JPH0816073B2 - Method for producing cycloolefin - Google Patents

Method for producing cycloolefin

Info

Publication number
JPH0816073B2
JPH0816073B2 JP61233344A JP23334486A JPH0816073B2 JP H0816073 B2 JPH0816073 B2 JP H0816073B2 JP 61233344 A JP61233344 A JP 61233344A JP 23334486 A JP23334486 A JP 23334486A JP H0816073 B2 JPH0816073 B2 JP H0816073B2
Authority
JP
Japan
Prior art keywords
catalyst
zinc
ruthenium
reaction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61233344A
Other languages
Japanese (ja)
Other versions
JPS6388139A (en
Inventor
肇 永原
満月男 小西
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61233344A priority Critical patent/JPH0816073B2/en
Publication of JPS6388139A publication Critical patent/JPS6388139A/en
Publication of JPH0816073B2 publication Critical patent/JPH0816073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単環芳香族炭化水素を部分還元し、高選択
率、高収率で対応するシクロオレフイン類、特にシクロ
ヘキセン類を製造する方法に関するものである。
The present invention relates to a method for partially reducing monocyclic aromatic hydrocarbons to produce corresponding cycloolefins, particularly cyclohexenes, with high selectivity and high yield. It is about.

シクロヘキセン類は有機化学工業製品の中間原料とし
てその価値が高く、特にポリアミド原料、リジン原料な
どとして重要である。
Cyclohexenes are highly valuable as intermediate raw materials for organic chemical industrial products, and are especially important as polyamide raw materials and lysine raw materials.

(従来の技術) かかるシクロヘキセン類の製造方法としては、例え
ば、(1)水およびアルカリ剤と周期表第VIII族元素を
含有する触媒組成物を用いる方法(特公昭56−22850号
公報)、(2)ニツケル、コバルト、クロム、チタンま
たはジルコニウムの酸化物に担持したルテニウム触媒を
用い、アルコールまたはエステルを添加剤として用いる
方法(特公昭52−3933号公報)、(3)銅、銀、コバル
ト、またはカリウムを含有するルテニウム触媒と水およ
びリン酸塩化合物を使用する方法(特公昭56−4536号公
報)、(4)ルテニウム触媒ならびに周期表のI A族金
属、II A族金属、およびマンガン、より選ばれた少なく
とも1種の陽イオンの塩を含む中性または酸性水溶液の
存在下に反応する方法(特公昭57−7607号公報)、
(5)ルテニウムおよびロジウムの少なくとも1種を主
成分とする固体触媒を周期表I A族金属、II A族金属、
マンガン、鉄、および亜鉛よりなる群から選ばれた少な
くとも1種の陽イオンの塩を含む水溶液で予め処理した
ものを用い、水の存在下に反応する方法(特開昭51−98
243号公報)、(6)ルテニウム触媒を用い、酸化亜鉛
および水酸化亜鉛の少なくとも1種を反応系に活性化成
分として添加して反応する方法(特開昭59−184138号公
報)、(7)水および少なくとも1種の亜鉛化合物の存
在下に、200Å以下の平均結晶子径を有する金属ルテニ
ウム結晶子および/またはその凝集した粒子を使用する
方法(特開昭61−50930号公報)などが提案されてい
る。
(Prior Art) As a method for producing such a cyclohexene, for example, (1) a method using a catalyst composition containing water and an alkaline agent and an element of Group VIII of the periodic table (Japanese Patent Publication No. 56-22850), ( 2) A method of using a ruthenium catalyst supported on an oxide of nickel, cobalt, chromium, titanium or zirconium, and using an alcohol or an ester as an additive (Japanese Patent Publication No. 523933), (3) copper, silver, cobalt, Or a method using a ruthenium catalyst containing potassium and water and a phosphate compound (Japanese Patent Publication No. 56-4536), (4) Ruthenium catalyst and Group IA metal, Group II A metal and manganese of the periodic table, A method of reacting in the presence of a neutral or acidic aqueous solution containing at least one selected cation salt (Japanese Patent Publication No. Sho 57-7607);
(5) A solid catalyst containing at least one of ruthenium and rhodium as a main component is a metal of Group IA, Group IIA of the periodic table,
A method of reacting in the presence of water using an aqueous solution containing a salt of at least one cation selected from the group consisting of manganese, iron and zinc (JP-A-51-98).
243), (6) at least one of zinc oxide and zinc hydroxide is added to the reaction system as an activating component using a ruthenium catalyst and reacted (JP-A-59-184138), (7) ) In the presence of water and at least one zinc compound, a method of using a metal ruthenium crystallite having an average crystallite diameter of 200Å or less and / or its agglomerated particles (JP-A-61-50930) is disclosed. Proposed.

(発明が解決しようとする問題点) しかし、これらの従来公知の方法においては、目的と
するシクロヘキセン類の選択率を高めるために、原料の
転化率を著しく抑える必要があつたり、反応速度が極め
て小さいなど、一般にシクロヘキセン類の収率ならびに
生産性が低く、実用的なシクロヘキセン類の製造方法と
なつていないのが現状である。
(Problems to be Solved by the Invention) However, in these conventionally known methods, in order to increase the selectivity of the target cyclohexenes, it is necessary to significantly suppress the conversion rate of the raw materials, and the reaction rate is extremely high. At present, the yield and productivity of cyclohexenes are small, such as being small, and it is not a practical method for producing cyclohexenes under the present circumstances.

また、かかるシクロヘキセン類の製造方法が実用的な
ものとなるためには、反応に用いられる触媒が、継続的
に安定な活性もしくは選択性を維持できるものであるこ
とが必要かつ重要であるが、従来の技術においては、こ
の点において必ずしも充分とはいえない。
Further, in order for the method for producing such cyclohexenes to be practical, it is necessary and important that the catalyst used in the reaction is capable of continuously maintaining stable activity or selectivity, This is not always sufficient in the conventional technology.

また、本発明者らの検討によれば、例えば、特開昭61
−50930号公報で提案されている金属ルテニウム粒子を
単独に触媒として用いた場合には、比較的高収率でシク
ロオレフインが得られる場合もあるが、反応器と反応液
の接液部などに該触媒が付着、堆積したり、触媒自身が
変化するなど、安定な反応系を維持することが困難であ
る場合が少なからず発生することが判つた。
Further, according to a study by the present inventors, for example, Japanese Patent Laid-Open No.
In the case where the metal ruthenium particles proposed in JP-A-50930 are used alone as a catalyst, cycloolefin may be obtained in a relatively high yield, but in the contact portion between the reactor and the reaction liquid, etc. It has been found that there are some cases in which it is difficult to maintain a stable reaction system, such as the catalyst adhering and accumulating or the catalyst itself changing.

(問題点を解決するための手段) 本発明者らは、かかる問題点を解決するため、シクロ
ヘキセン類の収率向上、および工業的に有利な安定した
触媒系を得るため、単環芳香族炭化水素の部分還元法に
おける触媒系、すなわち、主触媒のその他の成分からな
る系について鋭意検討し、本発明に到達したものであ
る。
(Means for Solving Problems) In order to solve such problems, the present inventors have aimed to improve the yield of cyclohexenes and to obtain a stable catalyst system which is industrially advantageous. The present invention has been made by intensively studying a catalyst system in the partial reduction method of hydrogen, that is, a system comprising other components of the main catalyst.

すなわち、本発明は、単環芳香族炭化水素を水の共存
下、水素により部分還元するに際し、200Å以下の平均
結晶子径を有する金属ルテニウムを主成分とする水素化
触媒粒子を用い、該触媒粒子とは別に、Ti,Zr,Hf,Nb,T
a,Cr,Fe,Co,Al,Ga,Siより選ばれた少なくとも1種の金
属の水酸化物を添加し、さらに、少なくとも1種の固体
塩基性亜鉛塩の共存下、中性または酸性の条件下に反応
を行うことにより、従来にない良好な収率でシクロオレ
フイン類得、しかも驚くほど安定した触媒系として使用
できるシクロオレフインを製造する方法である。本発明
方法によれば、シクロオレフイン類の収率を40%以上と
することが可能であると同時に、本発明の如き組合わせ
によつて初めて、水素化触媒の様々な変質、例えば、経
時的な凝集の進行、平均結晶子径の変化などによる反応
成績の変化を著しく抑制することができ、実用的な見地
から極めて有用な方法である。
That is, the present invention, in the coexistence of water in the coexistence of water, the monocyclic aromatic hydrocarbons, when using hydrogenation catalyst particles containing metal ruthenium as a main component having an average crystallite diameter of 200 Å or less, the catalyst, Apart from particles, Ti, Zr, Hf, Nb, T
a, Cr, Fe, Co, Al, Ga, Si at least one metal hydroxide selected from the addition, further in the presence of at least one solid basic zinc salt, neutral or acidic By carrying out the reaction under the conditions, it is a method of producing cycloolefins in a good yield which has never been obtained, and further producing cycloolefin which can be used as a surprisingly stable catalyst system. According to the method of the present invention, it is possible to increase the yield of cycloolefins to 40% or more, and at the same time, the combination of the present invention prevents the hydrogenation catalyst from undergoing various alterations such as aging. It is a very useful method from a practical point of view because it can significantly suppress the change of reaction results due to the progress of various aggregations and the change of average crystallite size.

以下、本発明の具体的な実施態様を説明する。 Hereinafter, specific embodiments of the present invention will be described.

本発明の原料となる単環芳香族炭化水素とは、ベンゼ
ン、トルエン、キシレン類、炭素数4以下のアルキル基
を有する低級アルキルベンゼン類をいう。
The monocyclic aromatic hydrocarbon as the raw material of the present invention refers to benzene, toluene, xylenes, and lower alkylbenzenes having an alkyl group having 4 or less carbon atoms.

本発明においては、200Å以下の平均結晶子径を有す
る金属ルテニウムを主成分とする水素化触媒粒子を用い
る。この触媒は、種々のルテニウム化合物を還元して得
られるもの、またはその調製段階もしくは調製後におい
て他の金属、例えば、亜鉛もしくはクロム、モリブデ
ン、タングステン、マンガン、コバルト、ニツケル、
鉄、銅などを加えたルテニウムを主成分とするものであ
る。種々のルテニウム化合物としては特に制限はない
が、例えば、塩化物、臭化物、ヨウ化物、硝酸温、硫酸
塩、水酸化物、酸化物、ルテニウムレツド、あるいは各
種のルテニウムを含む錯体などを用いることができ、還
元法としては、水素ガスによる還元あるいはホルマリ
ン、水素化ホウ素ナトリウム、ヒドラジン等による化学
還元法によつて行うことができる。特にルテニウムの塩
を加水分解して水酸化物とし、これを還元する方法は好
ましく用いられる。
In the present invention, hydrogenation catalyst particles containing ruthenium metal as a main component and having an average crystallite diameter of 200 Å or less are used. This catalyst is obtained by reducing various ruthenium compounds, or other metal such as zinc or chromium, molybdenum, tungsten, manganese, cobalt, nickel, after the preparation step or preparation thereof.
The main component is ruthenium to which iron, copper, etc. are added. The various ruthenium compounds are not particularly limited, but for example, chlorides, bromides, iodides, nitric acid temperatures, sulfates, hydroxides, oxides, ruthenium reds, or complexes containing various rutheniums are used. As the reduction method, reduction with hydrogen gas or chemical reduction with formalin, sodium borohydride, hydrazine or the like can be performed. In particular, a method of hydrolyzing a ruthenium salt into a hydroxide and reducing the hydroxide is preferably used.

また、本発明方法においては、あらかじめ亜鉛を含有
せしめたルテニウムの還元物を使用すると、シクロオレ
フインの収率をさらに高めることができ、有効に使用さ
れる。かかる触媒は、あらかじめ有価のルテニウム化合
物に亜鉛化合物を含有せしめた後、還元して得られる還
元物であり、ルテニウムは金属状態まで還元されたもの
である。使用できる有価のルテニウム化合物は、例え
ば、塩化物、硝酸塩、硫酸塩などの塩、アンミン錯塩な
どの錯体、水酸化物、酸化物などであるが、特に3価も
しくは4価のルテニウムの化合物が入手もしやすく、ま
た取扱い上も容易であるので好ましい。また、使用でき
る亜鉛化合物は、塩化物、硝酸塩、硫酸塩などの塩、ア
ンミン錯塩などの錯体、水酸化物、酸化物など巾広いも
のが使用可能である。
Further, in the method of the present invention, if a reduced product of ruthenium containing zinc in advance is used, the yield of cycloolephine can be further increased and it can be effectively used. Such a catalyst is a reduced product obtained by previously adding a valuable ruthenium compound with a zinc compound and then reducing it, and ruthenium is reduced to a metallic state. Valuable ruthenium compounds that can be used include, for example, salts such as chlorides, nitrates and sulfates, complexes such as ammine complex salts, hydroxides and oxides, but especially trivalent or tetravalent ruthenium compounds are available. It is preferable because it is easy and easy to handle. A wide range of zinc compounds can be used, such as salts such as chlorides, nitrates and sulfates, complexes such as ammine complex salts, hydroxides and oxides.

かかる触媒中の亜鉛含有量は、ルテニウムに対し0.1
〜50重量%、好ましくは2〜20重量%に調整される。し
たがって、触媒の主構成要素は、あくまでルテニウムで
あり、亜鉛は担体ではない。
The zinc content in such a catalyst is 0.1 with respect to ruthenium.
It is adjusted to 50% by weight, preferably 2 to 20% by weight. Therefore, the main constituent of the catalyst is ruthenium, not zinc.

このような亜鉛を含有する有価のルテニウム化合物
は、亜鉛およびルテニウムの化合物の混合溶液を用い
て、一般的な共沈法などによつて固体として得てもよい
し、あるいは均一溶液の状態で得てもよい。
Such a valuable ruthenium compound containing zinc may be obtained as a solid by a general coprecipitation method using a mixed solution of zinc and a compound of ruthenium, or may be obtained in a homogeneous solution state. May be.

かかる亜鉛を含有する有価のルテニウム化合物の還元
方法としては、一般的なルテニウムの還元方法を応用す
ることができる。例えば、気相において水素で還元する
方法、液相において水素もしくは適当な化学還元剤、例
えば、NaBH4やホルマリンなどを用いて還元する方法が
好ましく応用され、水素により気相もしくは液相で還元
する方法は特に好ましい。
As a method of reducing the valuable ruthenium compound containing zinc, a general method of reducing ruthenium can be applied. For example, a method of reducing with hydrogen in the gas phase, a method of reducing with hydrogen or an appropriate chemical reducing agent such as NaBH 4 or formalin in the liquid phase is preferably applied, and reduction with hydrogen in the gas phase or liquid phase is performed. The method is particularly preferred.

気相において水素で還元する場合は、結晶子径の増加
を避ける意味で、極度の高温を避けたり、あるいは水素
を他の不活性気体で希釈するなどの工夫をするとよい。
また、液相で還元する場合には、水やアルコール類に、
亜鉛を含有する有価のルテニウム化合物の固体を分散さ
せて行なつてもよいし、もしくは均一溶液の状態で行な
つてもよい。この際、還元をよりよく進行させるため
に、撹拌、加熱などを適当に行なうとよい。また、水の
かわりにアルカリ水溶液や適当な金属塩水溶液、例え
ば、アルカリ金属塩水溶液などを用いてもよい。
When reducing with hydrogen in the gas phase, it is advisable to avoid extremely high temperature or to dilute hydrogen with other inert gas in order to avoid increasing the crystallite size.
When reducing in the liquid phase, add water or alcohol to
It may be carried out by dispersing a solid of a valuable ruthenium compound containing zinc, or may be carried out in the state of a homogeneous solution. At this time, stirring, heating and the like may be appropriately performed in order to promote the reduction better. Instead of water, an aqueous alkali solution or an appropriate aqueous metal salt solution such as an aqueous alkali metal salt solution may be used.

以上の如き水素化触媒粒子は、主にルテニウムよりな
る結晶子および/またはその凝集した粒子として反応系
に存在するが、シクロオレフイン類の選択率や収率、さ
らには反応速度を高めるためには、該結晶子の平均結晶
子径は200Å以下であることが必要であり、150Å以下で
あることが好ましく、100Å以下であることがさらに好
ましい。ここで、平均結晶子径は一般的方法、すなわ
ち、X線回折法によつて得られる回折線巾の拡がりか
ら、Scherrerの式により算出されるものである。具体的
には、CuKα線をX線源として用いた場合は、回折角
(2θ)で44゜付近に極大をもつ回折線の拡がりから算
出されるものである。
The hydrogenation catalyst particles as described above are present in the reaction system as crystallites mainly composed of ruthenium and / or aggregated particles thereof, but in order to improve the selectivity and yield of cycloolefins, and further the reaction rate, The average crystallite diameter of the crystallite needs to be 200 Å or less, preferably 150 Å or less, and more preferably 100 Å or less. Here, the average crystallite diameter is calculated by the Scherrer equation from the spread of the diffraction line width obtained by a general method, that is, the X-ray diffraction method. Specifically, when CuKα rays are used as an X-ray source, it is calculated from the spread of the diffraction line having a maximum at a diffraction angle (2θ) of around 44 °.

本発明においては、上記の如き水素化触媒粒子とは別
に、Ti,Zr,Hf,Nb,Ta,Cr,Fe,Co,Al,Ga,Siより選ばれた少
なくとも1種の金属の水酸化物を添加して反応が行なわ
れるが、ZrおよびHfの水酸化物が好ましく、さらには、
Zrの水酸化物が好ましい。
In the present invention, in addition to the above hydrogenation catalyst particles, a hydroxide of at least one metal selected from Ti, Zr, Hf, Nb, Ta, Cr, Fe, Co, Al, Ga and Si. The reaction is carried out by adding, but hydroxides of Zr and Hf are preferable, and further,
Zr hydroxide is preferred.

添加される金属の水酸化物の量は水に対して、前記金
属のみの量に換算して1×10-4〜0.3重量倍、好ましく
は1×10-3〜0.1重量倍である。
The amount of hydroxide of the metal added is 1 × 10 −4 to 0.3 times by weight, preferably 1 × 10 −3 to 0.1 times by weight, in terms of the amount of only the metal, with respect to water.

かかる金属の水酸化物は、一般的に該金属の塩水溶液
の加水分解あるいは、アルカリないしアンモニア等の添
加で得られるものである。金属塩としては、例えば、塩
化物、臭化物、ヨウ化物、オキシ塩化物、硝酸塩、硫酸
塩、あるいは該金属を含む錯体など巾広いものを用いる
ことができる。
Such a metal hydroxide is generally obtained by hydrolysis of an aqueous salt solution of the metal or addition of alkali or ammonia. As the metal salt, for example, a wide range of chlorides, bromides, iodides, oxychlorides, nitrates, sulfates, or complexes containing the metal can be used.

かかる水酸化物を添加することによつて得られる効果
は、反応器表面への水素化触媒の付着や、水素化触媒の
凝集などによる反応系の変動を抑制し、安定な反応系を
維持することであつて、特に長い期間に亘つて連続的に
シクロオレフインを製造するに際しては、大きな効果を
発揮する。また、水素化触媒を含むスラリーの取扱いを
容易にすること、例えば、水素化触媒をみかけ上、希
釈、増量し、触媒の仕込みや、回収を容易にするなどの
効果もある。
The effect obtained by adding such a hydroxide is to suppress the fluctuation of the reaction system due to the adhesion of the hydrogenation catalyst to the reactor surface or the aggregation of the hydrogenation catalyst, and to maintain a stable reaction system. In particular, it has a great effect on the continuous production of cycloolefins over a long period of time. Further, there is an effect of facilitating the handling of the slurry containing the hydrogenation catalyst, for example, apparently diluting or increasing the amount of the hydrogenation catalyst to facilitate the preparation and recovery of the catalyst.

一方、明記されるべきことは、かかる水酸化物に浸漬
法、乾固法、沈殿法等の通常の方法によりルテニウムを
担持し、還元して調製したルテニウム担持触媒を水素化
触媒として用いた場合、シクロオレフイン類の選択率
は、本発明方法と比較して極めて低いものであり、本発
明方法における水酸化物の添加は、ルテニウム担持触媒
とは本質的に異なるものである。
On the other hand, what should be clarified is that when a ruthenium-supported catalyst prepared by supporting ruthenium in such a hydroxide by an ordinary method such as an immersion method, a dry solidification method, or a precipitation method and then reducing it is used as a hydrogenation catalyst. The selectivity of cycloolefins is extremely low as compared with the method of the present invention, and the addition of the hydroxide in the method of the present invention is essentially different from that of the ruthenium-supported catalyst.

本発明において反応系に共存する固体塩基性亜鉛塩と
は各種の酸の共役塩基残基とこれとは別の陰性成分とみ
なされる水酸基または酸素原子を併含する亜鉛の塩を指
す。具体的には例えばZnSO4・1/2ZnO,ZnSO4・ZnO・H2O,
ZnSO4・3ZnO・nH2O(nは0≦n≦8なる数),ZnSO4・4
ZnO・4H2Oなどに代表れる塩基性硫酸亜鉛、ZnF2・4Zn
(OH)2,ZnO・3ZnCl2・H2O,ZnO・ZnCl2・H2Oおよび1.5H
2O,3ZnO・2ZnCl2・11H2O,2ZnO・ZnCl2・11H2O,2ZnO・Zn
Cl2・4H2O,5ZnO・2ZnCl2・26H2O,5ZnO・5ZnCl2・8H2O,3
ZnO・ZnCl3・nH2O(nは2,3,4,5,又は8),4ZnO・ZnCl2
・nH2O(nは4,6又は11),5ZnO・ZnCl2・nH2O(nは6,8
又は29),11ZnO・2ZnCl2,6ZnO・ZnCl2・6H2Oおよび10H2
O,8ZnO・ZnCl2・10H2O,9ZnO・ZnCl2・3H2Oおよび14H2O,
ZnBr2・4ZnO・nH2O(nは10,13又は29),ZnBr2・5ZnO・
6H2O,ZnBr2・6ZnO・35H2O,ZnI2・4Zn(OH)2,ZnI2・5Zn
O・11H2O,ZnI2・9ZnO・24H2Oなどに代表される塩基性ハ
ロゲン化亜鉛、8ZnO・N2O5・4H2O,4ZnO・N2O5・4H2O,5Z
nO・N2O5・5H2Oおよび6H2O,5ZnO・N2O5・5H2Oなどで代
表される塩基性硝酸亜鉛、4ZnO・P2O5・H2Oに代表され
る塩基性正リン酸亜鉛さらには塩基性酢酸亜鉛などがあ
り、特に塩基性硫酸亜鉛、塩基性塩化亜鉛は好ましい結
果を与える。
In the present invention, the solid basic zinc salt coexisting in the reaction system refers to a zinc salt containing a conjugate base residue of various acids and a hydroxyl group or an oxygen atom which is regarded as a negative component other than this. Specifically, for example, ZnSO 4・ 1 / 2ZnO, ZnSO 4・ ZnO ・ H 2 O,
ZnSO 4 · 3ZnO · nH 2 O (n is 0 ≦ n ≦ 8 number becomes), ZnSO 4 · 4
Basic zinc sulfate represented by ZnO ・ 4H 2 O, ZnF 2・ 4Zn
(OH) 2 , ZnO ・ 3ZnCl 2・ H 2 O, ZnO ・ ZnCl 2・ H 2 O and 1.5H
2 O, 3ZnO ・ 2ZnCl 2・ 11H 2 O, 2ZnO ・ ZnCl 2・ 11H 2 O, 2ZnO ・ Zn
Cl 2・ 4H 2 O, 5ZnO ・ 2ZnCl 2・ 26H 2 O, 5ZnO ・ 5ZnCl 2・ 8H 2 O, 3
ZnO ・ ZnCl 3・ nH 2 O (n is 2, 3, 4, 5, or 8), 4ZnO ・ ZnCl 2
・ NH 2 O (n is 4,6 or 11), 5ZnO ・ ZnCl 2・ nH 2 O (n is 6,8)
Or 29), 11ZnO ・ 2ZnCl 2 , 6ZnO ・ ZnCl 2・ 6H 2 O and 10H 2
O, 8ZnO ・ ZnCl 2・ 10H 2 O, 9ZnO ・ ZnCl 2・ 3H 2 O and 14H 2 O,
ZnBr 2 · 4ZnO · nH 2 O (n is 10, 13 or 29), ZnBr 2 · 5ZnO ·
6H 2 O, ZnBr 2・ 6ZnO ・ 35H 2 O, ZnI 2・ 4Zn (OH) 2 , ZnI 2・ 5Zn
Basic zinc halides represented by O ・ 11H 2 O, ZnI 2 , 9ZnO ・ 24H 2 O, 8ZnO ・ N 2 O 5 , 4H 2 O, 4ZnO ・ N 2 O 5 , 4H 2 O, 5Z
Basic zinc nitrate represented by nO ・ N 2 O 5・ 5H 2 O and 6H 2 O, 5ZnO ・ N 2 O 5・ 5H 2 O, base represented by 4ZnO ・ P 2 O 5・ H 2 O There are acidic zinc phosphate, basic zinc acetate and the like, and particularly basic zinc sulfate and basic zinc chloride give preferable results.

これらの塩基性亜鉛塩は、一般的には亜鉛の塩の水溶
液を適当に処理することによつて得ることができる。例
えば、亜鉛の塩の水溶液を母液として適当なアルカリ剤
を作用させたり、更には熱したりすることにより、固体
として得ることができる。また、亜鉛の強酸塩の水溶液
に水酸化亜鉛あるいは酸化亜鉛を加えて煮沸するなどし
ても種々の塩基性亜鉛塩の混合物として得られる場合も
ある。又、金属亜鉛を適当に処理して得られる場合もあ
る。
These basic zinc salts can generally be obtained by appropriately treating an aqueous solution of zinc salt. For example, it can be obtained as a solid by using an aqueous solution of zinc salt as a mother liquor and allowing a suitable alkaline agent to act thereon, and further by heating. In addition, a mixture of various basic zinc salts may be obtained by adding zinc hydroxide or zinc oxide to an aqueous solution of a strong acid salt of zinc and boiling the mixture. It may also be obtained by appropriately treating metallic zinc.

これらを反応系において固体として共存させるには、
これらの1種もしくは混合物を粉末の形でルテニウム触
媒と混合し、もしくは別個に反応系へ添加することが好
ましい。
To make these coexist as a solid in the reaction system,
It is preferred that one or a mixture of these be mixed with the ruthenium catalyst in the form of powder or be added separately to the reaction system.

本発明方法においてはこれら塩基性亜鉛塩が不溶の状
態で共存する必要がある。塩基性亜鉛塩の水溶液に対す
る溶解度は一般的に水溶液が中性の場合にはほぼ無視し
得る量であるが、水溶液のpHが低くなると増加するの
で、反応系への添加量は水溶液のpHを考慮に入れて決め
ることが好ましい。但し、本発明に用いるルテニウム触
媒がもつ吸着力によつて、塩基性亜鉛塩の反応系内にお
ける飽和溶解度以下の添加量であつても触媒上に固体と
して共存できる場合が多い。
In the method of the present invention, these basic zinc salts must coexist in an insoluble state. The solubility of a basic zinc salt in an aqueous solution is generally a negligible amount when the aqueous solution is neutral, but it increases as the pH of the aqueous solution decreases, so the amount added to the reaction system depends on the pH of the aqueous solution. It is preferable to decide in consideration. However, due to the adsorptive power of the ruthenium catalyst used in the present invention, the basic zinc salt can often coexist as a solid on the catalyst even if the addition amount is less than the saturated solubility in the reaction system.

この様な固体塩基性亜鉛塩は、反応系から水素化触媒
と共に分離して、X線回折、螢光X線、X線光電子分光
などにより直接固体のまま確認することができる。また
この固体塩基性亜鉛塩の共存量を定量する方法としては
水素化触媒と共に分離された固体を溶解し、測定する方
法が好ましく用いられる。
Such a solid basic zinc salt can be directly separated from the reaction system together with the hydrogenation catalyst and directly confirmed as a solid by X-ray diffraction, fluorescent X-ray, X-ray photoelectron spectroscopy and the like. As a method for quantifying the coexisting amount of the solid basic zinc salt, a method of dissolving and measuring the separated solid together with the hydrogenation catalyst is preferably used.

具体的には反応液中より触媒スラリーを沈降せしめた
後、上澄み液を除去し、残存するスラリーに、もしくは
反応液中のスラリーより過して得られる固体物に不溶
塩基性亜鉛塩を溶解し得る液、例えば濃塩酸などを加え
て、通常行なわれる亜鉛イオンの分析一定量によつて知
ることができる。又反応系に共存するイオンによる分析
への影響を除去する等の目的で、場合によつては不溶塩
基性亜鉛塩の溶解量が無視出来る程度の水で、これらス
ラリーもしくは過した固形物を洗浄した後、濃塩酸等
を加えて、亜鉛イオンの定量を行つても良い。
Specifically, after the catalyst slurry is allowed to settle out of the reaction solution, the supernatant liquid is removed, and the insoluble basic zinc salt is dissolved in the remaining slurry or in the solid obtained by passing the slurry in the reaction solution. It can be determined by adding a liquid to be obtained, for example, concentrated hydrochloric acid, and by performing a fixed amount of zinc ion which is usually analyzed. Also, for the purpose of removing the influence of ions coexisting in the reaction system on the analysis, in some cases, the slurry or the passed solid matter is washed with water such that the dissolved amount of the insoluble basic zinc salt is negligible. After that, concentrated hydrochloric acid or the like may be added to quantify zinc ions.

本発明においては、かかる固体塩基性亜鉛塩を、水素
化触媒に対し、亜鉛のみの量に換算して1×10-4〜1重
量倍、好ましくは1×10-3〜0.5重量倍共存させて反応
を行なう。共存量が少なすぎるとシクロオレフインの選
択率、収率の向上に対する効果が希薄であり、多すぎる
と反応速度が低下して、結果的に多量の水素化触媒が必
要となるため、工業的に有利な反応系となり難い。
In the present invention, such a solid basic zinc salt is made to coexist with the hydrogenation catalyst in an amount of 1 × 10 −4 to 1 times by weight, preferably 1 × 10 −3 to 0.5 times by weight in terms of zinc only. To react. If the coexisting amount is too small, the effect of improving the selectivity and yield of cycloolefin is dilute, and if the coexisting amount is too large, the reaction rate decreases and, as a result, a large amount of hydrogenation catalyst is required. It is difficult to become an advantageous reaction system.

このように、固体塩基性亜鉛塩を共存させることによ
り、シクロオレフインの選択率、収率を高めることがで
きる。さらには、同等の高選択率、高収率が維持できる
反応温度範囲が拡大し、比較的低温においてもシクロオ
レフインを収率良く得ることができるので、反応条件選
定の自由度が拡大し、工業的に極めて価値の高いものと
なる。
Thus, the coexistence of the solid basic zinc salt can increase the selectivity and the yield of cycloolefin. Furthermore, since the reaction temperature range in which equivalent high selectivity and high yield can be maintained is expanded, and cycloolefin can be obtained in good yield even at relatively low temperature, the degree of freedom in selecting reaction conditions is expanded, and Will be extremely valuable.

このように、塩基性亜鉛塩を共存させることによつて
何故シクロオレフインの選択率、収率が向上するかは必
ずしも定かではないが、共存する不溶塩基性亜鉛塩が水
素化触媒上に吸着し、シクロオレフインの生成に有利な
活性点を現出していると考えられる。
Thus, it is not always clear why coexistence of a basic zinc salt improves the selectivity and yield of cycloolefin, but the coexisting insoluble basic zinc salt is adsorbed on the hydrogenation catalyst. It is considered that an active site advantageous for the production of cycloolefin is revealed.

一方、本発明における金属の水酸化物の添加および固
体塩基性亜鉛の共存は、下記の如く触媒の安定性に対し
て驚くべき効果を発揮する。
On the other hand, the addition of the metal hydroxide and the coexistence of solid basic zinc in the present invention exert a surprising effect on the stability of the catalyst as described below.

一般に、微粒の金属触媒を用いることは、その金属が
担体上に担持された触媒と異なり、反応系においてしば
しば2次凝集やシンタリングなどが進行し、安定な触媒
系としての持続性に難点がある。このことは本発明方法
に使用する金属ルテニウム触媒についても同様であり、
実用性の観点に立つた場合、2次凝集やシンタリングな
どの進行を回避することは、是非とも必要な技術とな
る。本発明における固体塩基性亜鉛塩の共存は、驚くべ
きことに、かかる2次凝集やシンタリングなどによる触
媒の変化を抑制する効果も併せもつことが明らかとなつ
た。
In general, the use of a fine metal catalyst is different from the catalyst in which the metal is supported on a carrier, and secondary coagulation or sintering often progresses in the reaction system, resulting in a difficulty in sustainability as a stable catalyst system. is there. This also applies to the metal ruthenium catalyst used in the method of the present invention,
From the standpoint of practicality, avoiding the progress of secondary agglomeration and sintering is a necessary technique. It was revealed that the coexistence of the solid basic zinc salt in the present invention surprisingly also has the effect of suppressing the change of the catalyst due to such secondary aggregation and sintering.

Ti,Zr,Hf,Nb,Ta,Cr,Fe,Co,Al,Ga,Siより選ばれた金属
の水酸化物の添加も同様の効果を併せ持ち、これら金属
の水酸化物と固体塩基性亜鉛塩の併用により相乗効果に
より、触媒や反応系を極めて安定なものとすることがで
きる。
Addition of hydroxides of metals selected from Ti, Zr, Hf, Nb, Ta, Cr, Fe, Co, Al, Ga, Si also has the same effect, and hydroxides of these metals and solid basic zinc The synergistic effect of the combined use of salts can make the catalyst and the reaction system extremely stable.

固体塩基性亜鉛塩および上記金属の水酸化物の非存在
下で、本発明で使用する水素化触媒を反応条件下で保持
した場合、触媒の2次凝集がさらに進行する。
When the hydrogenation catalyst used in the present invention is kept under the reaction conditions in the absence of the solid basic zinc salt and the hydroxide of the above metal, the secondary aggregation of the catalyst further proceeds.

このような2次凝集がさらに進行した触媒は、水相中
での触媒粒子の分散性が著しく悪くなる。このような状
態になつた凝集体では、その凝集体の中の金属ルテニウ
ムへの水素およびベンゼンの拡散、特に水素の拡散が困
難となり、反応に必要な十分な量を触媒上へ供給するこ
とができず、満足する反応の状態を得ることができな
い。特に水素の触媒上への供給が不足すると、反応速度
の低下および副反応の増加が著しくなる。また、反応に
より生成したシクロオレフインの反応の場の外への拡散
または既凝集体の外への拡散がおそくなり、さらに水添
反応が進行し、シクロアルカンへの副反応が増加する。
このような凝集状態の変化は、直接電子顕微鏡により観
察することもできる。
In the catalyst in which the secondary aggregation further progresses, the dispersibility of the catalyst particles in the aqueous phase is significantly deteriorated. In an aggregate in such a state, diffusion of hydrogen and benzene into the metal ruthenium in the aggregate becomes difficult, especially diffusion of hydrogen, and it is difficult to supply a sufficient amount necessary for the reaction onto the catalyst. It is not possible to obtain a satisfactory reaction state. In particular, when the supply of hydrogen onto the catalyst is insufficient, the reaction rate decreases and side reactions increase remarkably. Further, the diffusion of cycloolefin produced by the reaction to the outside of the reaction field or the diffusion of the existing aggregates is slowed down, the hydrogenation reaction further proceeds, and the side reaction to cycloalkane increases.
Such a change in the aggregation state can also be directly observed by an electron microscope.

また、同様に、本発明で使用する水素化触媒を固体塩
基性亜鉛塩および前記金属の水酸化物の非存在下で、反
応条件下に長時間保持すると、X線回折法で求められる
金属ルテニウムの平均結晶子径が増大することが判つ
た。かかる平均結晶子径の経時的増大は、触媒の表面積
の減少をもたらし、特に反応速度が経時的に低下し、長
期にわたつて安定な反応を制御することが難しくなる。
この傾向は、水素化触媒濃度や反応温度を高くすると、
さらに顕著になり、例えば、反応器体積当りのシクロオ
レフインの生産性を高めて、本反応を行なおうとすると
きにおいては、その反応の安定性の維持がより難しくな
ることを意味し、実用上好ましくない。このような触媒
の変化は、できるだけ小さいことが望ましいことは明白
である。本発明において使用される水酸化物および塩基
性亜鉛塩の併用によつて初めて、上記の如き金属ルテニ
ウムの平均結晶子径の経時的増大を実質的に無視できる
状況が得られることが判つた。
Similarly, when the hydrogenation catalyst used in the present invention is kept under reaction conditions for a long time in the absence of a solid basic zinc salt and a hydroxide of the metal, the metal ruthenium obtained by an X-ray diffraction method is obtained. It has been found that the average crystallite size of is increased. Such an increase in the average crystallite size with time leads to a decrease in the surface area of the catalyst, and in particular the reaction rate decreases with time, making it difficult to control a stable reaction over a long period of time.
This tendency shows that when the hydrogenation catalyst concentration and the reaction temperature are increased,
It becomes even more remarkable. For example, when trying to carry out this reaction by increasing the productivity of cycloolephine per reactor volume, it means that it becomes more difficult to maintain the stability of the reaction. Not preferable. Clearly, it is desirable that such catalyst changes be as small as possible. For the first time, it has been found that the combined use of the hydroxide and the basic zinc salt used in the present invention makes it possible to obtain a situation in which the above-described increase in the average crystallite diameter of ruthenium metal can be substantially ignored.

さらに、本発明においては、水酸化物としてZrおよび
Hfの水酸化物を用い、塩基性亜鉛塩として、塩基性硫酸
亜鉛を用いると、上記の如き水素化触媒に対する安定化
の効果が特に高いことが判つた。
Furthermore, in the present invention, Zr and hydroxide are used as hydroxides.
It was found that when Hf hydroxide is used and basic zinc sulfate is used as the basic zinc salt, the stabilizing effect on the hydrogenation catalyst as described above is particularly high.

このような本発明による反応系の安定化が発現する機
構については必ずしも定かではないが、固体塩基性亜鉛
塩が水素化触媒や水酸化物の表面上に存在し、その表面
の性質を変えているものと考えられる。Ti,Zr,Hf,Nb,T
a,Cr,Fe,Co,Al,Ga,Siより選ばれた少なくとも1種の水
酸化物の共存は、水素化触媒どうしの衝突を大きく抑制
し、表面積の低下や、結晶子径の増大を引き起こす間接
的な原因となる触媒の2次凝集を、さらに抑制している
ものと考えられる。
Although the mechanism by which the stabilization of the reaction system according to the present invention is expressed is not clear, the solid basic zinc salt is present on the surface of the hydrogenation catalyst or hydroxide, and the property of the surface is changed. It is believed that Ti, Zr, Hf, Nb, T
The coexistence of at least one hydroxide selected from a, Cr, Fe, Co, Al, Ga, and Si greatly suppresses the collision of hydrogenation catalysts with each other, reducing the surface area and increasing the crystallite size. It is considered that the secondary aggregation of the catalyst, which causes the indirect cause, is further suppressed.

以上のように、本発明方法の如き組合せによつて初め
て達成された極めて安定な反応系は、実用的、工業的見
地からみて非常に価値の高いものということができる。
As described above, the extremely stable reaction system first achieved by the combination of the method of the present invention can be said to be extremely valuable from a practical and industrial point of view.

本発明においては、水の存在が必要である。水の量と
しては、反応形式によつて異なるが、一般的に用いる単
環芳香族炭化水素に対して0.01〜100重量倍共存させる
ことができるが、反応条件下において、原料および生成
物を主成分とする有機液相と、水を含む液相とが2相を
形成することが必要であり、反応条件下において均一相
となるような極く微量の水の共存、もしくは極く多量の
水の存在は効果を減少させ、また、水の量が多すぎると
反応器を大きくする必要性も生ずるので、実用的には0.
5〜20重量倍共存させることが望ましい。
The present invention requires the presence of water. Although the amount of water varies depending on the reaction mode, it can be present in an amount of 0.01 to 100 times by weight with respect to a commonly used monocyclic aromatic hydrocarbon, but under the reaction conditions, the raw materials and products are mainly used. It is necessary that an organic liquid phase as a component and a liquid phase containing water form two phases, and coexistence of a very small amount of water or a very large amount of water so as to form a homogeneous phase under reaction conditions. Presence reduces the effect, and too much water also requires the reactor to be large, so it is practically 0.
It is desirable to coexist 5 to 20 times by weight.

また、本発明においては、水のかわりに、従来知られ
た方法の如く金属の塩の水溶液を用いることにより、さ
らに、好ましいシクロオレフインの選択率、収率を得る
ことができる。金属の塩としては、周期表I A族金属、I
I A族金属、II B族金属、マンガン(例えば、特公昭57
−7607号公報)、コバルトなどの硝酸塩、塩化物、硫酸
塩、酢酸塩、リン酸塩などが使用されるが、I A族金
属、II A族金属および亜鉛の塩が好ましく、さらには、
塩化物、硫酸塩の如き強酸塩が好ましい。
Further, in the present invention, a preferable cycloolefin selectivity and yield can be obtained by using an aqueous solution of a metal salt as in a conventionally known method instead of water. Metal salts include Group IA metals of the periodic table, I
Group IA metals, Group II B metals, manganese (for example, Japanese Patent Publication Sho 57
-7607), nitrates such as cobalt, chlorides, sulfates, acetates, phosphates, etc. are used, but salts of Group IA metals, Group IIA metals and zinc are preferred, and further,
Strong acid salts such as chlorides and sulfates are preferred.

さらに、本発明においては、水のかわりに亜鉛の強酸
塩、特に硫酸亜鉛の水溶液を用いると、好ましい結果を
得ることができる。
Further, in the present invention, preferable results can be obtained by using a strong acid salt of zinc, especially an aqueous solution of zinc sulfate, instead of water.

かかる硫酸亜鉛水溶液は、0.01重量%から飽和溶解度
までの濃度で用いることができるが、好ましくは0.1〜3
0重量%で用いるとよい。
Such zinc sulfate aqueous solution can be used at a concentration from 0.01% by weight to saturated solubility, but preferably 0.1 to 3
It is recommended to use 0% by weight.

また、本発明の反応系では、水溶液は中性または酸性
の状態で反応が行なわれることが必要である。水相をア
ルカリ性とすると、反応速度は著しく低下し、現実的な
シクロオレフイン類の製造方法とはなり難い。また、酸
性にするために、通常の酸、例えば、塩酸、硝酸、硫
酸、酢酸、リン酸などを加えてさしつかえない。このよ
うにして反応系へ導入される水溶液のpHは0.5〜7以
下、好ましくは2〜6.5である。
Further, in the reaction system of the present invention, it is necessary that the reaction be performed in an aqueous solution in a neutral or acidic state. When the aqueous phase is made alkaline, the reaction rate is remarkably reduced, and it is difficult to obtain a realistic method for producing cycloolefins. Further, in order to make it acidic, ordinary acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid and phosphoric acid may be added. The pH of the aqueous solution thus introduced into the reaction system is 0.5 to 7 or less, preferably 2 to 6.5.

本発明の反応系では、反応液中に不溶塩基性硫酸亜鉛
が存在しなければならない。そのためその不溶塩基性硫
酸亜鉛の共存する量および水溶液の量によつても異なる
が、反応系が微アルカリ性から酸性の状態で行われるの
が好ましい。さらに好ましくは中性から酸性の状態で行
われる。
In the reaction system of the present invention, insoluble basic zinc sulfate must be present in the reaction solution. Therefore, although it depends on the amount of the insoluble basic zinc sulfate coexisting and the amount of the aqueous solution, it is preferable that the reaction system is carried out from a slightly alkaline to acidic state. More preferably, it is carried out in a neutral to acidic state.

本発明方法における部分還元反応は、通常、液相懸濁
法にて連続的または回分的に行なわれるが、固定相式で
も行なうことができる。反応条件は、使用する触媒や添
加物の種類や量によつて適宜選択されるが、通常、水素
圧は1〜200Kg/cm2G、好ましくは10〜100Kg/cm2Gの範囲
であり、反応温度は室温〜250℃、好ましくは100〜200
℃の範囲である。また、反応時間は、目的とするシクロ
ヘキセン類の選択率や収率の実質的な目標値を決め、適
宜選択すればよく、特に制限はないが、通常、数秒ない
し数時間である。
The partial reduction reaction in the method of the present invention is usually carried out continuously or batchwise by a liquid phase suspension method, but can also be carried out by a stationary phase system. The reaction conditions are appropriately selected depending on the type and amount of the catalyst and additives used, but usually the hydrogen pressure is in the range of 1 to 200 Kg / cm 2 G, preferably 10 to 100 Kg / cm 2 G, The reaction temperature is room temperature to 250 ° C, preferably 100 to 200
It is in the range of ° C. The reaction time may be appropriately selected by determining a substantial target value of the selectivity and yield of the desired cyclohexenes and is appropriately selected, but is usually several seconds to several hours.

(発明の効果) 本発明によれば、シクロオレフインを従来にない高い
選択率、収率で得ることができ、さらに、安定した触媒
系となり、工業的に極めて価値の高いものである。
(Effects of the Invention) According to the present invention, cycloolephin can be obtained with a high selectivity and yield which have never been obtained, and a stable catalyst system is obtained, which is extremely valuable industrially.

(実施例) 次に、実施例をもつて本発明をさらに詳細に説明する
が、本発明は、これらの実施例に限定されるものではな
い。
(Examples) Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1〜3 オキシ塩化ジルコニウム水溶液に苛性ソーダ水溶液を
加え、得られた白色固体をろ過し、ろ液中にクロルイオ
ンが検出されなくなるまで水洗、ろ過を繰り返して水酸
化ジルコニウムを得た。
Examples 1 to 3 A caustic soda aqueous solution was added to the zirconium oxychloride aqueous solution, the obtained white solid was filtered, washed with water until filtration of chlorine ions was no longer detected, and zirconium hydroxide was obtained.

この水酸化ジルコニウムをジルコニウムとして2.0g,R
u(OH)を水中において加圧水素により還元して得た
金属ルテニウム触媒(平均結晶子径50Å)0.5g、表1に
示す塩基性亜鉛塩を亜鉛として100mg、および水280ml
を、チタン製の内容積1のオートクレーブに仕込み、
撹拌下水素で置換して150℃まで昇温後、ベンゼン140ml
を圧入し、全圧50Kg/cm2Gに保つように水素を保給し、1
50℃、所定時間水素化反応を行なつた。反応後、急冷し
て有機物層をガスクロマトグラフイーで分析した結果を
表1に示す。副生物はシクロヘキサンであつた。
Using this zirconium hydroxide as zirconium, 2.0 g, R
0.5 g of metal ruthenium catalyst (average crystallite size 50 Å) obtained by reducing u (OH) 3 in water with pressurized hydrogen, 100 mg of the basic zinc salt shown in Table 1 as zinc, and 280 ml of water.
Was charged into an autoclave made of titanium with an internal volume of 1,
Replace with hydrogen under stirring and heat up to 150 ° C, then 140 ml of benzene
Pressurize, and keep hydrogen at a total pressure of 50 Kg / cm 2 G,
The hydrogenation reaction was carried out at 50 ° C for a predetermined time. Table 1 shows the result of rapid cooling after the reaction and analysis of the organic layer by gas chromatography. The by-product was cyclohexane.

また実施例1〜3において、反応終了後、反応器を開
放し、観察したところ、いずれの場合も触媒および水酸
化ジルコニウムはよく分散しており、凝集もみられず、
チタン壁面への触媒の付着もなかつた。
Further, in Examples 1 to 3, after the reaction was completed, the reactor was opened and observed, and in any case, the catalyst and zirconium hydroxide were well dispersed and no aggregation was observed.
No catalyst adhered to the titanium wall.

比較例1 金属ルテニウム触媒(平均結晶子径50Å)0.05gを用
い、水酸化ジルコニウムおよび塩基性亜鉛塩を用いない
他は実施例1と同様にして、30分間反応させた。ベンゼ
ンの転化率は、66.1%、シクロヘキセンの選択率は、2.
3%、シクロヘキセン収率1.5%であつた。
Comparative Example 1 A reaction was carried out for 30 minutes in the same manner as in Example 1 except that 0.05 g of a metal ruthenium catalyst (average crystallite size 50 Å) was used and zirconium hydroxide and a basic zinc salt were not used. The conversion of benzene is 66.1% and the selectivity of cyclohexene is 2.
The yield was 3% and the cyclohexene yield was 1.5%.

また、反応終了後、反応器を開放し、観察したとこ
ろ、触媒の凝集がみられ、チタン壁面に触媒の付着が発
生していた。
After the reaction was completed, the reactor was opened and observed. As a result, agglomeration of the catalyst was observed, and the catalyst adhered to the titanium wall surface.

実施例4〜13 表2に示す水酸化物を金属として2.0g、金属ルテニウ
ム触媒(平均結晶子径50Å)0.5g、塩基性亜鉛塩として
ZnSO4・3Zn(OH)を亜鉛として30mgおよび10%硫酸亜
鉛水溶液280mlをチタン製の内容積1のオートクレー
ブに仕込み、実施例1と同様にして60分間反応させた。
結果を表2に示す。
Examples 4 to 13 2.0 g of hydroxide shown in Table 2 as metal, 0.5 g of metal ruthenium catalyst (average crystallite size 50Å), and basic zinc salt
30 mg of ZnSO 4 .3Zn (OH) 2 as zinc and 280 ml of a 10% zinc sulfate aqueous solution were charged into an autoclave made of titanium and having an internal volume of 1 and reacted in the same manner as in Example 1 for 60 minutes.
Table 2 shows the results.

但し、水酸化ハフニウムの場合は、オキシ塩化ハフニ
ウムから、また他の水酸化物の場合は塩化物から、加水
分解と水洗により、各水酸化物を調製した。
However, in the case of hafnium hydroxide, hafnium oxychloride, and in the case of other hydroxides, chlorides were prepared by hydrolysis and washing with water.

比較例2,3 表3に示す水酸化物にRuCl3をRuとして1%担持し、
水素化ホウ素ナトリウムで還元処理した水素化触媒をRu
として0.05g、10%硫酸亜鉛水溶液280mlをチタン製の内
容積1のオートクレーブに仕込み実施例1と同様にし
て30分間反応させた。結果を表3に示す。
Comparative Examples 2 and 3 The hydroxide shown in Table 3 was loaded with 1% of RuCl 3 as Ru,
Ru reduction catalyst reduced with sodium borohydride
As a result, 0.05 g and 280 ml of a 10% zinc sulfate aqueous solution were charged into an autoclave made of titanium and having an inner volume of 1 and reacted in the same manner as in Example 1 for 30 minutes. The results are shown in Table 3.

実施例14 触媒としてあらかじめ亜鉛を含有させたルテニウムの
還元物(亜鉛含有量5.6%、平均結晶子径65Å)0.5gを
用いた他は実施例4と同様の操作を行ない、60分間反応
させた。ベンゼンの転化率は、57.2%で、シクロヘキセ
ンの選択率は81.8%、シクロヘキセン収率46.8%であつ
た。
Example 14 The same operation as in Example 4 was carried out except that 0.5 g of a reduced product of ruthenium containing zinc in advance (zinc content 5.6%, average crystallite size 65Å) was used as a catalyst, and the reaction was carried out for 60 minutes. . The benzene conversion was 57.2%, the cyclohexene selectivity was 81.8%, and the cyclohexene yield was 46.8%.

実施例15 実施例1と同じ触媒(平均結晶子径50Å)1.5g、水酸
物を金属として7.0g、ZnSO4・3Zn(OH)を亜鉛として
0.6g、および10%硫酸亜鉛水溶液150mlを、内面にテフ
ロンコーテイングを施した内容積400mlのオートクレー
ブに仕込み、水素で全圧を50Kg/cm2Gとし、160℃におい
て高速で撹拌しながら200時間保持した。スラリーを回
収、洗浄後、X線回折法により触媒金属ルテニウムの平
均結晶子径を測定したところ、いずれの水酸化物を用い
た場合も55Å以下であり、ほとんど変化がなかつた。
Example 15 The same catalyst as in Example 1 (average crystallite size 50Å) 1.5 g, hydroxide as metal 7.0 g, ZnSO 4 .3Zn (OH) 2 as zinc
0.6 g and 150 ml of 10% zinc sulfate aqueous solution were charged into an autoclave with an internal volume of 400 ml, the inner surface of which was Teflon coated, and the total pressure was adjusted to 50 kg / cm 2 G with hydrogen and kept at 160 ° C for 200 hours with high speed stirring did. After the slurry was collected and washed, the average crystallite size of the catalytic metal ruthenium was measured by the X-ray diffraction method. As a result, it was 55 Å or less when any of the hydroxides was used, showing almost no change.

次に水酸化物として水酸化ジルコニウムを添加したス
ラリー回収物の1/3を用いて、実施例4と同条件となる
ように添加物など液組成を調整して反応を行なつたとこ
ろ、反応速度、選択率ともほとんど変化はなかつた。
Next, using 1/3 of the slurry recovered to which zirconium hydroxide was added as a hydroxide and adjusting the liquid composition such as additives so that the same conditions as in Example 4 were carried out, the reaction was carried out. There was almost no change in speed or selectivity.

比較例4 水酸化物およびZnSO4・3Zn(OH)を使用しなかつた
他の実施例15と同様の操作を行なつたところ、回収した
触媒金属ルテニウムの平均結晶子径は、91Åであつた。
Comparative Example 4 When the same operation as in Example 15 was carried out except that hydroxide and ZnSO 4 .3Zn (OH) 2 were not used, the recovered catalyst metal ruthenium had an average crystallite size of 91Å. It was

また回収物の1/3を用いて実施例4と同条件になるよ
うに添加物など液組成を調整して反応を行なつたとこ
ろ、反応速度が実施例の約半分に低下した。
When 1/3 of the recovered material was used to carry out the reaction by adjusting the liquid composition such as additives so that the conditions were the same as in Example 4, the reaction rate was reduced to about half of that in Example.

実施例15および比較例4より本発明方法における触媒
系が極めて安定なものであることが明らかである。
It is clear from Example 15 and Comparative Example 4 that the catalyst system in the method of the present invention is extremely stable.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C07B 61/00 300

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】単環芳香族炭化水素を水の共存下、水素に
より部分還元するに際し、200Å以下の平均結晶子径を
有する金属ルテニウムを主成分とする水素化触媒粒子を
用い、該触媒粒子とは別にTi,Zr,Hf,Nb,Ta,Cr,Fe,Co,A
l,Ga,Siより選ばれた少なくとも1種の金属の水酸化物
を添加し、さらに少なくとも1種の固体塩基性亜鉛塩の
共存下、中性または酸性の条件下に反応を行うことを特
徴とするシクロオレフィンを製造する方法。
Claims: 1. When partially reducing monocyclic aromatic hydrocarbons with hydrogen in the coexistence of water, hydrogenation catalyst particles containing ruthenium metal having an average crystallite diameter of 200 Å or less as a main component are used, and the catalyst particles are used. Apart from Ti, Zr, Hf, Nb, Ta, Cr, Fe, Co, A
Characterized by adding a hydroxide of at least one metal selected from l, Ga and Si, and performing the reaction under neutral or acidic conditions in the presence of at least one solid basic zinc salt. And a method for producing a cycloolefin.
【請求項2】水素化触媒があらかじめ亜鉛を含有せしめ
たルテニウムの還元物である特許請求の範囲第1項記載
のシクロオレフィンを製造する方法。
2. The method for producing a cycloolefin according to claim 1, wherein the hydrogenation catalyst is a reduced product of ruthenium containing zinc in advance.
【請求項3】水素化触媒中の亜鉛含有量が主成分である
ルテニウムに対し0.1〜50重量%である特許請求の範囲
第2項記載のシクロオレフィンを製造する方法。
3. The method for producing a cycloolefin according to claim 2, wherein the content of zinc in the hydrogenation catalyst is 0.1 to 50% by weight with respect to ruthenium as a main component.
【請求項4】添加する金属の水酸化物の量が水に対し
て、前記金属のみの量に換算して1×10-4〜0.3重量倍
である特許請求の範囲第1項記載のシクロオレフィンを
製造する方法。
4. The cyclone according to claim 1, wherein the amount of the hydroxide of the metal to be added is 1 × 10 −4 to 0.3 times the weight of water in terms of the amount of only the metal. A method for producing an olefin.
【請求項5】共存する固体塩基性亜鉛塩の量が水素化触
媒に対し、亜鉛のみの量に換算して1×10-4〜I重量倍
である特許請求の範囲第1項記載のシクロオレフィンを
製造する方法。
5. The cyclone according to claim 1, wherein the amount of the coexisting solid basic zinc salt is 1 × 10 −4 to I times the weight of the hydrogenation catalyst in terms of zinc only. A method for producing an olefin.
【請求項6】硫酸亜鉛水溶液の共存下に反応を行う特許
請求の範囲第1項記載のシクロオレフィンを製造する方
法。
6. The method for producing a cycloolefin according to claim 1, wherein the reaction is carried out in the presence of an aqueous zinc sulfate solution.
JP61233344A 1986-10-02 1986-10-02 Method for producing cycloolefin Expired - Fee Related JPH0816073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233344A JPH0816073B2 (en) 1986-10-02 1986-10-02 Method for producing cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233344A JPH0816073B2 (en) 1986-10-02 1986-10-02 Method for producing cycloolefin

Publications (2)

Publication Number Publication Date
JPS6388139A JPS6388139A (en) 1988-04-19
JPH0816073B2 true JPH0816073B2 (en) 1996-02-21

Family

ID=16953674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233344A Expired - Fee Related JPH0816073B2 (en) 1986-10-02 1986-10-02 Method for producing cycloolefin

Country Status (1)

Country Link
JP (1) JPH0816073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819012B2 (en) * 1986-07-14 1996-02-28 旭化成工業株式会社 Method for producing cycloolefin
US5414171A (en) * 1992-02-26 1995-05-09 Catalytica, Inc. Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins
US5334790A (en) * 1992-02-26 1994-08-02 Catalytica Process and catalyst for partially hydrogenating aromatics to produce cycloolefins
JP6268305B2 (en) * 2013-11-07 2018-01-24 チャイナ ペトロレウム アンド ケミカル コーポレーションChina Petroleum & Chemical Corporation Supported catalyst, process for producing the same and use thereof, and process for producing isobutylene from halomethane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035371A (en) * 1989-06-01 1991-01-11 Kawasaki Steel Corp Production of si3n4 sintered compact
JPH037646A (en) * 1989-06-05 1991-01-14 Toyota Motor Corp Anti-skid type brake device

Also Published As

Publication number Publication date
JPS6388139A (en) 1988-04-19

Similar Documents

Publication Publication Date Title
US4734536A (en) Process for producing cycloolefins
TWI586430B (en) Oxidative dehydrogenation of olefins catalyst and methods of making and using the same
US4374758A (en) Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution
JPH088985B2 (en) Hydrogenation catalyst
JPH0816073B2 (en) Method for producing cycloolefin
KR100286911B1 (en) Process for producing cycloolefin
JP4597024B2 (en) Cycloolefin production catalyst and cycloolefin production method
JP3897830B2 (en) Process for producing cycloolefin
JPH07106991B2 (en) Partial hydrogenation method
JPH0216736B2 (en)
JPH0819012B2 (en) Method for producing cycloolefin
JP2892233B2 (en) Method for partial hydrogenation of monocyclic aromatic hydrocarbons
JPH0335299B2 (en)
JPH0825919B2 (en) Method for producing cycloolefin
JP2932173B2 (en) Method for producing cycloolefin
CN112023962A (en) Catalyst for methanol synthesis, preparation method thereof and method for synthesizing methanol
JPH0639399B2 (en) Partial hydrogenation method for monocyclic aromatic hydrocarbons
JPH037646B2 (en)
JPH035371B2 (en)
JPH0335298B2 (en)
JP4033980B2 (en) Method for producing cycloolefin
JP4033976B2 (en) Method for producing cycloolefin
JPH0219098B2 (en)
KR790001170B1 (en) Process for hydrating nitrile to corresponding amide
JPH0798757B2 (en) Method for producing cycloolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees