JP4033539B2 - Aluminum alloy foil for electrolytic capacitor electrode - Google Patents

Aluminum alloy foil for electrolytic capacitor electrode Download PDF

Info

Publication number
JP4033539B2
JP4033539B2 JP02839898A JP2839898A JP4033539B2 JP 4033539 B2 JP4033539 B2 JP 4033539B2 JP 02839898 A JP02839898 A JP 02839898A JP 2839898 A JP2839898 A JP 2839898A JP 4033539 B2 JP4033539 B2 JP 4033539B2
Authority
JP
Japan
Prior art keywords
foil
aluminum alloy
content
alloy foil
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02839898A
Other languages
Japanese (ja)
Other versions
JPH11233381A (en
Inventor
市三 佃
一雄 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP02839898A priority Critical patent/JP4033539B2/en
Publication of JPH11233381A publication Critical patent/JPH11233381A/en
Application granted granted Critical
Publication of JP4033539B2 publication Critical patent/JP4033539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、電解コンデンサ電極用アルミニウム合金箔に関する。
【0002】
【従来の技術】
アルミニウム電解コンデンサ用電極材として一般に用いられるアルミニウム箔には、その実効面積を拡大して単位面積当たりの静電容量を増大するため、通常、電気化学的あるいは化学的エッチング処理が施される。そして、エッチングによる拡面率の増大を図る有効な手段として、FeおよびSiの析出量を制御することは従来より知られているところであり、さらにエッチング特性を改善するためにFeおよびSiの析出量に加えて他の元素の析出量についても種々提案されている。
【0003】
例えば、特公平3−61333にはFeおよびSiの析出量の合計がこれら元素の含有量の10〜70%に規制されたアルミニウム合金箔が記載され、特開平8−209275には、Fe、Si、Cuの析出量が10〜70%に規制されたアルミニウム箔が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、H18箔のような硬箔については、FeおよびSi、あるいはさらにCuの析出量が上述の範囲にあると、エッチング時に過溶解を起こすことが多く、特にFeおよびSi析出量の合計が20%を超えると溶解減量が増大して静電容量が低下するという問題があった。
【0005】
この発明は、このような技術背景に鑑み、硬箔であってエッチング特性の優れた電解コンデンサ電極用アルミニウム合金箔の提供を目的とする。
【0006】
【課題を解決するための手段】
この発明の電解コンデンサ電極用アルミニウム合金箔は、前記目的を達成するために、箔合金組成において、アルミニウム純度が99.9%以上であるとともに、Si:0.0010〜0.0100wt%、Fe:0.0010〜0.0100wt%、Cu:0.0005〜0.050wt%、Ga:0.0050wt%以下および不可避不純物を含有する硬箔であって、FeおよびSiの含有量の合計に対し、熱フェノール溶解法により測定されるFeおよびSiの析出量の合計の割合(Y)とGa含有量(wt%)(X)とが,
0.02−4X≦Y≦0.15−20X
の関係を満たすことを要旨とする。
【0007】
この発明において対象とされるアルミニウム合金箔は、冷間圧延後に焼鈍や安定化処理を行わない硬箔であり、その代表的なものはH18箔である。また、交流エッチングによりスポンジ状エッチピッチを形成する低圧用箔として好適に使用できる。
【0008】
箔合金組成において、アルミニウム純度を99.9%以上の高純度とするとともに、Fe、Si、CuおよびGaの含有量を規制する。
【0009】
アルミニウム純度を99.9%以上とするのは、99.9%未満では不純物量が多くなって、Fe、Si、CuおよびGa含有量やFeおよびSiの析出量を制御しても、エッチング時に過溶解が生じやすくなってエッチング特性が低下するためである。
【0010】
Fe含有量およびSi含有量をそれぞれ0.0010〜0.0100%とするのは、上限値を超えると所定の析出量に制御することが困難となり、また下限値未満にFeおよびSiを除去するには精製コストがかかるためである。Fe含有量の好ましい上限値は0.0080wt%であり、Si含有量は好ましい上限値は0.0080wt%である。
【0011】
Cuは、エッチングピットを均一に分布させてエッチング特性を良好にする効果がある。Cu含有量は、0.0005wt%未満では前記効果に乏しく、0.0050wt%を超えると箔表面に過溶解を生じるため、0.0005〜0.050wt%とする必要がある。Cu含有量の好ましい下限値は0.0008wt%であり、好ましい上限値は0.010wt%である。
【0012】
Gaは、エッチングピットの成長を促進して拡面率を高める効果がある。Ga含有量は、増加に伴い自然電極電位が貴な方向に以降しエッチピットの形成が多くなるが、0.0050wt%を超えると箔表面に過溶解を生じるため、0.0050wt%以下とする必要がある。Ga含有量の好ましい上限値は0.0040wt%であり、また、拡面率を有効に向上させるために0.0005wt%以上が好ましい。なお、含有量が0.0050wt%以下であることから、Gaは析出せずにAlマトリックスに固溶されていると考えられる。
【0013】
この発明においては、Fe、Si、CuおよびGaを上述の範囲に規定した上で、FeおよびSiの析出量についても規定する。アルミニウム合金箔中において、FeおよびSiの一部はAl−Fe系析出物あるいはAl−Fe−Si系析出物として析出する。これらの析出物はアルミニウムマトリックスとの電位差によりエッチングの開始点となり、エッチピットの形成に重要な役割を果たすものであって、析出量によってエッチングによる拡面率が左右される。従って、この発明においては、FeおよびSiの析出量をFe、SiおよびGaの含有量との関係において次の(I)式の範囲を規定する。また、図1に(I)式が示す範囲を斜線で図示する。
【0014】
0.02−4X≦Y≦0.15−20X …… (I)
ただし、
X=Ga含有量(≦0.005wt%)
Y=FeおよびSiの析出量の合計/FeおよびSiの含有量の合計
析出量の割合を(I)式の範囲に規定するのは、析出量の割合が増えてY>0.15−20Xになるとエッチングのスポンジ層が過溶解し、一方析出量の割合が減少してY<0.02−4Xになると溶解が進行せず拡面率の向上が望めないためである。
【0015】
(I)式におけるFeおよびSiの析出量は、熱フェノール溶解法により測定する。熱フェノール溶解法とは、加熱したフェノールがアルミニウム合金中の析出物以外の成分、即ちアルミニウムマトリックスおよび固溶成分のみを溶解するが、析出物を溶解しないという性質を利用して、アルミニウム合金箔から析出物を分別した上で、析出物中の元素を定量分析する方法である。また、析出量の測定方法として熱フェノール溶解法を採用するのは、FeおよびSi以外にCuおよびGaを含有し、さらには不可避不純物を含有するアルミニウム合金箔においても、析出したFeおよびSiを選択的に定量できるためである。
【0016】
熱フェノール溶解法によるFeおよびSiの析出量の測定手順の一例を次に示す。
【0017】
まず、供試片として、アルミニウム合金箔を適宜切断し、表面に付着している汚れを洗浄除去して秤量する。次に、供試片を170〜180℃に加熱したフェノール中に投入して、加熱しながら析出物以外の成分を溶解させる。加熱はフェノールの蒸発を防ぐために還流させながら行う。次に、フェノール溶解液から不溶成分である析出物を濾別し、析出物を酸に溶解させる。そして、析出物の溶解液に対し、原子吸光法やICP発光分析法などによりFeおよびSiの定量分析を行い、FeおよびSiの個々の析出量を得る。
【0018】
さらに、上記方法で求めたFeおよびSiの析出量、供試片の重量および既知のFe含有量およびSi含有量を用いて、FeおよびSiの含有量の合計に対するFeおよびSiの析出量の合計の割合(Y)を算出し、さらに、既知のGa含有量(X)にもとづき、(I)式を満たすかどうかを判定する。
【0019】
なお、FeおよびSiの析出量は、冷間圧延の途中で行う中間焼鈍の温度および時間を調整することにより制御できる。
【0020】
この発明の電解コンデンサ電極用アルミニウム合金箔は、アルミニウム純度、Fe、Si、CuおよびGa含有量が規定され、さらに所定の割合でFeおよびSiを析出させることにより、エッチングによる箔の十分な溶解がなされ、かつ過溶解が抑制される。
【0021】
【実施例】
次に、この発明の電解コンデンサ電極用アルミニウム合金箔の具体的実施例について説明する。
【0022】
まず、表1に示す実施例1〜3、比較例4〜6の合金組成のアルミニウムスラブを面削して均質化処理を行った後、熱間圧延開始温度530℃で熱間圧延し、さらに常法により冷間圧延を施し、厚さ100μmの箔とした。なお、比較例4については冷間圧延の途中の厚さ0.6mmのときに240℃×6時間の中間焼鈍を行いFeおよびSiの析出を促した。
【0023】
次に、各アルミニウム箔について、熱フェノール溶解法によりFeおよびSiの個々の析出量を測定し、FeおよびSiの含有量の合計に対するFeおよびSiの析出量の合計の割合(Y)を計算により求めた。さらに、この析出量の割合(Y)とGa含有量(X)との関係を図1上に示す。
【0024】
次に、各アルミニウム合金箔について、エッチングおよび化成処理を行った。エッチング条件は、35℃の17%塩酸+0.04%硫酸+0.3%リン酸+0.6%硝酸+3%塩化アルミニウム溶液中にアルミニウム合金箔を浸漬し、電流密度0.3%A/cm2 で20Hzの正弦波交流を560秒間印加するものとした。また、化成条件は15%アジピン酸アンモニウム水溶液中で22Vで処理するものとした。
【0025】
次いで、化成処理した各アルミニウム合金箔についてLCRメーターで静電容量を測定した。その結果を、比較例6の静電容量を100としたときの相対比較にて表1に示す。
【0026】
【表1】

Figure 0004033539
【0027】
表1の結果から、FeおよびSiの析出量の割合をこの発明の範囲内に規制した実施例1〜3は、良好な静電容量が良好であることを確認できた。
【0028】
【発明の効果】
以上の次第で、この発明の電解コンデンサ電極用アルミニウム合金箔は、箔合金組成において、アルミニウム純度が99.9%以上であるとともに、Si:0.0010〜0.0100wt%、Fe:0.0010〜0.0100wt%、Cu:0.0005〜0.050wt%、Ga:0.0050wt%以下および不可避不純物を含有する硬箔であって、FeおよびSiの含有量の合計に対し、熱フェノール溶解法により測定されるFeおよびSiの析出量の合計の割合(Y)とGa含有量(wt%)(X)とが,
0.02−4X≦Y≦0.15−20X
の関係を満たすものであるから、エッチングによる箔の十分な溶解がなされかつ過溶解が抑制され、エッチピットの形成が適正に行われ、静電容量の増大を図ることができる。
【図面の簡単な説明】
【図1】この発明の電解コンデンサ電極用アルミニウム合金箔において、FeおよびSiの析出量の割合を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy foil for electrolytic capacitor electrodes.
[0002]
[Prior art]
An aluminum foil generally used as an electrode material for an aluminum electrolytic capacitor is usually subjected to an electrochemical or chemical etching treatment in order to increase the capacitance per unit area by expanding the effective area. In addition, as an effective means for increasing the surface expansion ratio by etching, it has been conventionally known to control the precipitation amount of Fe and Si, and in order to further improve the etching characteristics, the precipitation amount of Fe and Si. In addition to the above, various precipitation amounts of other elements have been proposed.
[0003]
For example, Japanese Patent Publication No. 3-61333 describes an aluminum alloy foil in which the total precipitation amount of Fe and Si is regulated to 10 to 70% of the content of these elements, and Japanese Patent Application Laid-Open No. 8-209275 discloses Fe, Si. An aluminum foil in which the amount of deposited Cu is regulated to 10 to 70% is disclosed.
[0004]
[Problems to be solved by the invention]
However, for hard foils such as H18 foil, if the precipitation amount of Fe and Si or Cu is further in the above range, over-dissolution often occurs during etching, and the total precipitation amount of Fe and Si is particularly 20 If it exceeds%, there is a problem that the loss of dissolution increases and the capacitance decreases.
[0005]
In view of such a technical background, an object of the present invention is to provide an aluminum alloy foil for an electrolytic capacitor electrode that is a hard foil and excellent in etching characteristics.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the aluminum alloy foil for an electrolytic capacitor electrode of the present invention has an aluminum purity of 99.9% or more in the foil alloy composition, Si: 0.0010 to 0.0100 wt%, Fe: 0.0010 to 0.0100 wt%, Cu: 0.0005 to 0.050 wt%, Ga: 0.0050 wt% or less and a hard foil containing inevitable impurities, with respect to the total content of Fe and Si, The total ratio (Y) of the precipitation amount of Fe and Si measured by the hot phenol dissolution method and the Ga content (wt%) (X) are:
0.02-4X ≦ Y ≦ 0.15-20X
The main point is to satisfy this relationship.
[0007]
The aluminum alloy foil targeted in this invention is a hard foil that is not annealed or stabilized after cold rolling, and a typical one is H18 foil. Further, it can be suitably used as a low pressure foil for forming a sponge-like etch pitch by AC etching.
[0008]
In the foil alloy composition, the aluminum purity is set to a high purity of 99.9% or more, and the contents of Fe, Si, Cu and Ga are regulated.
[0009]
The aluminum purity is set to 99.9% or more when the amount of impurities increases when it is less than 99.9%, and even when the Fe, Si, Cu and Ga contents and the precipitation amount of Fe and Si are controlled, This is because over-dissolution tends to occur and the etching characteristics deteriorate.
[0010]
The reason why the Fe content and the Si content are 0.0010 to 0.0100%, respectively, is that when the upper limit is exceeded, it becomes difficult to control the amount of precipitation, and Fe and Si are removed below the lower limit. This is because of the purification cost. A preferable upper limit of the Fe content is 0.0080 wt%, and a preferable upper limit of the Si content is 0.0080 wt%.
[0011]
Cu has an effect of improving etching characteristics by uniformly distributing etching pits. If the Cu content is less than 0.0005 wt%, the above effect is poor, and if it exceeds 0.0050 wt%, overmelting occurs on the foil surface, so it is necessary to be 0.0005 to 0.050 wt%. A preferable lower limit of the Cu content is 0.0008 wt%, and a preferable upper limit is 0.010 wt%.
[0012]
Ga has the effect of promoting the growth of etching pits and increasing the surface expansion ratio. As the Ga content increases, the natural electrode potential increases in a noble direction and the formation of etch pits increases. However, if it exceeds 0.0050 wt%, overmelting occurs on the foil surface, so the content is set to 0.0050 wt% or less. There is a need. A preferable upper limit of the Ga content is 0.0040 wt%, and 0.0005 wt% or more is preferable in order to effectively improve the surface expansion ratio. In addition, since content is 0.0050 wt% or less, it is thought that Ga does not precipitate but is dissolved in the Al matrix.
[0013]
In the present invention, Fe, Si, Cu, and Ga are defined in the above range, and the precipitation amount of Fe and Si is also defined. In the aluminum alloy foil, part of Fe and Si is deposited as an Al—Fe based precipitate or an Al—Fe—Si based precipitate. These precipitates serve as etching starting points due to a potential difference with the aluminum matrix and play an important role in the formation of etch pits, and the area expansion ratio due to etching depends on the amount of precipitation. Therefore, in the present invention, the range of the following formula (I) is defined in relation to the amounts of Fe and Si precipitated and the contents of Fe, Si and Ga. Further, the range indicated by the formula (I) in FIG.
[0014]
0.02-4X ≦ Y ≦ 0.15-20X (I)
However,
X = Ga content (≦ 0.005 wt%)
The ratio of the total precipitation amount of Y = Fe and Si / the total precipitation amount of Fe and Si is defined in the range of the formula (I) because the ratio of the precipitation amount increases and Y> 0.15-20X This is because the etching sponge layer is over-dissolved, and on the other hand, when the ratio of the amount of precipitation decreases and Y <0.02-4X, dissolution does not proceed and improvement of the surface expansion ratio cannot be expected.
[0015]
The precipitation amount of Fe and Si in the formula (I) is measured by a hot phenol dissolution method. With the hot phenol dissolution method, heated phenol dissolves components other than precipitates in the aluminum alloy, that is, only the aluminum matrix and solid solution components, but does not dissolve the precipitates. This is a method of quantitatively analyzing elements in the precipitate after separating the precipitate. In addition, the hot phenol dissolution method is adopted as a method for measuring the precipitation amount. In addition to Fe and Si, Cu and Ga are contained, and even in an aluminum alloy foil containing inevitable impurities, the precipitated Fe and Si are selected. This is because it can be quantitatively determined.
[0016]
An example of the procedure for measuring the amount of Fe and Si deposited by the hot phenol dissolution method is shown below.
[0017]
First, as a test piece, an aluminum alloy foil is appropriately cut, and dirt adhering to the surface is removed by washing and weighed. Next, the specimen is put into phenol heated to 170 to 180 ° C., and components other than the precipitate are dissolved while heating. Heating is performed while refluxing to prevent evaporation of phenol. Next, the precipitate which is an insoluble component is filtered off from the phenol solution, and the precipitate is dissolved in an acid. The precipitate solution is subjected to quantitative analysis of Fe and Si by an atomic absorption method, an ICP emission analysis method, or the like to obtain individual precipitation amounts of Fe and Si.
[0018]
Furthermore, using the Fe and Si precipitation amounts obtained by the above method, the weight of the specimen and the known Fe content and Si content, the total precipitation amount of Fe and Si with respect to the total Fe and Si content The ratio (Y) is calculated, and it is further determined whether or not the formula (I) is satisfied based on the known Ga content (X).
[0019]
In addition, the precipitation amount of Fe and Si can be controlled by adjusting the temperature and time of intermediate annealing performed in the middle of cold rolling.
[0020]
The aluminum alloy foil for electrolytic capacitor electrodes according to the present invention has a specified aluminum purity, Fe, Si, Cu and Ga contents, and further precipitates Fe and Si at a predetermined ratio, so that the foil can be sufficiently dissolved by etching. And over-dissolution is suppressed.
[0021]
【Example】
Next, specific examples of the aluminum alloy foil for electrolytic capacitor electrodes according to the present invention will be described.
[0022]
First, the aluminum slabs having the alloy compositions of Examples 1 to 3 and Comparative Examples 4 to 6 shown in Table 1 were subjected to homogenization treatment and then hot rolled at a hot rolling start temperature of 530 ° C. Cold rolling was performed by a conventional method to obtain a foil having a thickness of 100 μm. In Comparative Example 4, when the thickness was 0.6 mm during the cold rolling, intermediate annealing was performed at 240 ° C. for 6 hours to promote precipitation of Fe and Si.
[0023]
Next, for each aluminum foil, the individual precipitation amounts of Fe and Si are measured by a hot phenol dissolution method, and the ratio (Y) of the total precipitation amount of Fe and Si to the total content of Fe and Si is calculated. Asked. Furthermore, the relationship between the ratio (Y) of this precipitation amount and Ga content (X) is shown on FIG.
[0024]
Next, each aluminum alloy foil was subjected to etching and chemical conversion treatment. Etching conditions were as follows: an aluminum alloy foil was immersed in a solution of 17% hydrochloric acid + 0.04% sulfuric acid + 0.3% phosphoric acid + 0.6% nitric acid + 3% aluminum chloride at 35 ° C., and a current density of 0.3% A / cm 2. A 20 Hz sine wave alternating current was applied for 560 seconds. Further, the chemical conversion conditions were such that the treatment was performed at 22 V in a 15% ammonium adipate aqueous solution.
[0025]
Next, the electrostatic capacity of each aluminum alloy foil subjected to chemical conversion treatment was measured with an LCR meter. The results are shown in Table 1 as a relative comparison when the capacitance of Comparative Example 6 is 100.
[0026]
[Table 1]
Figure 0004033539
[0027]
From the results of Table 1, it was confirmed that Examples 1 to 3 in which the ratio of the precipitation amount of Fe and Si was regulated within the scope of the present invention had good electrostatic capacity.
[0028]
【The invention's effect】
As described above, the aluminum alloy foil for an electrolytic capacitor electrode according to the present invention has an aluminum purity of 99.9% or more, Si: 0.0010 to 0.0100 wt%, Fe: 0.0010 in the foil alloy composition. ~ 0.0100wt%, Cu: 0.0005 ~ 0.050wt%, Ga: 0.0050wt% or less and hard foil containing inevitable impurities, dissolved in hot phenol with respect to the total content of Fe and Si The total proportion (Y) of Fe and Si precipitation measured by the method and Ga content (wt%) (X)
0.02-4X ≦ Y ≦ 0.15-20X
Therefore, the foil is sufficiently dissolved by etching and over-dissolution is suppressed, etch pits are properly formed, and the capacitance can be increased.
[Brief description of the drawings]
FIG. 1 is a graph showing the ratio of Fe and Si precipitation in an aluminum alloy foil for electrolytic capacitor electrodes according to the present invention.

Claims (3)

箔合金組成において、アルミニウム純度が99.9%以上であるとともに、Si:0.0010〜0.0100wt%、Fe:0.0010〜0.0100wt%、Cu:0.0005〜0.050wt%、Ga:0.0050wt%以下および不可避不純物を含有する硬箔であって、FeおよびSiの含有量の合計に対し、熱フェノール溶解法により測定されるFeおよびSiの析出量の合計の割合(Y)とGa含有量(wt%)(X)とが,
0.02−4X≦Y≦0.15−20X
の関係を満たすことを特徴とする電解コンデンサ電極用アルミニウム合金箔。
In the foil alloy composition, the aluminum purity is 99.9% or more, Si: 0.0010 to 0.0100 wt%, Fe: 0.0010 to 0.0100 wt%, Cu: 0.0005 to 0.050 wt%, Ga: Hard foil containing 0.0050 wt% or less and unavoidable impurities, and the ratio of the total amount of precipitation of Fe and Si measured by the hot phenol dissolution method to the total content of Fe and Si (Y ) And Ga content (wt%) (X)
0.02-4X ≦ Y ≦ 0.15-20X
An aluminum alloy foil for electrolytic capacitor electrodes, characterized by satisfying the relationship:
請求項1に記載されたアルミニウム合金箔を電気化学的あるいは化学的エッチング処理したアルミニウム合金エッチング箔。An aluminum alloy etching foil obtained by electrochemically or chemically etching the aluminum alloy foil according to claim 1. 請求項1に記載されたアルミニウム合金箔を交流エッチングして得られる低圧用電解コンデンサ電極用アルミニウム合金箔。An aluminum alloy foil for an electrolytic capacitor electrode for low pressure obtained by AC etching the aluminum alloy foil according to claim 1.
JP02839898A 1998-02-10 1998-02-10 Aluminum alloy foil for electrolytic capacitor electrode Expired - Lifetime JP4033539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02839898A JP4033539B2 (en) 1998-02-10 1998-02-10 Aluminum alloy foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02839898A JP4033539B2 (en) 1998-02-10 1998-02-10 Aluminum alloy foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JPH11233381A JPH11233381A (en) 1999-08-27
JP4033539B2 true JP4033539B2 (en) 2008-01-16

Family

ID=12247569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02839898A Expired - Lifetime JP4033539B2 (en) 1998-02-10 1998-02-10 Aluminum alloy foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP4033539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105755334A (en) * 2016-03-29 2016-07-13 江阴新仁科技有限公司 Aluminum foil used for 6811 alloy automotive radiator and preparing method thereof
CN105755327B (en) * 2016-03-29 2017-10-20 江阴新仁铝业科技有限公司 Low energy efficient discharge alloy aluminium foil and preparation method thereof

Also Published As

Publication number Publication date
JPH11233381A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
JP2005179719A (en) Aluminum foil for electrolytic capacitor, and its production method
JP4033539B2 (en) Aluminum alloy foil for electrolytic capacitor electrode
JPH055145A (en) Aluminum alloy for electrolytic capacitor electrode foil
JP3731094B2 (en) Aluminum alloy foil for electrolytic capacitor anode
JP4874039B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and alloy foil used therefor
JPH11233382A (en) Aluminum alloy foil for electrode of electrolytic capacitor
JP2793964B2 (en) Aluminum foil for cathode of electrolytic capacitor
JP2004076059A (en) Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JP3959106B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP3590229B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP3454485B2 (en) Aluminum foil for electrode of electrolytic capacitor
JP3244131B2 (en) Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same
JPH08337833A (en) Aluminum foil for electrode of electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4429520B2 (en) Aluminum foil for anode electrolytic capacitors
JP3286968B2 (en) Aluminum alloy foil for electrolytic capacitor electrodes
JP3699146B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JPH10223485A (en) Aluminum foil for electrolytic-capacitor electrode
JP3256105B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2002124438A (en) Aluminum alloy foil for electrolytic capacitor cathode
JP2778661B2 (en) Aluminum alloy plate for printing plate and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term