JP4031849B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4031849B2
JP4031849B2 JP25694697A JP25694697A JP4031849B2 JP 4031849 B2 JP4031849 B2 JP 4031849B2 JP 25694697 A JP25694697 A JP 25694697A JP 25694697 A JP25694697 A JP 25694697A JP 4031849 B2 JP4031849 B2 JP 4031849B2
Authority
JP
Japan
Prior art keywords
compressor
expansion mechanism
refrigerant
radiator
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25694697A
Other languages
Japanese (ja)
Other versions
JPH1194379A (en
Inventor
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP25694697A priority Critical patent/JP4031849B2/en
Publication of JPH1194379A publication Critical patent/JPH1194379A/en
Application granted granted Critical
Publication of JP4031849B2 publication Critical patent/JP4031849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素を冷媒として使用する冷凍空調装置に関するものである。
【0002】
【従来の技術】
従来、この種の二酸化炭素(CO2)を冷媒として使用する冷凍空調装置として図4に示す冷凍空調装置が一般的に知られている。
【0003】
この冷凍空調装置は圧縮機1、放熱器2、膨張弁3及び蒸発器4を有し、二酸化炭素冷媒を圧縮機1→放熱器2→膨張弁3→蒸発器4→圧縮機1と矢印に示すよう順次循環させることにより、室内の冷房等の空調を行っている。
【0004】
【発明が解決しようとする課題】
ところで、CO2冷媒を使用する冷凍空調装置で、大気に熱放出を行う方式のものにあっては、外気温度が高いときでも所定の冷凍能力を確保するために、高い吐出圧力が得られる圧縮機が必要となる。
【0005】
即ち、図5のCO2モリエル線図で説明すれば、通常運転では、圧縮機1でCO2冷媒を圧縮して飽和液及び飽和蒸気線の臨界点を越えた100kg/cm2まで圧縮する(図5のA→B)。次いで、この圧縮されたCO2冷媒を放熱器2で大気に放熱し(図5のB→C)、更にこの放熱されたCO2冷媒を膨張弁3で等エンタルピ線に沿って膨張させ圧力降下させる(図5のC→D)。この圧力降下により湿り蒸気となったCO2冷媒を蒸発器4で気化し、室内を冷却する(図5のD→A)。
【0006】
一方、外気温度が高く35℃となったときでも十分な冷却能力を得るためには、図5のA→B’→C’→D’とCO2冷媒を循環しなければならず、ここでは150kg/cm2程度の吐出圧力が必要となる。
【0007】
従って、外気温度が高いときでも十分に室内を冷房等できるようにするには、圧縮機1として冷凍能力の大きいものを設置する必要があり、圧縮機1の駆動動力の割には効率の悪いものとなっていた。
【0008】
本発明の目的は前記従来の課題に鑑み、圧縮機全体の動力を大きくすることなく、かつ、冷凍効果が向上する冷凍空調装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は前記課題を解決するため、請求項1の発明は、二酸化炭素の冷媒を圧縮機、放熱器、膨張機構及び蒸発器に順次循環し、超臨界状態で放熱器から熱を放出する蒸気圧縮式の冷凍空調装置において、放熱器を順次直列に接続された第1放熱器と第2放熱器とから構成するとともに、該各放熱器の間に他の圧縮機を挿入し、該他の圧縮機の駆動軸と前記膨張機構の出力軸を連係し、前記他の圧縮機のガス吸入口とガス吐出口を接続し該他方の圧縮機を迂回するバイパス管を設けた構造となっている。
【0010】
この発明によれば、CO2冷媒は一方の圧縮機→第1放熱器→他方の圧縮機→第2放熱器→膨張機構→蒸発器→一方の圧縮機と順次循環し、室内冷房等を行う。
【0011】
この冷凍サイクルで、一方の圧縮機では例えば100kg/cm2程度まで圧縮し、また、他の圧縮機ではこの冷媒を150kg/cm2程度まで圧縮し、所要の吐出圧力を得る。ここで、他方の圧縮機の動力(他方の圧縮機で吐出圧力を100kg/cm2から150kg/cm2まで上昇させるために費やされる動力)と一方の圧縮機の動力(一方の圧縮機で100kg/cm2から150kg/cm2まで上昇させるために費やされる動力)とを比較すると、他方の圧縮機に吸入される冷媒が第1放熱器で一部放熱され、エンタルピが小さくなった分(他方の圧縮機における等エントロピ線の傾きが大きくなった分)、その動力が小さくなる。
【0012】
また、圧縮機の駆動軸と膨張機構の出力軸が連係しているため、膨張機構での冷媒膨張作用に伴う動力が、他方の圧縮機の冷媒圧縮作用に利用される。さらに、冷凍空調装置の運転始動時で一方の圧縮機がガス圧縮を開始すると、蒸発器及び膨張機構出口部の圧力が降下するとともに、一方の圧縮機で昇圧される圧力は、逆止弁、バイパス管を介して第2放熱器及び膨張機構入口に伝達される。これにより、膨張機構の出口と入口との圧力差が所定圧力差となり、膨張機構が駆動するとともに、この膨張機構の駆動力が他方の圧縮機の駆動力として利用され、他方の圧縮機が駆動する。この他方の圧縮機が駆動した後は、他方の圧縮機の吸入力により全てのCO 2 冷媒が他方の圧縮機に流れ込み、室内冷房等を行う。
【0013】
請求項2の発明は、請求項1の冷凍空調装置において、バイパス管にガス吐出口からガス吸入口への冷媒流通を規制する逆止弁を設けた構造となっている。
【0014】
この発明によれば、バイパス管に逆止弁を設けることにより、他の圧縮機から吐出した冷媒がバイパス管を通じて戻ることを防止している。
【0015】
請求項3の発明は、請求項1又は請求項2の冷凍空調装置において、他方の圧縮機と膨張機構をスクロール式圧縮・膨張機構で構成している。この発明によれば、膨張機構では等エントロピ線に沿って断熱膨張するため、蒸発器への吸入直前のエンタルピが小さくなり、冷凍効果が向上する。
【0016】
なお、この他方の圧縮機と膨張機構とを一体に形成し両者をユニット化するようにしても良い。
【0017】
【発明の実施の形態】
図1乃至図3は本発明に係る冷凍空調装置の一実施形態を示すもので、図1は冷凍空調装置の冷媒回路図、図2は第2圧縮機と膨張機構との連係構造を示す概略図、図3は冷凍空調装置のCO2モリエル線図である。なお、図4及び図5で既に説明した従来例と同一構成部分は同一符号をもって表す。
【0018】
この冷凍空調装置はCO2を冷媒として使用するもので、図1に示すように、一方の圧縮機(以下、第1圧縮機という)1a、第1放熱器2a、他方の圧縮機(以下、第2圧縮機という)1b、第2放熱器2b、膨張機構3a及び蒸発器4を順次冷媒管5で接続し、CO2冷媒を第1圧縮機1→第1放熱器2a→第2圧縮機1b→第2放熱器2b→膨張機構3a→蒸発器4→第1圧縮機1aと順次循環し、蒸発器4の吸熱作用により室内冷房を行っている。また、第2圧縮機1bのガス吸入口側の冷媒管5とガス吐出口側の冷媒管5はバイパス管6で接続され、このバイパス管6により第2圧縮機1bを迂回するようになっている。また、このバイパス管6には逆止弁7が設置されており、この逆止弁7により第2圧縮機1bから吐出したCO2冷媒がこのバイパス管6を通じて戻ることがないよう規制している。
【0019】
このように構成された冷凍空調装置において、第2圧縮機1b及び膨張機構3aは図2に示すように構成されている。即ち、第2圧縮機1b及び膨張機構3aは共にスクロール式の圧縮・膨張機構を採用している。まず、第2圧縮機1bはガス吸入口11を外側にガス吐出口12を中央にそれぞれ有するもので、旋回スクロール13を図2の矢印方向(図2に向かって右回り)に回転してガス吸入口11から流入したCO2冷媒を固定スクロール14との間で圧縮し、ガス吐出口12から吐出する構成となっている。
【0020】
一方、膨張機構3aは前記第2圧縮機1bとは逆の構成、即ちガス吐出口31を外側にガス吸入口32を内側にそれぞれ有し、旋回スクロール33を図2の矢印方向(図2に向かって左回り)に回転してガス吸入口32から流入したCO2冷媒を固定スクロール34との間で膨張させ、ガス吐出口31から吐出する構成となっている。
【0021】
更に、第2圧縮機1bの駆動軸と膨張機構3aの出力軸は図2に示すようにシャフト8で連結しており、膨張機構3aの駆動により第2圧縮機1bが駆動するとともに、第2圧縮機1bと膨張機構3aをユニット化し一体に形成している。
【0022】
次に本実施形態に係る冷凍空調装置の駆動状態を説明する。まず、第1圧縮機1aを稼働するときCO2冷媒が圧縮され、更に第1放熱器2aに流入して屋外に放熱される。この放熱されたCO2冷媒は第2圧縮機1bが未だ駆動していないため、バイパス管6に流れ第2放熱器2bに流入する。この第2放熱器2bに流れたCO2冷媒は再度放熱され、膨張機構3a側に流れる。ここで、膨張機構3aのガス吸入口32のガス圧は上昇する一方、膨張機構3aのガス吐出口31及び蒸発器4側の圧力が降下するため、膨張機構3aのガス吸入口32とガス吐出口31との圧力差が所定の圧力差となる。これにより、膨張機構3aのガス吸入口32からCO2冷媒が流入し、CO2冷媒の膨張力により旋回スクロール33が回転するとともに、CO2冷媒が断熱膨張しながらガス吐出口31から吐出される。
【0023】
このような膨張機構3aの旋回スクロール33の回転により、この膨張機構3aに連結する第2圧縮機1bが駆動する。ここで、冷凍空調装置の稼働初期時ではバイパス管6にCO2冷媒が流れたが、この第2圧縮機1bの駆動により全てのCO2冷媒が第2圧縮機1bに吸い込まれる。この第2圧縮機1bに吸入されたCO2冷媒はこの第2圧縮機1bにより再度断熱圧縮され、この圧縮されたCO2冷媒が第2放熱器2bで放熱され、更に膨張機構3aで断熱膨張される。このように断熱膨張されたCO2冷媒は蒸発器4で室内空気と熱交換し、室内冷房を行う。
【0024】
以上のような冷凍空調装置の冷却サイクルを図3のモリエル線図で説明すると、第1圧縮機1aでCO2冷媒が100kg/cm2程度まで圧縮され(A→B)、更に第1放熱器2aで放熱され(B→C)、これが再度第2圧縮機1bで圧縮され150kg/cm2程度となる(C→B”)。この再圧縮されたCO2冷媒は再度第2放熱器2bで放熱され(B”→C’)、更に膨張機構3aで断熱膨張される(C’→D”)。この断熱膨張されたCO2冷媒は蒸発器4で吸熱し(D”→A)、室内冷房を行う。この図3でA→B→C→Dは従来例で説明した第1圧縮機1aのみでCO2冷媒を100kg/cm2程度まで圧縮するときの冷媒変化(以下、従来例1という)、A→B’→C’→D’は従来例で説明した第1圧縮機1aのみでCO2冷媒を150kg/cm2程度まで圧縮するときの冷媒変化(以下、従来例2という)をそれぞれ示している。
【0025】
そこで、本実施形態に係る冷凍空調装置の冷却作用を従来例2に係る冷凍空調装置の冷却作用と比較して説明する。なお、図3で(h)はエンタルピを示す。
【0026】
即ち、従来例2の冷凍空調装置では圧縮機の動力は、(hB’ーhA)=(hBーhA)+(hB’ーhB)、一方、本実施形態に係る冷凍空調装置の各圧縮機1a,1bの動力は、(hBーhA)+(hB”ーhC)である。
【0027】
ここで、従来例に係る(hB’ーhB)をW1、(hB”ーhC)をW2とするとき、B→B’への断熱圧縮に係る等エントロピ線とC→B”への断熱圧縮に係る等エントロピ線とを比較するとき、本実施形態に係る冷凍空調装置のC点におけるエンタルピがB点よりも小さくなっている分、その傾きが大きく、これにより、W1>W2となる。
【0028】
従って、本実施形態に係る冷凍空調装置は従来の冷凍空調装置と比較し、圧縮機1a,1b全体の動力が小さくなっている。
【0029】
また、本実施形態に係る冷凍空調装置の膨張機構3aはCO2冷媒を断熱膨張するため、等エントロピ線上に沿って変化し、C’→D”と変化する、これにより、冷凍効果が(hAーhD”)となり従来例2の冷凍効果(hAーhD’)よりも大きくなる。
【0030】
更に、第2圧縮機1bの駆動軸と膨張機構3aの出力軸をシャフト8で連結しているため、膨張機構3aでの冷媒膨張作用に伴う動力が第2圧縮機1bの冷媒圧縮作用に利用される。
【0031】
【発明の効果】
以上説明したように、本発明によれば、圧縮機全体の動力が小さくて済み、また、冷凍効果の大きな冷凍空調装置を実現することができる。
【0032】
また、圧縮機の駆動軸と膨張機構の出力軸を連係し膨張機構での冷媒膨張作用に伴う動力を、他方の圧縮機の冷媒圧縮作用に利用でき、運転コストが安くなる。
【図面の簡単な説明】
【図1】本実施形態に係る冷凍空調装置の冷媒回路図
【図2】第2圧縮機と膨張機構との連係構造を示す概略図
【図3】本実施形態に係る冷凍空調装置のCO2モリエル線図
【図4】従来の冷凍空調装置の冷媒回路図
【図5】従来の冷凍空調装置のCO2モリエル線図
【符号の説明】
1a…第1圧縮機、1b…圧縮機、2a…第1放熱器、2b…第2放熱器、3a…膨張機構、4…蒸発器、5…冷媒管、6…バイパス管、7…逆止弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration air conditioner that uses carbon dioxide as a refrigerant.
[0002]
[Prior art]
Conventionally, a refrigerating and air-conditioning apparatus shown in FIG. 4 is generally known as a refrigerating and air-conditioning apparatus that uses this type of carbon dioxide (CO 2 ) as a refrigerant.
[0003]
This refrigeration air conditioner has a compressor 1, a radiator 2, an expansion valve 3, and an evaporator 4, and carbon dioxide refrigerant is converted into an arrow with the compressor 1 → the radiator 2 → the expansion valve 3 → the evaporator 4 → the compressor 1. By sequentially circulating as shown, air conditioning such as indoor cooling is performed.
[0004]
[Problems to be solved by the invention]
By the way, in a refrigerating and air-conditioning apparatus using CO 2 refrigerant that releases heat to the atmosphere, a compression that provides a high discharge pressure to ensure a predetermined refrigerating capacity even when the outside air temperature is high. A machine is required.
[0005]
That is, if described in a CO 2 Mollier diagram of FIG. 5, in the normal operation, it is compressed by the compressor 1 to 100 kg / cm 2 beyond the critical point of the saturated liquid line and the saturated vapor line to compress the CO 2 refrigerant (A → B in FIG. 5). Next, the compressed CO 2 refrigerant is radiated to the atmosphere by the radiator 2 (B → C in FIG. 5), and the radiated CO 2 refrigerant is expanded along the isenthalpy line by the expansion valve 3 to reduce the pressure. (C → D in FIG. 5). The CO 2 refrigerant that has become wet steam due to this pressure drop is vaporized by the evaporator 4 to cool the room (D → A in FIG. 5).
[0006]
On the other hand, in order to obtain a sufficient cooling capacity even when the outside air temperature becomes high at 35 ° C., the CO 2 refrigerant must be circulated through A → B ′ → C ′ → D ′ in FIG. A discharge pressure of about 150 kg / cm 2 is required.
[0007]
Accordingly, in order to sufficiently cool the room even when the outside air temperature is high, it is necessary to install a compressor 1 having a large refrigerating capacity, and the efficiency of the driving power of the compressor 1 is low. It was a thing.
[0008]
An object of the present invention is to provide a refrigeration air-conditioning apparatus that improves the refrigeration effect without increasing the power of the entire compressor in view of the conventional problems.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a vapor which releases a heat from a radiator in a supercritical state by sequentially circulating a refrigerant of carbon dioxide to a compressor, a radiator, an expansion mechanism and an evaporator. In the compression-type refrigeration and air-conditioning apparatus, the radiator is composed of a first radiator and a second radiator sequentially connected in series, and another compressor is inserted between the radiators. The drive shaft of the compressor is linked to the output shaft of the expansion mechanism, and a bypass pipe that bypasses the other compressor by connecting the gas suction port and the gas discharge port of the other compressor is provided . .
[0010]
According to the present invention, the CO 2 refrigerant circulates in order of one compressor → the first radiator → the other compressor → the second radiator → the expansion mechanism → the evaporator → the one compressor to perform indoor cooling or the like. .
[0011]
In this refrigeration cycle, one compressor compresses to about 100 kg / cm 2 , and the other compressor compresses the refrigerant to about 150 kg / cm 2 to obtain a required discharge pressure. Here, the power of the other compressor (power consumed by the other compressor to increase the discharge pressure from 100 kg / cm 2 to 150 kg / cm 2 ) and the power of one compressor (100 kg for one compressor) compared to the power consumed to increase from 150 cm / cm 2 to 150 kg / cm 2 ), the refrigerant sucked into the other compressor is partly dissipated by the first radiator and the enthalpy is reduced (the other As the slope of the isentropic line in the compressor increases, the power decreases.
[0012]
Further, since the drive shaft of the compressor and the output shaft of the expansion mechanism are linked, the power accompanying the refrigerant expansion action in the expansion mechanism is used for the refrigerant compression action of the other compressor. Furthermore, when one compressor starts gas compression at the start of operation of the refrigeration air conditioner, the pressure at the outlet of the evaporator and the expansion mechanism drops, and the pressure increased by one compressor is a check valve, It is transmitted to the second radiator and the expansion mechanism inlet via the bypass pipe. As a result, the pressure difference between the outlet and the inlet of the expansion mechanism becomes a predetermined pressure difference, the expansion mechanism is driven, the driving force of the expansion mechanism is used as the driving force of the other compressor, and the other compressor is driven. To do. After the other compressor is driven, all the CO 2 refrigerant flows into the other compressor by the suction input of the other compressor, and performs indoor cooling and the like.
[0013]
According to a second aspect of the present invention, in the refrigerating and air-conditioning apparatus of the first aspect, the bypass pipe is provided with a check valve for restricting refrigerant flow from the gas discharge port to the gas suction port .
[0014]
According to this invention, by providing the check valve in the bypass pipe, the refrigerant discharged from the other compressor is prevented from returning through the bypass pipe.
[0015]
According to a third aspect of the present invention, in the refrigerating and air-conditioning apparatus of the first or second aspect, the other compressor and the expansion mechanism are constituted by a scroll type compression / expansion mechanism. According to the present invention, since the expansion mechanism adiabatically expands along the isentropic line, the enthalpy immediately before inhalation into the evaporator is reduced and the refrigeration effect is improved.
[0016]
Note that the other compressor and the expansion mechanism may be integrally formed so that both are unitized.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of a refrigerating and air-conditioning apparatus according to the present invention. FIG. 1 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus, and FIG. 2 is a schematic diagram showing a linkage structure between a second compressor and an expansion mechanism. FIG. 3 is a CO 2 Mollier diagram of the refrigeration air conditioner. The same components as those of the conventional example already described in FIGS. 4 and 5 are denoted by the same reference numerals.
[0018]
This refrigeration air conditioner uses CO 2 as a refrigerant, and as shown in FIG. 1, one compressor (hereinafter referred to as a first compressor) 1a, a first radiator 2a, and the other compressor (hereinafter referred to as a first compressor). (Referred to as a second compressor) 1b, a second radiator 2b, an expansion mechanism 3a, and an evaporator 4 are sequentially connected by a refrigerant pipe 5, and the CO 2 refrigerant is supplied to the first compressor 1 → the first radiator 2a → the second compressor. 1b → second radiator 2b → expansion mechanism 3a → evaporator 4 → first compressor 1a is circulated in order, and the room 4 is cooled by the endothermic action of the evaporator 4. Further, the refrigerant pipe 5 on the gas inlet side of the second compressor 1b and the refrigerant pipe 5 on the gas outlet side are connected by a bypass pipe 6, and this bypass pipe 6 bypasses the second compressor 1b. Yes. The bypass pipe 6 is provided with a check valve 7, and the check valve 7 regulates the CO 2 refrigerant discharged from the second compressor 1 b from returning through the bypass pipe 6. .
[0019]
In the refrigerating and air-conditioning apparatus thus configured, the second compressor 1b and the expansion mechanism 3a are configured as shown in FIG. That is, both the second compressor 1b and the expansion mechanism 3a employ scroll-type compression / expansion mechanisms. First, the second compressor 1b has a gas suction port 11 on the outside and a gas discharge port 12 in the center. The orbiting scroll 13 is rotated in the direction of the arrow in FIG. The CO 2 refrigerant flowing in from the suction port 11 is compressed between the fixed scroll 14 and discharged from the gas discharge port 12.
[0020]
On the other hand, the expansion mechanism 3a has a configuration opposite to that of the second compressor 1b, that is, has the gas discharge port 31 on the outside and the gas suction port 32 on the inside, respectively, and the orbiting scroll 33 in the direction of the arrow in FIG. The CO 2 refrigerant flowing in the gas suction port 32 by rotating counterclockwise) is expanded between the fixed scroll 34 and discharged from the gas discharge port 31.
[0021]
Further, the drive shaft of the second compressor 1b and the output shaft of the expansion mechanism 3a are connected by a shaft 8 as shown in FIG. 2, and the second compressor 1b is driven by the drive of the expansion mechanism 3a. The compressor 1b and the expansion mechanism 3a are unitized and formed integrally.
[0022]
Next, the drive state of the refrigerating and air-conditioning apparatus according to this embodiment will be described. First, when the first compressor 1a is operated, the CO 2 refrigerant is compressed, and further flows into the first radiator 2a to be radiated to the outdoors. The radiated CO 2 refrigerant flows through the bypass pipe 6 and into the second radiator 2b because the second compressor 1b is not yet driven. The CO 2 refrigerant that has flowed to the second radiator 2b is radiated again and flows toward the expansion mechanism 3a. Here, the gas pressure at the gas suction port 32 of the expansion mechanism 3a increases, while the pressure at the gas discharge port 31 and the evaporator 4 side of the expansion mechanism 3a decreases. The pressure difference with the outlet 31 becomes a predetermined pressure difference. Thus, CO 2 refrigerant flows from the gas inlet port 32 of the expansion mechanism 3a, together with the orbiting scroll 33 is rotated by the expansion force of the CO 2 refrigerant, CO 2 refrigerant is discharged from the gas discharge port 31 while adiabatically expanded .
[0023]
The rotation of the orbiting scroll 33 of the expansion mechanism 3a drives the second compressor 1b connected to the expansion mechanism 3a. Here, at the initial operation of the refrigeration air conditioner, the CO 2 refrigerant flows into the bypass pipe 6, but all the CO 2 refrigerant is sucked into the second compressor 1b by the driving of the second compressor 1b. The CO 2 refrigerant sucked into the second compressor 1b is adiabatically compressed again by the second compressor 1b, the compressed CO 2 refrigerant is radiated by the second radiator 2b, and further adiabatically expanded by the expansion mechanism 3a. Is done. The CO 2 refrigerant adiabatically expanded in this way exchanges heat with room air in the evaporator 4 and performs room cooling.
[0024]
The cooling cycle of the refrigerating and air-conditioning apparatus as described above will be described with reference to the Mollier diagram of FIG. 3. The CO 2 refrigerant is compressed to about 100 kg / cm 2 by the first compressor 1a (A → B), and further the first radiator. 2a is radiated (B → C), and is compressed again by the second compressor 1b to about 150 kg / cm 2 (C → B ″). This recompressed CO 2 refrigerant is again circulated by the second radiator 2b. The heat is dissipated (B ″ → C ′), and further adiabatically expanded by the expansion mechanism 3a (C ′ → D ″). This adiabatic expanded CO 2 refrigerant absorbs heat by the evaporator 4 (D ″ → A), Cool down. In FIG. 3, A → B → C → D is a change in refrigerant when the CO 2 refrigerant is compressed to about 100 kg / cm 2 only by the first compressor 1a described in the conventional example (hereinafter referred to as Conventional Example 1), A → B ′ → C ′ → D ′ respectively indicate the change in refrigerant (hereinafter referred to as Conventional Example 2) when the CO 2 refrigerant is compressed to about 150 kg / cm 2 by only the first compressor 1a described in the conventional example. Yes.
[0025]
Therefore, the cooling action of the refrigeration air conditioner according to the present embodiment will be described in comparison with the cooling action of the refrigeration air conditioner according to Conventional Example 2. In FIG. 3, (h) indicates enthalpy.
[0026]
That is, in the refrigeration air conditioner of Conventional Example 2, the power of the compressor is (hB′−hA) = (hB−hA) + (hB′−hB), while each compressor of the refrigeration air conditioner according to the present embodiment. The power of 1a and 1b is (hB−hA) + (hB ″ −hC).
[0027]
Here, when (hB′−hB) according to the conventional example is W1 and (hB ″ −hC) is W2, isentropic lines related to adiabatic compression from B → B ′ and adiabatic compression from C → B ″ When the enthalpy line is compared with the isentropic line, the enthalpy at the point C of the refrigerating and air-conditioning apparatus according to the present embodiment is smaller than the point B, so that the inclination is large, and thus W1> W2.
[0028]
Therefore, the refrigeration air conditioner according to the present embodiment has a smaller power of the compressors 1a and 1b than the conventional refrigeration air conditioner.
[0029]
Further, since the expansion mechanism 3a of the refrigerating and air-conditioning apparatus according to the present embodiment adiabatically expands the CO 2 refrigerant, the expansion mechanism 3a changes along the isentropic line and changes from C ′ → D ″. −hD ″), which is larger than the refrigeration effect (hA−hD ′) of Conventional Example 2.
[0030]
Further, since the drive shaft of the second compressor 1b and the output shaft of the expansion mechanism 3a are connected by the shaft 8, the power accompanying the refrigerant expansion action in the expansion mechanism 3a is used for the refrigerant compression action of the second compressor 1b. Is done.
[0031]
【The invention's effect】
As described above, according to the present invention, the power of the entire compressor can be reduced, and a refrigeration air conditioner with a large refrigeration effect can be realized.
[0032]
Further, the driving shaft of the compressor and the output shaft of the expansion mechanism are linked so that the power accompanying the refrigerant expansion action of the expansion mechanism can be used for the refrigerant compression action of the other compressor, and the operating cost is reduced.
[Brief description of the drawings]
A refrigerant circuit diagram of a refrigeration air conditioning system according to the disclosed exemplary embodiment [Fig. 2] CO 2 of the refrigerating and air-conditioning apparatus according to the schematic diagram FIG. 3 according to the embodiment shown an association structure between the expansion mechanism second compressor Mollier diagram [Fig. 4] Refrigerant circuit diagram of a conventional refrigeration air conditioner [Fig. 5] CO 2 Mollier diagram of a conventional refrigeration air conditioner [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a ... 1st compressor, 1b ... Compressor, 2a ... 1st radiator, 2b ... 2nd radiator, 3a ... Expansion mechanism, 4 ... Evaporator, 5 ... Refrigerant pipe, 6 ... Bypass pipe, 7 ... Check valve.

Claims (4)

二酸化炭素の冷媒を圧縮機、放熱器、膨張機構及び蒸発器に順次循環し、超臨界状態で放熱器から熱を放出する蒸気圧縮式の冷凍空調装置において、
前記放熱器を順次直列に接続された第1放熱器と第2放熱器とから構成するとともに、該各放熱器の間に他の圧縮機を挿入し、該他の圧縮機の駆動軸と前記膨張機構の出力軸を連係し、
前記他の圧縮機のガス吸入口とガス吐出口を接続し該他方の圧縮機を迂回するバイパス管を設けた
ことを特徴とする冷凍空調装置。
In a vapor compression refrigeration air conditioner that sequentially circulates a carbon dioxide refrigerant to a compressor, a radiator, an expansion mechanism, and an evaporator, and releases heat from the radiator in a supercritical state,
The radiator is composed of a first radiator and a second radiator sequentially connected in series, and another compressor is inserted between the radiators, and the drive shaft of the other compressor and the Link the output shaft of the expansion mechanism ,
A refrigerating and air-conditioning apparatus comprising a bypass pipe that connects a gas suction port and a gas discharge port of the other compressor and bypasses the other compressor .
前記バイパス管に該ガス吐出口から該ガス吸入口への冷媒流通を規制する逆止弁を設けた
ことを特徴とする請求項1記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 1, wherein the bypass pipe is provided with a check valve for regulating refrigerant flow from the gas discharge port to the gas suction port .
前記他の圧縮機と前記膨張機構をスクロール式圧縮・膨張機構で構成した
ことを特徴とする請求項1又は請求項2記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 1 or 2, wherein the other compressor and the expansion mechanism are configured by a scroll compression / expansion mechanism.
前記他の圧縮機と前記膨張機構とを一体に形成した
ことを特徴とする請求項1乃至請求項3の何れか1項記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3, wherein the other compressor and the expansion mechanism are integrally formed.
JP25694697A 1997-09-22 1997-09-22 Refrigeration air conditioner Expired - Fee Related JP4031849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25694697A JP4031849B2 (en) 1997-09-22 1997-09-22 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25694697A JP4031849B2 (en) 1997-09-22 1997-09-22 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JPH1194379A JPH1194379A (en) 1999-04-09
JP4031849B2 true JP4031849B2 (en) 2008-01-09

Family

ID=17299565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25694697A Expired - Fee Related JP4031849B2 (en) 1997-09-22 1997-09-22 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4031849B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851971B2 (en) * 1998-02-24 2006-11-29 株式会社デンソー CO2 compressor
JP2001173580A (en) * 1999-12-15 2001-06-26 Toyota Autom Loom Works Ltd Scroll fluid compressor
JP2002156163A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
JP3953871B2 (en) 2002-04-15 2007-08-08 サンデン株式会社 Refrigeration air conditioner
US8166774B2 (en) * 2006-01-25 2012-05-01 Visteon Global Technologies, Inc. Heat exchanger with an expansion stage
DE102007004659B4 (en) * 2006-01-25 2020-12-03 Hanon Systems Heat exchanger with one expansion stage
EP2163838A4 (en) * 2007-05-25 2013-11-06 Mitsubishi Electric Corp Refrigeration cycle device
JP4976970B2 (en) * 2007-09-27 2012-07-18 パナソニック株式会社 Refrigeration cycle equipment
JP4974851B2 (en) * 2007-11-01 2012-07-11 三菱電機株式会社 Refrigeration air conditioner
CN102047048B (en) * 2008-06-05 2012-11-28 三菱电机株式会社 Refrigeration cycle apparatus
JP2010038408A (en) * 2008-08-01 2010-02-18 Mitsubishi Electric Corp Outdoor heat exchanger and refrigerating cycle device mounted with the same
JP2010043556A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Expander unit and refrigeration cycle device including the same
JP5025605B2 (en) * 2008-09-12 2012-09-12 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
US20120167606A1 (en) * 2009-10-07 2012-07-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2011237086A (en) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Refrigerating air conditioner
CN103512256A (en) * 2013-09-22 2014-01-15 孙西峰 Refrigerating system and air conditioner

Also Published As

Publication number Publication date
JPH1194379A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP4031849B2 (en) Refrigeration air conditioner
JP3953871B2 (en) Refrigeration air conditioner
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP3080558B2 (en) Heat pump air conditioners for cold regions
US7461517B2 (en) Refrigerant cycle unit
JP3365273B2 (en) Refrigeration cycle
JP5533207B2 (en) Heat pump cycle
JP4410980B2 (en) Refrigeration air conditioner
JP2004138332A (en) Refrigeration cycle device
JP7473833B2 (en) Refrigeration Cycle Equipment
JP2007178072A (en) Air conditioner for vehicle
JP6846685B2 (en) Air conditioner
JP2009257706A (en) Refrigerating apparatus
JP2003130492A (en) Air conditioner
JP2012180963A (en) Refrigeration cycle
JP2001001754A (en) Air conditioner for vehicle
JP2001251078A (en) Exothermic body cooling device
JP2006234263A (en) Refrigerating cycle device
JP2001056156A (en) Air conditioning apparatus
JP3330100B2 (en) Heat pump air conditioner for cold regions
JP2021021509A (en) Air-conditioning apparatus
JP2001066006A (en) Refrigerant circuit for air conditioner
JP4581795B2 (en) Refrigeration equipment
JP2022117351A (en) temperature control system
JP2006125790A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees