれらルテニウム化合物を2種以上混合して用いることもできる。これらのルテニウム化合物の還元法としては、水素や一酸化炭素などによる接触還元法、あるいは、ホルマリン、水素化ホウ素ナトリウム、ヒドラジンなどによる化学還元法を用い、気相で行っても液相で行ってもよい。
【0016】
また、ルテニウム化合物の還元前もしくは還元後において、他の金属や金属化合物、例えば、亜鉛、クロム、モリブデン、タングステン、マンガン、コバルト、ニッケル、鉄、銅、金、白金など、及び、これらの金属の化合物を加えることによって得られるルテニウムを主体とするものを用いてもよい。かかる金属や金属化合物を使用する場合には、ルテニウム原子に対する原子比として通常0.001〜20の範囲で選択される。この中でも亜鉛や亜鉛化合物をルテニウム化合物の還元前に加えることが好ましく、還元することによって得られる水素化触媒粒子が、主成分であるルテニウムに対し0.1〜50重量%の亜鉛を含有させたものであることが更に好ましい。
【0017】
金属ルテニウムを主成分とする水素化触媒粒子は、構成する金属ルテニウムの平均結晶子径が、好ましくは200Å以下である非担持型触媒である。金属ルテニウムの平均結晶子径の測定は、用いる金属ルテニウム触媒をX線回折法によって得られる回折線幅の拡がりからScherrerの式より算出される。具体的には、CuKα線をX線源として用いて、回折角(2θ)で44°付近に極大を持つ回折線の拡がりから算出される。
【0018】
本発明には、金属ルテニウムを主成分とする水素化触媒粒子の他に、ジルコニウム化合物及び珪素化合物が共存する反応場で反応を行う。本発明におけるジルコニウム化合物とは、ジルコニウムの酸化物または水酸化物などであり、その用いられ方としては一種だけで用いても混合などして二種以上を併用してもよい。その用いられる量は水に対して1×10-4〜0.3重量倍、好ましくは1×10-3〜0.1重量倍である。また、その酸化物もしくは水酸化物は、例えば、乾燥した粉体あるいはゾルを用いてもよく、本発明では、その形態等の種類を特別に限定するものではなく、巾広い種類のものを用いることができる。
【0019】
かかる酸化物もしくは水酸化物を反応系に共存させることによって得られる本発明の効果は多様であり、その実質的有効性を述べると、まず第一にシクロオレフィンの選択率を向上させる効果を挙げることができる。従来公知の酸化物及び水酸化物の中でも、ジルコニウムの化合物が選択率向上効果を持ち、その中でも特にジルコニウムの酸化物及び水酸化物の共存効果は大きい。具体的には、それらの存在が、水素化触媒粒子の持つ活性にほとんど影響を与えることなく、単環芳香族炭化水素である例えばベンゼンを反応に用いた場合、反応生成物中のシクロヘキセンの選択率を向上させることができる。
【0020】
本発明の第二の効果は、当該反応に際して、水素化触媒の反応器表面への付着や、凝集などによる反応系の変動を抑制するという効果である。つまり、ジルコニウムの酸化物もしくは水酸化物を用いることによって、物理的に安定な反応系の維持が可能となるのである。通常、微粒の金属触媒を用いたときは、担体上に担持された金属触媒を用いたときとは異なり、反応系において凝集やシンタリングが進行し、物理的に安定な触媒系を維持することは極めて困難である。この点については、本発明方法に使用される金属ルテニウム触媒についても同様であるから、凝集やシンタリングなどの進行を回避する技術は、実用上、是非とも必要とされる技術なのである。本発明者は、本発明によるジルコニウムの酸化物もしくは水酸化物は、金属ルテニウム微粒子の凝集を防ぐ分散剤的な機能を果たし、このため触媒の物理的要因による活性低下が極めて効果的に抑制されるものと推察している。
【0021】
本発明の第三の効果は、ジルコニウムの酸化物もしくは水酸化物を用いない場合に比べて、水素化触媒スラリーの取扱性が著しく向上することである。例えば、水素化触媒濃度を調整する際や触媒を仕込む際に、触媒が器壁や管壁に付着し難いため、作業性が高まり、あるいは触媒スラリーから触媒を回収する際には、触媒がスラリーから分離し易く、回収操作が極めて容易になるなどの優れた効果を有する。
【0022】
本発明における触媒系には、珪素化合物を共存させる必要がある。珪素化合物は、珪素の酸化物もしくは水酸化物が好ましく、珪素の酸化物もしくは水酸化物の量は、水に対して1×10-6〜0.3重量倍、好ましくは1×10-5〜0.1重量倍である。また、その酸化物もしくは水酸化物は、ゾルあるいはゲル等を用いてもよく、本発明では、その形態等の種類を特別に限定するものではなく、巾広い種類のものを用いることができる。
【0023】
珪素化合物、好ましくは珪素の酸化物もしくは水酸化物の共存は、ジルコニウムの化合物を含有させた場合に奏される前記、第二、第三の効果と同様の効果を有する。即ち、反応器表面への触媒の付着や凝集などによる反応系の変動を抑制する効果を有し、この凝集やシンタリングなどの進行を回避し得る機能は珪素化合物の共存によって、水素化触媒スラリー系にあたかも分散剤を共存させたような機能が付与され、上述の物理的要因による触媒活性の低下が抑制されることとなるのである。さらに、本発明者は、珪素化合物、特に珪素の酸化物もしくは水酸化物は、他の公知の金属種を触媒スラリーに共存させたときに得られる共存効果とは一線を画する触媒の活性低下抑制効果があることを、はじめて、みいだした。この効果は、珪素化合物に限って得られる驚くべき効果である。
【0024】
従来、単環芳香族炭化水素の水素化に連続的にかつ長期にわたって使用される金属ルテニウムを主成分とする水素化触媒は、かかる触媒の物理的変化や被毒などとは全く別の原因によると思われる経時的な触媒活性の低下があることは前述したとおりである。しかし、この触媒活性の低下という問題に対する十分に有効な提案は、いまだなされておらず、従来の対策としては、活性の低下した触媒の再生法および活性回復方法などの事後手段に止まっていた。そこで、本発明者は、上述する活性低下を触媒改良によって対処すべく検討を繰り返し、その結果、珪素化合物、好ましくは、珪素の酸化物もしくは水酸化物が、触媒活性の低下を抑制できることをみいだしたのである。このことは、驚くべき発見であり、従来の触媒技術を著しく改良させ得るものである。
【0025】
本発明は、上記のように、金属ルテニウムを主成分とする水素化触媒粒子の他にジルコニウム化合物と珪素化合物の両成分を共存させる。ジルコニウムの酸化物もしくは水酸化物が特に好ましい。また、珪素化合物は珪素の酸化物もしくは水酸化物が好ましい。本発明では、この珪素の酸化物もしくは水酸化物の量は、ジルコニウム化合物であるジルコニウム酸化物もしくは水酸化物の量の1×10-2重量倍以上を用いることが好ましい。
【0026】
ジルコニウムの酸化物もしくは水酸化物の用いられる量に対して、珪素の酸化物もしくは水酸化物の量が少なすぎると、前記活性低下の抑制効果が得られなくなる恐れがある。また、ジルコニウムの酸化物もしくは水酸化物を触媒系に共存させないと、反応選択率を向上させることは困難であり、周期表IV族の化合物と珪素化合物の両方を触媒系に共存させることによってのみ、高選択性で、かつ活性低下のない触媒系とし得るのであり、単にいずれか一方のみを共存させたのでは得られない優れた効果を得ることができる。
【0027】
また、本発明でジルコニウムおよび珪素の酸化物もしくは水酸化物を用いるときは、それぞれの元素化合物を触媒系に各々添加し、物理的に混合した状態で反応を行うことが、より好ましい。金属ルテニウムを主成分とする水素化触媒粒子の他に加えられるジルコニウムもしくは珪素は、両種とも酸化物として使用でき上記のような物理的に混合した状態で使用する場合の他に、必要ならば両種を複合化して用いても差し支えない。その複合化の方法としては、酸化物であるお互いの細孔内に、もう一方の各種元素を含浸もしくは浸積させる方法や化学的作用を利用し表面に吸着させる方法、あるいは混和法や溶液法をもちいて調合した触媒スラリーを噴霧乾燥させる方法を用いることが可能である。しかしながら、このように調製された酸化物は、前記の物理的に混合した状態で反応を行う場合に比べ、より劣る効果を示す。
【0028】
高選択性を維持し、かつ活性低下を抑制するという二つの効果の面で上述した本発明の構成、効果については、従来の文献には一切記載、示唆がない。本発明者は、既述のジルコニウムと珪素の量比の関係について、ジルコニウムの酸化物もしくは水酸化物に対し、珪素の酸化物もしくは水酸化物の量が極めて低いところでは、本来、珪素のもつ活性低下抑制効果がジルコニウムにより阻害されている可能性があると推察している。また、各種の水酸化物もしくは酸化物を、それぞれ物理的に混合した状態で反応を行う方が、より効果的である理由に関しては、触媒スラリー系において、当該物質の本来備えている物理的、化学的特性を他の存在に阻害されずに十分に発揮させることができるためと考えている。
【0029】
以上において詳述したような作用効果を有する本発明によれば、従来の触媒系で、活性低下速度の増加する影響があるために制限されていた反応温度を上げることが可能となり、選択性を向上させることもできる。さらに、触媒が活性低下した場合に用いられる触媒の再処理方法、もしくはルテニウム触媒の活性回復方法などの活性回復に伴う操作を行う必要もなく、長期にわたってシクロオレフィン類の収率を高く維持し、かつ触媒活性も安定となし得る。即ち、本発明は、実用的に極めて優れたシクロオレフィンの製造方法を提供するものである。
【0030】
本発明の反応系においては水が存在しており、その量は反応形式によって異なるが、用いる原料である単環芳香族炭化水素に対して0.001〜100重量倍共存させることができる。ただし、反応条件下において、原料および生成物を主成分とする有機液相と、水を含む液相とが2相を形成することが必要であり、反応条件下において均一相となるような極微量の水の共存の場合、シクロオレフィンの選択性の低下を招き、また多すぎると反応器が大きくなる等の問題があるため、好ましくは用いる原料の単環芳香族炭化水素に対して0.5〜20重量倍共存させることが好ましい。
【0031】
また、本発明の反応系には、金属硫酸塩を存在させる必要がある。金属硫酸塩は、反応系において全量が固体で存在する必要はなく、反応系に存在する水相に少なくとも一部が溶解する状態で存在させることが好ましい。反応系に存在させる金属硫酸塩としては、亜鉛、鉄、ニッケル、カドミウム、ガリウム、インジウム、マグネシウム、アルミニウム、クロム、マンガン、コバルト、銅などを例示でき、これらは単独で用いてもよく、2種以上併用してもよい、さらには、かかる金属硫酸塩を含む複塩であってもよい。金属硫酸塩としては、硫酸亜鉛を用いることが特に好ましい。また用いる金属硫酸塩の量は、反応系に存在する水の1.0×10-5〜1.0重量倍であればよく、特に金属硫酸塩として硫酸亜鉛を用いる場合には、1.0×10-4〜0.5重量倍であることが、より好ましい。
【0032】
さらに、本発明の反応系へは、従来知られている下記の金属塩を存在させても差し支えない。即ち、金属塩の種類としては、周期表のリチウム、ナトリウム、カリウムなどのIA族金属、マグネシウム、カルシウムなどのIIA族金属、あるいは亜鉛、マンガン、コバルト、銅、カドミウム、鉛、砒素、鉄、ガリウム、ゲルマニウム、バナジウム、クロム、銀、金、白金、ニッケル、バリウム、アルミニウムなどの金属硝酸塩、塩化物、酸化物、水酸化物、酢酸塩、燐酸塩などであり、またはこれらを2種以上化学的および/または物理的に混合して用いてもよい。これらの中でも水酸化亜鉛、酸化亜鉛などの亜鉛塩の添加は、本発明においても好ましく、特に水酸化亜鉛を含む複塩、例えば、一般式(ZnSO4)m・(Zn(OH)2)nで示されるm:n=1:0.01〜100の複塩の存在は特に好ましい。
【0033】
本発明の触媒系には、金属ルテニウムを主成分とする水素化触媒粒子、ジルコニウム化合物、珪素化合物の三種類の成分の他に、金属硫酸塩、金属塩が存在するが、触媒系の水相を中性または酸性の状態となして反応させることが必要である。水相をアルカリ性とすると、反応速度は著しく低下し、シクロオレフィンの製造方法として実用性を欠く。また、酸性にするために通常の酸、例えば、塩酸、硝酸、硫酸、酢酸、燐酸などを加えても差し支えない。このようにして反応系へ導入される水溶液のPHは0.5〜7以下であることが好ましい。
【0034】
以上のように本発明方法によるシクロオレフィンを生成させる反応は、通常、液相懸濁法にて連続的または回分的に行なわれるが、固定層式であってもよい。反応条件は、使用する触媒や添加物の種類や量によって適宜選択されるが、反応圧力は、1〜20MPaであればよく、より好ましくは2〜7MPaである。また、反応温度は、50〜250℃であればよく、より好ましくは100〜200℃である。
【0035】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明するが、本発明はそれらの実施例に限定されるものではない。
尚、以下の実施例及び比較例において、シクロヘキセンの選択率は、実験の濃度分析値をもとに、次に示す式により算出したものである。
シクロヘキセン選択率(%)=(反応により生成したシクロヘキセンのモル数)×100/P
ただし、
P(モル数)=(反応により生成したシクロヘキセンのモル数)+(反応により生成したシクロヘキサンのモル数)
また、ベンゼンの転化率は、ベンゼン濃度の分析値をもとに、次に示す式により算出したものである。
ベンゼン転化率(%)=(反応により消費されたベンゼンのモル数)×100/(反応へ供給したベンゼンのモル数)
【0036】
【実施例1〜3】
あらかじめ水酸化亜鉛を含有させた水酸化ルテニウムを還元して得た亜鉛を8.3重量%含有する水素化ルテニウム触媒(平均結晶子径約56Å)8.75g、酸化ジルコニウム粉末およびシリカゲルを表1に示す量、ZnSO4・7H2O(和光純薬工業(株)製特級)430.94gを溶解した水溶液2320mlを、油水分離槽を付属槽として有し、反応容器として用いる内容積4リットルのハステロイC製の槽型流通反応装置に仕込み、170℃水素加圧下、5MPaにおいて、イオウなどの触媒被毒物質を含まないベンゼンを1.5リットル/Hrで連続的に供給した。尚、この際、反応系内の触媒を含む水相は常に一定の組成となるようにし、油水分離漕からは、ベンゼン、シクロヘキセン、シクロヘキサンからなる反応生成物を連続的に取り出し、一方、触媒を含む水相を反応器へ戻す循環型とし、連続的にベンゼンの部分水素化反応を行った。また、これらの反応条件下における反応成績は、油水分離漕から取り出すオイルを一部サンプリングし、ガスクロマトグラフィーにより分析して求めた。流通反応開始後20時間経過した反応成績と200時間経過後の反応成績を表1に示す。
【0037】
【表1】
【0038】
表1より、本発明による実施例1〜3の反応結果は、従来にない高い選択率を維持し、かつ触媒活性の低下もみられない優れたものであった。
【0039】
【比較例1】
酸化ジルコニウム175g、固形分濃度30%のシリカゾル5g(固体SiO2 として1.5g)と、酸化ジルコニウムの量に対して、シリカゾルの仕込量を少量に変更した他、実施例1〜3と同じ条件で同様な操作を行った。流通反応開始20時間後の反応成績はベンゼン転化率50.3%、シクロヘキセン選択率は77.8%であった。その後反応を継続した結果、高選択率は維持するものの、活性は経時的に低下し、200Hr後においてベンゼン転化率は32.4%、シクロヘキセン選択率は83.0%となった。
【0040】
【比較例2〜4】
実施例1〜3の酸化物に変え、ジルコニウム、チタン、珪素、それぞれの酸化物を各一種のみ金属ルテニウムを主成分とする水素化触媒粒子に共存させて反応を実施した。尚、各比較例とも酸化物の粉体を40g使用した他、実施例1〜3と同じ条件で同様な操作を行った。尚、チタン酸化物を用いた触媒系は、ベンゼンの供給量を2.5リットル/Hrにし、同時に油水分離漕に流出する触媒を含む水相が反応器に戻る循環量をアップさせ、反応器内の油水比は他の実験と同様に行った。流通反応開始20時間後と200Hr後の反応成績を表2に示す。
【0041】
【表2】
【0042】
本比較例は、水素化触媒粒子に共存させる酸化物を各単独酸化物一種のみとして、実施例1〜3の二種両方の酸化物を使用した場合との比較を行った。その結果、各単独酸化物一種のみの場合においては、高選択率を維持し、かつ活性低下が生じない触媒系はみつからなかった。また、本比較例より、酸化ジルコニウム、酸化チタンを使用した場合は、触媒活性の低下が生じ、一方酸化珪素を使用した時は、活性低下は起きないが、選択率が酸化ジルコニウム、酸化チタンを使用した場合に比べ低くなるといった、酸化物種による効果の違いが明らかになった。
【0043】
【比較例5〜7】
比較例2〜4の各酸化物粉体の代わりに各酸化物のゾルを使用した。尚、ジルコニアゾルとシリカゾルは固形分濃度30%のものを使用し、加えたゾルの量は8.75g(固体酸化物として2.625g)とし、他の条件および操作は実施例1〜3と同様にした。一方、チタニアゾルは固形分濃度10.7%のもの使用し、触媒量は、金属ルテニウムを主成分とする水素化触媒粒子を5.5g、チタニアゾル量を30g(固体酸化物として3.21g)とし、他の条件および操作は、実施例1〜3と同様にした。その結果を表3に示す。
【0044】
【表3】
【0045】
比較例1〜4の結果と同様に、いずれの場合においても、高選択率を維持し、かつに活性低下が生じなという触媒系はみつからなかった。また、酸化物種による効果の違いは、比較例2〜4の結果と同様にみられた。以上の結果より、金属ルテニウムを主成分とする水素化触媒粒子に共存させる酸化物の種類によって効果は違い、本発明による金属ルテニウムを主成分とする水素化触媒粒子、ジルコニウム化合物、珪素化合物の三種類の成分を共存させた触媒系の有効性が判断できる。尚、各例の反応終了後の装置及び触媒スラリーを観察したところ、反応器表面への水素化触媒の付着や水素化触媒の凝集などはみられず、各反応ともに物理的に安定な反応系が維持されていたことが確認された。
【0046】
【発明の効果】
本発明によれば、単環芳香族炭化水素の連続水素化反応において、活性低下がなく、かつ、目的とするシクロオレフィンを高選択率で長期間安定的に製造することが可能となる。さらに、本発明は、活性低下した触媒の再処理方法など、活性回復に伴う操作の必要がなく、従来の触媒系に比べ、効率良くシクロオレフィンを製造できる工業的に極めて価値の高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cycloolefin by hydrogenating a monocyclic aromatic hydrocarbon in the presence of a ruthenium catalyst.
Cycloolefins, particularly cyclohexenes, are highly valuable as intermediate raw materials for organic chemical industrial products, and are particularly useful as polyamide raw materials, lysine raw materials, and the like.
[0002]
[Prior art]
Various methods are known as methods for producing cycloolefins, and among them, a method in which monocyclic aromatic hydrocarbons are partially hydrogenated using a ruthenium catalyst is the most common, and selectivity and yield Many reports have been made on how to improve and stabilize the process.
[0003]
Among them, in a reaction system in which the yield of cycloolefin is relatively high and water and zinc coexist, for example, a monocyclic aromatic hydrocarbon is converted into a liquid phase under acidic conditions in the presence of water and at least one water-soluble zinc compound. In the partial reduction with hydrogen, the hydrogenation catalyst is a metal ruthenium containing 0.1 to 50 wt% of zinc obtained by reducing a ruthenium compound containing a zinc compound in advance with respect to ruthenium, and the metal ruthenium A method for producing a cycloolefin (Japanese Patent Publication No. 216736), characterized in that an unsupported catalyst having an average crystallite size of 200 mm or less is used.
[0004]
Furthermore, as a method for obtaining a catalyst system having a high yield of cycloolefins and being industrially stable, the catalyst may cause adhesion or deposition in a reactor or other catalyst contact portion, or the catalyst may be physically As an example of adding metal oxides, metal hydroxides, etc. so as not to cause mechanical changes, (1) In addition to the hydrogenation catalyst, at least one kind of zirconium oxide or hafnium oxide is added, and at least one kind of solid is added. Method of performing reaction under neutral or acidic conditions in the presence of basic zinc sulfate (Japanese Patent Publication No. 3-5371), (2) Apart from hydrogenation catalyst, group IIIA elements excluding boron and vanadium are excluded A method of performing a reaction by adding at least one metal oxide selected from a group VB element, chromium, iron, cobalt, titanium, or silicon (Japanese Patent Publication No. 3-35298), (3) 20 At least one metal oxide selected from titanium, niobium, tantalum, chromium, iron, cobalt, aluminum, gallium, and silicon, apart from hydrogenated catalyst particles mainly composed of metal ruthenium having an average crystallite size of Å or less And further reacting under neutral or acidic conditions in the presence of at least one kind of solid basic zinc (Japanese Patent Publication No. 3-7646), (4) monocyclic aromatic hydrocarbons in water In the case of partial reduction with hydrogen in the coexistence, a hydrogenation catalyst mainly composed of metal ruthenium having an average crystallite size of 200 mm or less is used, and separately from the catalyst particles, titanium, zirconium, hafnium, niobium, tantalum, chromium Add a hydroxide or hydrate of at least one metal selected from iron, cobalt, aluminum, gallium and silicon, and neutral Other by performing the reaction under acidic conditions, a method for producing a cycloolefin which can be used as a stable catalyst system (KOKOKU 8-16073 JP) have been proposed.
[0005]
[Problems to be solved by the invention]
However, according to the study of the present inventors, when the hydrogenation reaction of monocyclic aromatic hydrocarbons is carried out continuously and over a long period of time by these conventionally known methods, the catalytic activity decreases with time. It was confirmed to come. Moreover, this decrease in catalytic activity is thought to be due to a completely different cause from the physical change and poisoning of the catalyst, and metal oxides and hydroxides are added to the catalyst system, which is a known stabilization technique. It was found that it was difficult to suppress by a series of methods to be added. In addition, it was observed that the decrease in the catalytic activity was observed to increase over time under a long-term continuous reaction. Furthermore, it was found that the increasing tendency became remarkable by increasing the reaction temperature. .
[0006]
In general, in the long-term continuous reaction, the cause of the decrease in the catalyst activity is due to the action of reducing the surface of the catalyst active due to the aggregation and the increase in the metal crystallite size observed in the physical change of the catalyst, Examples include those caused by metal poisoning derived from materials such as catalyst contact portions. However, regarding the decrease in the catalyst activity, it is considered that there is a cause different from the conventionally recognized decrease in the catalyst activity because no change on the catalyst suggesting the cause is observed. This decrease in catalytic activity occurs only when the reaction is carried out continuously in the presence of hydrogen, and once the reaction is stopped, as in a batch-type repeated reaction, or the catalyst slurry is released into the air. If this happens, a decrease in activity may not be confirmed as if it had been regenerated. In addition, the activity decreasing behavior varies depending on the reaction temperature, and the phenomenon is very unclear, such as being difficult to confirm at low reaction temperatures. Therefore, it is considered that the above-described decrease in catalyst activity could not be confirmed by the known method.
[0007]
Although the reason for such a decrease in the catalytic activity has not been fully explained, the present inventors have found that the reaction occurs when the reaction is carried out in the presence of hydrogen or is observed under a continuous reaction. Suppose that some reaction inhibitory factor caused by the interaction between hydrogen and the ruthenium catalyst increases over time under the reaction conditions. When the hydrogenation of monocyclic aromatic hydrocarbons is industrially carried out by a long-term continuous reaction, this reduction in catalytic activity becomes a problem in increasing the stability and production efficiency of the reaction system. In addition, since the degree of decrease in activity varies depending on the reaction temperature, there is a problem that reaction temperature conditions advantageous for cycloolefin selectivity cannot always be selected. Further, when the activity of the catalyst decreases, an operation accompanying the recovery of the activity such as a catalyst reprocessing method or a ruthenium catalyst activity recovery method is required, which causes a problem in terms of simplicity. For these reasons, there is a strong demand for an industrially stable catalyst that does not have the above-described decrease in activity and can set advantageous reaction conditions for obtaining cycloolefin with high selectivity.
[0008]
[Means for Solving the Problems]
In order to solve such problems, to improve the selectivity of cycloolefin, and to obtain an industrially advantageous stable catalyst system, the present inventor comprises hydrogenated catalyst particles mainly composed of metal ruthenium and other components. The present invention has been achieved through intensive studies on the system.
[0009]
That is, the claims of the present invention are as follows.
1) When partially reducing monocyclic aromatic hydrocarbons with hydrogen in the presence of water and metal sulfate, (1) hydrogenation catalyst particles containing metal ruthenium as a main component, (2) zirconium compound, (3) silicon The compound contains a silicon compound and the content of the silicon compound is 1 × 10 5 with respect to the zirconium compound. -2 Use a catalyst system that is not less than 4 times the weight and under neutral or acidic conditions Long time continuous A process for producing a cycloolefin characterized by reacting.
[0010]
2) The process for producing cycloolefin as described in 1 above, wherein the hydrogenation catalyst particles are metal ruthenium obtained by reducing a ruthenium compound.
3) The cyclohexane according to the above 1 or 2, wherein the hydrogenation catalyst particle is a reduced product of ruthenium previously containing zinc, and the metal ruthenium has a crystallite diameter of 200 mm or less. Production method of olefin.
[0011]
4) The hydrogenation catalyst particles are zinc-containing ruthenium obtained by reducing a ruthenium compound containing a zinc compound in advance, and the zinc content is 0.1 to 50% by weight with respect to ruthenium as a main component. The method for producing a cycloolefin as described in any one of 1 to 3 above, wherein
5) zirconium The compound is an oxide or hydroxide of zirconium, and the amount added is 1 × 10 5 with respect to water. -3 The process for producing a cycloolefin as described in 1 above, wherein the ratio is -0.1 times by weight.
[0012]
6) The silicon compound is an oxide or hydroxide of silicon, and the amount added is 1 × 10 to water. -Five The process for producing a cycloolefin as described in 1 above, wherein the ratio is -0.1 times by weight.
[0013]
7 ) zirconium Compound is acid The compound is a compound or hydroxide, and the silicon compound is an oxide or hydroxide of silicon, and each elemental compound is added to the catalyst system, and the reaction is performed in a physically mixed state. Above 1 To any of -6 The manufacturing method of cycloolefin of description.
8 (1) The water is present in an amount of 0.5 to 20 times by weight of the monocyclic aromatic hydrocarbon. To any of ~ 7 The manufacturing method of cycloolefin of description.
[0014]
9 ) The metal sulfate is zinc sulfate, and water is 1.0 × 10 -Four The method for producing a cycloolefin according to any one of 1 and 5 to 10 above, which is -0.5 times by weight.
Hereinafter, the present invention will be described in detail. The present invention relates to a method for partially reducing a monocyclic aromatic hydrocarbon with hydrogen in the presence of water and a metal sulfate.
[0015]
The monocyclic aromatic hydrocarbon in the present invention is an aromatic hydrocarbon having one benzene ring, such as benzene, toluene, xylene, and benzene substituted with a lower alkyl group usually having 1 to 4 carbon atoms. Can be specifically mentioned.
The hydrogenation catalyst particles of the present invention are catalyst particles mainly composed of metal ruthenium, and the ruthenium catalyst is a catalyst containing metal ruthenium obtained by reducing a number of ruthenium compounds in advance. Ruthenium compounds include, for example, halides such as chloride, bromide, iodide, or nitrates, sulfates, hydroxides, or complexes containing various types of ruthenium, such as ruthenium carbonyl complexes, ruthenium acetylacetonate complexes, ruthenocene complexes. Ruthenium ammine complexes and compounds derived from such complexes can be used. Further, two or more of these ruthenium compounds can be used in combination. These ruthenium compounds can be reduced by catalytic reduction using hydrogen or carbon monoxide, or chemical reduction using formalin, sodium borohydride, hydrazine, etc. Also good.
[0016]
Before or after the reduction of the ruthenium compound, other metals and metal compounds such as zinc, chromium, molybdenum, tungsten, manganese, cobalt, nickel, iron, copper, gold, platinum, etc. You may use what mainly has ruthenium obtained by adding a compound. When such a metal or metal compound is used, the atomic ratio relative to the ruthenium atom is usually selected in the range of 0.001 to 20. Among these, it is preferable to add zinc or a zinc compound before the reduction of the ruthenium compound, and the hydrogenation catalyst particles obtained by the reduction contain 0.1 to 50% by weight of zinc with respect to ruthenium as a main component. More preferably.
[0017]
The hydrogenation catalyst particle containing metal ruthenium as a main component is a non-supported catalyst in which the average crystallite diameter of the metal ruthenium is preferably 200 mm or less. The measurement of the average crystallite diameter of metal ruthenium is calculated by the Scherrer equation from the broadening of the diffraction line width obtained by the X-ray diffraction method of the metal ruthenium catalyst to be used. Specifically, it is calculated from the spread of a diffraction line having a maximum in the vicinity of 44 ° in diffraction angle (2θ) using CuKα ray as an X-ray source.
[0018]
In the present invention, in addition to hydrogenation catalyst particles mainly composed of metal ruthenium, zirconium The reaction is performed in a reaction field where the compound and the silicon compound coexist. In the present invention zirconium What is a compound? zirconium These oxides or hydroxides may be used alone, or may be used alone or in combination of two or more. So The amount used is 1 × 10 against water -Four ~ 0.3 times by weight, preferably 1 x 10 -3 -0.1 weight times. The oxide or hydroxide may be, for example, a dry powder or sol. In the present invention, the type of form and the like are not particularly limited, and a wide variety is used. be able to.
[0019]
The effects of the present invention obtained by allowing such oxides or hydroxides to coexist in the reaction system are diverse. The substantial effectiveness of the invention will be described first. be able to. Among conventionally known oxides and hydroxides, zirconium These compounds have an effect of improving selectivity, and among them, the coexistence effect of zirconium oxide and hydroxide is particularly large. Specifically, when the presence of a monocyclic aromatic hydrocarbon such as benzene is used in the reaction without substantially affecting the activity of the hydrogenation catalyst particles, the selection of cyclohexene in the reaction product. The rate can be improved.
[0020]
The second effect of the present invention is an effect of suppressing fluctuations in the reaction system due to adhesion of the hydrogenation catalyst to the reactor surface or aggregation during the reaction. That is, the use of zirconium oxide or hydroxide makes it possible to maintain a physically stable reaction system. Normally, when a fine metal catalyst is used, unlike when using a metal catalyst supported on a carrier, aggregation and sintering proceed in the reaction system to maintain a physically stable catalyst system. Is extremely difficult. Since this is the same for the metal ruthenium catalyst used in the method of the present invention, a technique for avoiding the progress of agglomeration and sintering is a technique that is absolutely necessary for practical use. The present inventor has found that the zirconium oxide or hydroxide according to the present invention functions as a dispersant for preventing the aggregation of metal ruthenium fine particles, so that the decrease in activity due to physical factors of the catalyst is extremely effectively suppressed. I guess that.
[0021]
The third effect of the present invention is that the handling property of the hydrogenation catalyst slurry is remarkably improved as compared with the case where no zirconium oxide or hydroxide is used. For example, when adjusting the concentration of the hydrogenation catalyst or charging the catalyst, the catalyst is difficult to adhere to the vessel wall or the tube wall, so that workability is improved, or when the catalyst is recovered from the catalyst slurry, the catalyst is It has an excellent effect that it can be easily separated from the product and the recovery operation becomes very easy.
[0022]
In the catalyst system of the present invention, a silicon compound needs to coexist. The silicon compound is preferably an oxide or hydroxide of silicon, and the amount of the oxide or hydroxide of silicon is 1 × 10 5 with respect to water. -6 ~ 0.3 times by weight, preferably 1 x 10 -Five -0.1 weight times. The oxide or hydroxide may be sol or gel. In the present invention, the form and the like are not specifically limited, and a wide variety can be used.
[0023]
The coexistence of silicon compounds, preferably silicon oxides or hydroxides, zirconium It has the same effect as the second and third effects that are exhibited when the compound is contained. In other words, the hydrogenation catalyst slurry has the effect of suppressing fluctuations in the reaction system due to adhesion or aggregation of the catalyst to the reactor surface, and the function of avoiding the progress of the aggregation and sintering is due to the coexistence of the silicon compound. The function as if the dispersant coexisted in the system is given, and the decrease in the catalyst activity due to the physical factors described above is suppressed. Furthermore, the present inventor has found that silicon compounds, particularly oxides or hydroxides of silicon, have a catalyst activity decrease that is different from the coexistence effect obtained when other known metal species coexist in the catalyst slurry. It was discovered for the first time that there was an inhibitory effect. This effect is a surprising effect obtained only for silicon compounds.
[0024]
Conventionally, hydrogenation catalysts based on metal ruthenium, which are used continuously and for a long time for hydrogenation of monocyclic aromatic hydrocarbons, have completely different causes from physical changes and poisoning of such catalysts. As described above, there is a decrease in the catalytic activity over time, which seems to have occurred. However, a sufficiently effective proposal for the problem of the decrease in the catalyst activity has not yet been made, and the conventional measures have been limited to the subsequent means such as the regeneration method and the activity recovery method of the catalyst whose activity has decreased. Therefore, the present inventor has repeatedly studied to cope with the above-described decrease in activity by improving the catalyst, and as a result, has found that a silicon compound, preferably a silicon oxide or hydroxide, can suppress the decrease in catalyst activity. It was. This is a surprising discovery and can significantly improve conventional catalyst technology.
[0025]
As described above, the present invention, in addition to hydrogenation catalyst particles mainly composed of metal ruthenium, zirconium Both the compound and the silicon compound are allowed to coexist. The Luconium oxide or hydroxide is particularly preferred. The silicon compound is preferably a silicon oxide or hydroxide. In the present invention, the amount of the oxide or hydroxide of silicon is zirconium 1 × 10 of the amount of zirconium oxide or hydroxide that is the compound -2 It is preferable to use at least weight times.
[0026]
If the amount of silicon oxide or hydroxide is too small relative to the amount of zirconium oxide or hydroxide used, there is a risk that the effect of suppressing the decrease in activity cannot be obtained. In addition, it is difficult to improve the reaction selectivity unless zirconium oxide or hydroxide is allowed to coexist in the catalyst system, and only by allowing both the Group IV compound and the silicon compound to coexist in the catalyst system. Therefore, it is possible to obtain a catalyst system with high selectivity and no decrease in activity, and it is possible to obtain an excellent effect that cannot be obtained by merely coexisting only one of them.
[0027]
Further, when zirconium or silicon oxides or hydroxides are used in the present invention, it is more preferable to add the respective element compounds to the catalyst system and carry out the reaction in a physically mixed state. Zirconium or silicon added in addition to metal ruthenium-based hydrogenation catalyst particles can be used as oxides, both of which can be used as oxides, as well as when used in the physically mixed state as described above. Both types may be used in combination. The compounding method includes the method of impregnating or immersing the other elements in the pores of the oxide, the method of adsorbing on the surface using chemical action, or the method of mixing or solution. It is possible to use a method of spray drying the catalyst slurry prepared by using. However, the oxide prepared in this way shows an inferior effect compared with the case where it reacts in the said physically mixed state.
[0028]
The structure and effect of the present invention described above in terms of the two effects of maintaining high selectivity and suppressing activity decrease are not described or suggested in the conventional literature. As for the relationship between the amount ratios of zirconium and silicon described above, the present inventor originally has silicon when the amount of silicon oxide or hydroxide is extremely low with respect to zirconium oxide or hydroxide. It is presumed that the activity lowering suppression effect may be inhibited by zirconium. In addition, regarding the reason why it is more effective to perform the reaction in a state where each of the various hydroxides or oxides is physically mixed, in the catalyst slurry system, This is because the chemical characteristics can be fully exhibited without being inhibited by other entities.
[0029]
According to the present invention having the effects as described in detail above, it is possible to increase the reaction temperature, which is limited due to the influence of increasing the rate of decrease in activity in the conventional catalyst system, and the selectivity is increased. It can also be improved. Furthermore, there is no need to perform an operation associated with activity recovery such as a reprocessing method of the catalyst used when the activity of the catalyst is reduced, or an activity recovery method of the ruthenium catalyst, and the yield of cycloolefins is maintained high over a long period of time. In addition, the catalytic activity can be stable. That is, this invention provides the manufacturing method of the cycloolefin which was extremely excellent practically.
[0030]
In the reaction system of the present invention, water is present, and the amount thereof varies depending on the reaction mode, but it can coexist with the monocyclic aromatic hydrocarbon which is a raw material used in an amount of 0.001 to 100 times by weight. However, under the reaction conditions, it is necessary that the organic liquid phase mainly composed of the raw material and the product and the liquid phase containing water form two phases. In the case of coexistence of a small amount of water, the selectivity of cycloolefin is reduced, and if it is too much, there is a problem that the reactor becomes large. It is preferable to coexist 5 to 20 times by weight.
[0031]
Moreover, it is necessary to make a metal sulfate exist in the reaction system of this invention. The total amount of the metal sulfate does not need to be present in the reaction system as a solid, and is preferably present in a state in which at least a part thereof is dissolved in the aqueous phase present in the reaction system. Examples of the metal sulfate present in the reaction system include zinc, iron, nickel, cadmium, gallium, indium, magnesium, aluminum, chromium, manganese, cobalt, copper, and the like. These may be used in combination, or may be a double salt containing such a metal sulfate. As the metal sulfate, it is particularly preferable to use zinc sulfate. The amount of metal sulfate used is 1.0 × 10 5 of water present in the reaction system. -Five To 1.0 times by weight, particularly when zinc sulfate is used as the metal sulfate, 1.0 × 10 -Four It is more preferable that it is -0.5 weight times.
[0032]
Furthermore, the following metal salts which are conventionally known may be present in the reaction system of the present invention. In other words, the types of metal salts include Group IA metals such as lithium, sodium and potassium, Group IIA metals such as magnesium and calcium, or zinc, manganese, cobalt, copper, cadmium, lead, arsenic, iron and gallium. , Germanium, vanadium, chromium, silver, gold, platinum, nickel, barium, aluminum and other metal nitrates, chlorides, oxides, hydroxides, acetates, phosphates, etc., or two or more of these chemically And / or may be used as a physical mixture. Among these, addition of zinc salts such as zinc hydroxide and zinc oxide is also preferable in the present invention. Particularly, double salts containing zinc hydroxide, for example, the general formula (ZnSO Four ) m ・ (Zn (OH) 2 ) n The presence of a double salt represented by m: n = 1: 0.01-100 is particularly preferred.
[0033]
The catalyst system of the present invention includes hydrogenation catalyst particles mainly composed of metal ruthenium, zirconium In addition to the three types of components, compounds and silicon compounds, metal sulfates and metal salts exist, but it is necessary to react the aqueous phase of the catalyst system in a neutral or acidic state. If the aqueous phase is made alkaline, the reaction rate is remarkably reduced, and the method for producing cycloolefin lacks practicality. In order to make it acidic, a normal acid such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, etc. may be added. Thus, it is preferable that PH of the aqueous solution introduce | transduced into a reaction system is 0.5-7 or less.
[0034]
As described above, the reaction for producing cycloolefin by the method of the present invention is usually carried out continuously or batchwise by the liquid phase suspension method, but may be a fixed bed type. The reaction conditions are appropriately selected depending on the type and amount of the catalyst and additive used, but the reaction pressure may be 1 to 20 MPa, more preferably 2 to 7 MPa. Moreover, reaction temperature should just be 50-250 degreeC, More preferably, it is 100-200 degreeC.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to those Examples.
In the following Examples and Comparative Examples, the selectivity of cyclohexene was calculated by the following formula based on the concentration analysis value of the experiment.
Cyclohexene selectivity (%) = (number of moles of cyclohexene produced by reaction) × 100 / P
However,
P (number of moles) = (number of moles of cyclohexene produced by the reaction) + (number of moles of cyclohexane produced by the reaction)
Moreover, the conversion rate of benzene was calculated by the following formula based on the analytical value of the benzene concentration.
Benzene conversion (%) = (moles of benzene consumed by reaction) × 100 / (moles of benzene fed to the reaction)
[0036]
Examples 1 to 3
Table 1 shows 8.75 g of a ruthenium hydride catalyst (average crystallite diameter of about 56 mm) containing 8.3% by weight of zinc obtained by reducing ruthenium hydroxide previously containing zinc hydroxide, zirconium oxide powder and silica gel. The amount shown in ZnSO Four ・ 7H 2 Hastelloy C tank-type flow reactor with an internal volume of 4 liters used as a reaction vessel with 2320 ml of an aqueous solution in which 430.94 g of O (special grade manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved as an attached tank Then, benzene that does not contain a catalyst poisoning substance such as sulfur was continuously supplied at 1.5 liter / hr under a hydrogen pressure of 170 ° C. at 5 MPa. At this time, the aqueous phase containing the catalyst in the reaction system is always made to have a constant composition, and the reaction product consisting of benzene, cyclohexene and cyclohexane is continuously taken out from the oil-water separator, while the catalyst is removed. The aqueous phase containing it was returned to the reactor, and the partial hydrogenation reaction of benzene was carried out continuously. The reaction results under these reaction conditions were obtained by sampling a part of the oil taken out from the oil-water separator and analyzing it by gas chromatography. Table 1 shows the reaction results after 20 hours from the start of the flow reaction and the reaction results after 200 hours.
[0037]
[Table 1]
[0038]
From Table 1, the reaction results of Examples 1 to 3 according to the present invention were excellent, maintaining an unprecedented high selectivity and not showing a decrease in catalyst activity.
[0039]
[Comparative Example 1]
Zirconium oxide 175g, solid content concentration 30% silica sol 5g (solid SiO 2 The same operation as in Examples 1 to 3 was performed except that the amount of silica sol was changed to a small amount with respect to the amount of zirconium oxide. The reaction results 20 hours after the start of the flow reaction were a benzene conversion rate of 50.3% and a cyclohexene selectivity of 77.8%. As a result of continuing the reaction thereafter, the high selectivity was maintained, but the activity decreased with time. After 200 Hr, the benzene conversion was 32.4% and the cyclohexene selectivity was 83.0%.
[0040]
[Comparative Examples 2 to 4]
In place of the oxides of Examples 1 to 3, the reaction was carried out by coexisting zirconium, titanium, silicon, and the respective oxides with hydrogenation catalyst particles mainly containing metal ruthenium. In each comparative example, 40 g of oxide powder was used, and the same operation was performed under the same conditions as in Examples 1 to 3. In addition, the catalyst system using titanium oxide has a supply amount of benzene of 2.5 liters / hr, and at the same time, the circulation amount of the aqueous phase containing the catalyst flowing out to the oil-water separator is increased to return to the reactor. The oil / water ratio was the same as in the other experiments. Table shows reaction results 20 hours after starting the flow reaction and 200 hours after 2 Shown in
[0041]
[Table 2]
[0042]
In this comparative example, the oxides coexisting with the hydrogenation catalyst particles were only one kind of each single oxide, and a comparison was made with the case where both kinds of oxides of Examples 1 to 3 were used. As a result, in the case of each single oxide alone, no catalyst system was found that maintains high selectivity and does not cause a decrease in activity. In addition, from this comparative example, when zirconium oxide or titanium oxide is used, the catalytic activity is reduced. On the other hand, when silicon oxide is used, the activity is not reduced, but the selectivity is zirconium oxide or titanium oxide. The difference in the effect of the oxide species became clear, such as being lower than when used.
[0043]
[Comparative Examples 5-7]
Instead of the oxide powders of Comparative Examples 2 to 4, sols of the respective oxides were used. The zirconia sol and the silica sol were those having a solid content concentration of 30%, the amount of the added sol was 8.75 g (2.625 g as a solid oxide), and other conditions and operations were as in Examples 1 to 3. The same was done. On the other hand, a titania sol having a solid concentration of 10.7% is used, and the catalyst amount is 5.5 g of hydrogenation catalyst particles mainly composed of metal ruthenium, and the titania sol amount is 30 g (3.21 g as a solid oxide). Other conditions and operations were the same as those in Examples 1 to 3. The results are shown in Table 3.
[0044]
[Table 3]
[0045]
Similar to the results of Comparative Examples 1 to 4, in any case, a catalyst system that maintains a high selectivity and does not cause a decrease in activity was not found. Moreover, the difference of the effect by oxide seed | species was seen similarly to the result of Comparative Examples 2-4. From the above results, the effect is different depending on the type of oxide coexisting with the hydrogenation catalyst particles mainly composed of metal ruthenium, the hydrogenation catalyst particles based on metal ruthenium according to the present invention, zirconium Compound, silicon Conversion The effectiveness of the catalyst system in which the three kinds of components of the compound coexist can be judged. In addition, when the apparatus and catalyst slurry after completion of the reaction in each example were observed, there was no adhesion of the hydrogenation catalyst to the reactor surface, no aggregation of the hydrogenation catalyst, etc., and each reaction was a physically stable reaction system. Was confirmed to be maintained.
[0046]
【The invention's effect】
According to the present invention, in a continuous hydrogenation reaction of monocyclic aromatic hydrocarbons, there is no decrease in activity, and it is possible to stably produce a target cycloolefin with a high selectivity for a long period of time. Furthermore, the present invention does not require an operation associated with the recovery of activity, such as a method for reprocessing a catalyst with reduced activity, and is industrially extremely valuable because it can produce cycloolefin more efficiently than conventional catalyst systems. .
Claims (9)
(1)金属ルテニウムを主成分とする水素化触媒粒子、
(2)ジルコニウム化合物、
(3)珪素化合物、
を含み、珪素化合物の含有量が、ジルコニウム化合物に対して1×10−2重量倍以上4倍以下である触媒系を使用し、中性または酸性の条件下に長時間連続反応させることを特徴とするシクロオレフィンの製造方法。In the partial reduction of monocyclic aromatic hydrocarbons with hydrogen in the presence of water and metal sulfate,
(1) Hydrogenation catalyst particles mainly composed of metal ruthenium,
(2) zirconium compound,
(3) silicon compound,
And a catalyst system in which the content of the silicon compound is 1 × 10 −2 times by weight to 4 times the zirconium compound, and is continuously reacted for a long time under neutral or acidic conditions A process for producing cycloolefin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22642498A JP4033976B2 (en) | 1998-08-11 | 1998-08-11 | Method for producing cycloolefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22642498A JP4033976B2 (en) | 1998-08-11 | 1998-08-11 | Method for producing cycloolefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000053598A JP2000053598A (en) | 2000-02-22 |
JP4033976B2 true JP4033976B2 (en) | 2008-01-16 |
Family
ID=16844916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22642498A Expired - Fee Related JP4033976B2 (en) | 1998-08-11 | 1998-08-11 | Method for producing cycloolefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4033976B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004018211A1 (en) | 2002-06-24 | 2004-03-04 | Ricoh Company, Ltd. | Ink-jet recording apparatus and ink-jet recording method |
CN115259992B (en) * | 2022-08-12 | 2023-11-28 | 内蒙古庆华集团腾格里精细化工有限公司 | Continuous production method for preparing cyclohexene by benzene selective hydrogenation |
-
1998
- 1998-08-11 JP JP22642498A patent/JP4033976B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000053598A (en) | 2000-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4734536A (en) | Process for producing cycloolefins | |
JP5398082B2 (en) | Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus | |
JP5147053B2 (en) | Method for producing cycloolefin | |
JP4597024B2 (en) | Cycloolefin production catalyst and cycloolefin production method | |
US5969202A (en) | Method for producing cycloolefin and cycloalkane under controlled pressure | |
AU2020362824B2 (en) | Catalyst for dehydrogenation of cycloalkanes, preparation method therefor and application thereof | |
JP5306586B2 (en) | Method for producing cyclohexene | |
JP4033976B2 (en) | Method for producing cycloolefin | |
US5973218A (en) | Process for producing cycloolefin | |
JP3897830B2 (en) | Process for producing cycloolefin | |
JP4641615B2 (en) | Method for producing cycloolefin | |
JPS63243038A (en) | Production of cycloolefin | |
JPH035370B2 (en) | ||
JP4025407B2 (en) | Method for producing cycloolefin | |
JP4033980B2 (en) | Method for producing cycloolefin | |
JPH10101588A (en) | Production of cycloolefin | |
JPH0639399B2 (en) | Partial hydrogenation method for monocyclic aromatic hydrocarbons | |
JPH0816073B2 (en) | Method for producing cycloolefin | |
JPS62201830A (en) | Production of cycloolefin | |
JPH037646B2 (en) | ||
CN117753435A (en) | Monoatomic alloy catalyst, preparation method thereof and application thereof in selective hydroconversion technology | |
JP2979991B2 (en) | Method for producing cycloolefin | |
JPH0335299B2 (en) | ||
JPS6317834A (en) | Production of cycloolefin | |
JPH08193037A (en) | Production of cycloolefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070619 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |