JP2012180963A - Refrigeration cycle - Google Patents

Refrigeration cycle Download PDF

Info

Publication number
JP2012180963A
JP2012180963A JP2011043741A JP2011043741A JP2012180963A JP 2012180963 A JP2012180963 A JP 2012180963A JP 2011043741 A JP2011043741 A JP 2011043741A JP 2011043741 A JP2011043741 A JP 2011043741A JP 2012180963 A JP2012180963 A JP 2012180963A
Authority
JP
Japan
Prior art keywords
pressure refrigerant
heat exchanger
stage compressor
low
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011043741A
Other languages
Japanese (ja)
Inventor
Atsushi Matsumoto
淳 松本
Ryo Takizawa
亮 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011043741A priority Critical patent/JP2012180963A/en
Publication of JP2012180963A publication Critical patent/JP2012180963A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an upper compressor discharge temperature without compressing a liquid in a heating operation in a two-stage boosting type refrigeration cycle.SOLUTION: The refrigeration cycle including a lower compressor 1, a higher compressor 2, a condenser 3 for exchanging heat of a high-pressure refrigerant discharged from the higher compressor 2 and radiating heat, a throttle mechanism 6 for decompressing and expanding the high-pressure refrigerant to be a low-pressure refrigerant, and an evaporator 7 absorbing heat by exchanging heat of the low-pressure refrigerant, and allowing the refrigerant absorbing heat, to be sucked to the lower compressor 1, further includes a heat exchanger 3a for radiating heat by exchanging heat of an intermediate-pressure refrigerant discharged from the lower compressor 1, and the intermediate-pressure refrigerant radiating heat by the heat exchanger 3a is sucked to the higher compressor 2.

Description

本発明は、冷凍サイクル、特に、低段圧縮機と高段圧縮機とを有する冷凍サイクルに関する。   The present invention relates to a refrigeration cycle, and in particular, to a refrigeration cycle having a low stage compressor and a high stage compressor.

従来から、低圧冷媒を中間圧に圧縮する低段圧縮機と低段圧縮機から吐出した中間圧冷媒をさらに高圧に圧縮する高段圧縮機とからなる2段昇圧式冷凍サイクルが知られている。この2段昇圧式の冷凍サイクルでは、高圧縮比を実現でき、冷凍サイクルの効率および能力の向上を図ることができる。   2. Description of the Related Art Conventionally, a two-stage boost refrigeration cycle is known that includes a low-stage compressor that compresses low-pressure refrigerant to an intermediate pressure and a high-stage compressor that compresses intermediate-pressure refrigerant discharged from the low-stage compressor to a higher pressure. . In this two-stage boost type refrigeration cycle, a high compression ratio can be realized, and the efficiency and capacity of the refrigeration cycle can be improved.

2段昇圧式の冷凍サイクルでは、従来から、高段圧縮機から吐出し、凝縮器により凝縮した冷媒の一部を液インジェクションとしてバイパスさせて、低段圧縮機から吐出する冷媒と混合して高段圧縮機に吸入することが行われている。これにより、高段圧縮機に吸入される冷媒の温度を低下させ、高段圧縮機から吐出する冷媒の温度を低下させることができる。   In a two-stage boosting type refrigeration cycle, conventionally, a part of the refrigerant discharged from the high-stage compressor and condensed by the condenser is bypassed as liquid injection and mixed with the refrigerant discharged from the low-stage compressor. Inhalation into the stage compressor is carried out. Thereby, the temperature of the refrigerant | coolant suck | inhaled by a high stage compressor can be reduced, and the temperature of the refrigerant | coolant discharged from a high stage compressor can be reduced.

例えば、下記特許文献1には、2段昇圧式の冷凍サイクルで暖房運転する場合、液インジェクションの量を増加させることにより、高段の圧縮機から吐出される冷媒の温度をさらに低下させることが記載されている。   For example, in Patent Document 1 below, when heating operation is performed in a two-stage boosting type refrigeration cycle, the temperature of the refrigerant discharged from the high-stage compressor can be further decreased by increasing the amount of liquid injection. Are listed.

特開2009−270776号公報JP 2009-270776 A

しかしながら、従来の2段昇圧式の冷凍サイクルにおける液インジェクションにあっては、暖房運転時に液冷媒が高段圧縮機に到達するまでにすべて蒸発することができない場合、高段圧縮機では液圧縮となり、圧縮機に大きな負荷がかかるという問題があった。本発明は、この問題に鑑み、暖房運転する場合に液圧縮を起こすことなく、高段圧縮機吐出温度を低減させることができる冷凍サイクルを提供することを目的とする。   However, in the liquid injection in the conventional two-stage boosting type refrigeration cycle, if all of the liquid refrigerant cannot evaporate before reaching the high stage compressor during heating operation, the high stage compressor is liquid compressed. There was a problem that a large load was applied to the compressor. In view of this problem, an object of the present invention is to provide a refrigeration cycle capable of reducing the discharge temperature of a high-stage compressor without causing liquid compression when heating operation is performed.

本願請求項1に記載の冷凍サイクルは、低圧冷媒を圧縮して中間圧冷媒として吐出する低段圧縮機(1)と、前記低段圧縮機(1)から吐出した中間圧冷媒を圧縮して高圧冷媒として吐出する高段圧縮機(2)と、前記高段圧縮機(2)から吐出した高圧冷媒を熱交換させて放熱する凝縮器(3)と、前記凝縮器(3)から流出する前記高圧冷媒を減圧膨張して低圧冷媒とする絞り機構(6)と、前記絞り機構(6)から流出する低圧冷媒を熱交換させて吸熱し、吸熱した冷媒を前記低段圧縮機(1)に吸入させる蒸発器(7)と、を有する冷凍サイクルであって、前記低段圧縮機(1)から吐出した中間圧冷媒を熱交換させて放熱する熱交換器(3a、7a、4)を備え、前記熱交換器(3a、7a、4)により放熱した中間圧冷媒を前記高段圧縮機(2)に吸入させる。これにより、高段圧縮機の吐出温度を低下させることができ、圧縮機の信頼性を高めることができる。また、液インジェクションではないので、液圧縮を避けることができる。   The refrigeration cycle according to claim 1 of the present invention compresses a low-pressure compressor (1) that compresses low-pressure refrigerant and discharges it as intermediate-pressure refrigerant, and compresses the intermediate-pressure refrigerant discharged from the low-stage compressor (1). The high-stage compressor (2) discharged as a high-pressure refrigerant, the condenser (3) that radiates heat by exchanging heat from the high-pressure refrigerant discharged from the high-stage compressor (2), and flows out of the condenser (3) A throttle mechanism (6) that decompresses and expands the high-pressure refrigerant to form a low-pressure refrigerant, and a low-pressure refrigerant that flows out of the throttle mechanism (6) exchanges heat to absorb heat, and the absorbed refrigerant is converted into the low-stage compressor (1). And a heat exchanger (3a, 7a, 4) for radiating heat by exchanging the intermediate-pressure refrigerant discharged from the low-stage compressor (1). Provided with the intermediate pressure refrigerant radiated by the heat exchanger (3a, 7a, 4) Is sucked into the stage compressor (2). Thereby, the discharge temperature of a high stage compressor can be lowered | hung and the reliability of a compressor can be improved. Moreover, since it is not liquid injection, liquid compression can be avoided.

本願請求項2に記載の冷凍サイクルでは、前記凝縮器(3)から流出した高圧冷媒と、前記凝縮器(3)から流出した高圧冷媒の一部を分岐し減圧膨張させて中間圧冷媒とした分岐冷媒との間で熱交換を行う内部熱交換器(5)を備え、前記内部熱交換器(5)から流出する高圧冷媒は前記絞り機構(6)に流入し、前記内部熱交換器(5)から流出する前記分岐冷媒は高段圧縮機(2)に吸入される。これにより、冷凍サイクルの効率および能力を高めることができる。   In the refrigeration cycle according to claim 2 of the present application, the high-pressure refrigerant that has flowed out of the condenser (3) and a part of the high-pressure refrigerant that has flowed out of the condenser (3) are branched and decompressed and expanded to obtain an intermediate-pressure refrigerant. An internal heat exchanger (5) for exchanging heat with the branched refrigerant is provided, and the high-pressure refrigerant flowing out of the internal heat exchanger (5) flows into the throttle mechanism (6), and the internal heat exchanger ( The branched refrigerant flowing out from 5) is sucked into the high stage compressor (2). Thereby, the efficiency and capacity of the refrigeration cycle can be increased.

本願請求項3に記載の冷凍サイクルでは、前記熱交換器は、前記凝縮器(3)とともに室内に配置され、前記低段圧縮機(1)から吐出した中間圧冷媒を室内側空気と熱交換する。室内に配置された熱交換器を使用することにより、サイクル効率を向上させることができる。   In the refrigeration cycle according to claim 3 of the present application, the heat exchanger is arranged indoors together with the condenser (3), and the intermediate pressure refrigerant discharged from the low-stage compressor (1) is exchanged with indoor air. To do. By using a heat exchanger arranged indoors, the cycle efficiency can be improved.

本願請求項4に記載の冷凍サイクルでは、前記熱交換器は、前記蒸発器(7)とともに室外に配置され、前記低段圧縮機(1)から吐出した中間圧冷媒を室外側空気と熱交換する。これにより、暖房時には室外温度が低いので冷媒温度を十分に下げることができる。   In the refrigeration cycle according to claim 4, the heat exchanger is disposed outdoors together with the evaporator (7), and the intermediate-pressure refrigerant discharged from the low-stage compressor (1) is heat-exchanged with outdoor air. To do. Thereby, since the outdoor temperature is low during heating, the refrigerant temperature can be sufficiently lowered.

本願請求項5に記載の冷凍サイクルでは、前記熱交換器(7a)は、前記蒸発器(7)の風上側に配置される。これにより、室外機7に送風される空気の温度を高めることができ、吸熱能力が高まる。さらに、室外機である蒸発器の霜の付着を抑制することもできる。   In the refrigeration cycle according to claim 5 of the present application, the heat exchanger (7a) is arranged on the windward side of the evaporator (7). Thereby, the temperature of the air ventilated by the outdoor unit 7 can be raised, and heat absorption capability increases. Furthermore, adhesion of frost on the evaporator which is an outdoor unit can be suppressed.

本願請求項6に記載の冷凍サイクルでは、前記熱交換器は、前記内部熱交換器(4)であって、前記低段圧縮機(1)から吐出した中間圧冷媒は、前記分岐冷媒と混合して前記内部熱交換器(4)に流入する。内部熱交換器を用いる冷凍サイクルにあっては、内部熱交換器を本発明の熱交換器として利用するので、新たな熱交換器を配置する必要がないという利点を有する。   In the refrigeration cycle according to claim 6, the heat exchanger is the internal heat exchanger (4), and the intermediate pressure refrigerant discharged from the low-stage compressor (1) is mixed with the branch refrigerant. And flows into the internal heat exchanger (4). In the refrigeration cycle using the internal heat exchanger, since the internal heat exchanger is used as the heat exchanger of the present invention, there is an advantage that it is not necessary to arrange a new heat exchanger.

本発明の第1の実施形態を示す図である。It is a figure which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す図である。It is a figure which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す図である。It is a figure which shows the 3rd Embodiment of this invention. 本発明の第3の実施形態に関するモリエル線図の概略を示す図である。It is a figure which shows the outline of the Mollier diagram regarding the 3rd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施態様を示す図である。本発明は、例えばバス等の車両の冷暖房を行う空調設備の冷凍サイクルに好適であって、特に暖房時の冷凍サイクルに関する。しかし、本発明の用途はバスの冷暖房に限定されるものではなく、その他の乗用車あるいは住宅等の冷暖房に用いることができる。   FIG. 1 is a diagram showing a first embodiment of the present invention. The present invention is suitable for a refrigeration cycle of an air conditioning facility that cools and heats a vehicle such as a bus, and particularly relates to a refrigeration cycle during heating. However, the application of the present invention is not limited to air conditioning of buses, and can be used for air conditioning of other passenger cars or houses.

本実施形態の冷凍サイクルは、冷媒が循環する閉回路を備え、室外で吸熱して冷媒温度を上昇させ、室内で放熱して室内を暖房するために用いられる。具体的には、冷媒を吸入して昇圧して吐出する、低段圧縮機1と高段圧縮機2とからなる2段昇圧機構を備え、外気と熱交換する蒸発器である室外機7によって吸熱し、内気と熱交換する凝縮器である室内機3によって放熱し室内温度を高める。   The refrigeration cycle of the present embodiment includes a closed circuit in which a refrigerant circulates, and is used to heat the outside to increase the refrigerant temperature, to dissipate heat in the room and to heat the room. Specifically, the outdoor unit 7 is an evaporator that is provided with a two-stage pressure increasing mechanism composed of a low-stage compressor 1 and a high-stage compressor 2 that sucks in a refrigerant, boosts and discharges the refrigerant, and exchanges heat with the outside air. The indoor unit 3, which is a condenser that absorbs heat and exchanges heat with the inside air, dissipates heat and raises the room temperature.

低段圧縮機1と高段圧縮機2は、それぞれが内蔵する電動モータによって圧縮機を駆動して冷媒を圧縮させる電動圧縮機であってもよく、また2つの圧縮機が単一の駆動軸に連結されている圧縮機であってもよい。冷媒を少なくとも2段階で圧縮できる圧縮機であれば、本発明の低段圧縮機1と高段圧縮機2として用いることができる。使用する冷媒としては、フロン系の冷媒でもよく、圧縮機の吐出口側冷媒の圧力が臨界圧力以上(超臨界状態)となる二酸化炭素などでもよい。   The low-stage compressor 1 and the high-stage compressor 2 may be electric compressors that compress the refrigerant by driving the compressor with an electric motor built in each, and the two compressors are a single drive shaft. The compressor may be connected to the compressor. Any compressor that can compress the refrigerant in at least two stages can be used as the low-stage compressor 1 and the high-stage compressor 2 of the present invention. The refrigerant to be used may be a chlorofluorocarbon refrigerant or carbon dioxide in which the pressure of the refrigerant at the discharge port of the compressor is equal to or higher than the critical pressure (supercritical state).

低段圧縮機1は、低圧冷媒を吸入して中間圧冷媒として吐出する。本実施形態では、低段圧縮機1から吐出する中間圧冷媒は、室内機3の近傍に配置された室内サブ熱交換器3を通過して高段圧縮機に吸入される。室内サブ熱交換器3aは、室内機3と同様に室内空気と熱交換し、室内空気温度を上昇させるとともに中間圧冷媒の温度を下げる。本例では、室内サブ熱交換器3aは、室内機3に送風するための電動ファン3bの上流側に配置され、室内機3と室内サブ熱交換器3aとは、ともに電動ファン3bによって送風される。   The low-stage compressor 1 sucks low-pressure refrigerant and discharges it as intermediate-pressure refrigerant. In the present embodiment, the intermediate pressure refrigerant discharged from the low stage compressor 1 passes through the indoor sub heat exchanger 3 arranged in the vicinity of the indoor unit 3 and is sucked into the high stage compressor. The indoor sub heat exchanger 3a exchanges heat with indoor air in the same manner as the indoor unit 3, and increases the indoor air temperature and decreases the temperature of the intermediate pressure refrigerant. In this example, the indoor sub heat exchanger 3a is disposed upstream of the electric fan 3b for sending air to the indoor unit 3, and both the indoor unit 3 and the indoor sub heat exchanger 3a are blown by the electric fan 3b. The

室内機3と室内サブ熱交換器3aの配置は、図1の配置に限定されない。室内機3と室内サブ熱交換器3aを並列に配置してもよく、また室内の別々の場所に配置してもよい。   The arrangement of the indoor unit 3 and the indoor sub heat exchanger 3a is not limited to the arrangement shown in FIG. The indoor unit 3 and the indoor sub heat exchanger 3a may be arranged in parallel, or may be arranged in different places in the room.

室内サブ熱交換器3aを通過して温度が低下した中間圧冷媒は、高段圧縮機2に吸入される。高段圧縮機2に吸入される中間圧冷媒は温度が低下しているので、高段圧縮機2から吐出する高圧冷媒の温度も低下させることができる。   The intermediate pressure refrigerant whose temperature has decreased after passing through the indoor sub heat exchanger 3a is sucked into the high stage compressor 2. Since the temperature of the intermediate pressure refrigerant sucked into the high stage compressor 2 is lowered, the temperature of the high pressure refrigerant discharged from the high stage compressor 2 can also be lowered.

高段圧縮機2から吐出される高圧冷媒は、凝縮器である室内機3により室内空気と熱交換され、室内温度を高めるとともに、高圧冷媒は冷却して凝縮する。冷却された高圧冷媒は、内部熱交換器5の一方の流入口51に流入するとともに、高圧冷媒の一部は、分岐流路4aを通り分岐高圧冷媒として補助絞り4に流入する。補助絞り4では、流入する分岐高圧冷媒を減圧する。減圧され中間圧になった分岐冷媒は、内部熱交換器5の他方の流入口52に流入する。   The high-pressure refrigerant discharged from the high-stage compressor 2 is heat-exchanged with the indoor air by the indoor unit 3 that is a condenser to increase the indoor temperature, and the high-pressure refrigerant is cooled and condensed. The cooled high-pressure refrigerant flows into one inlet 51 of the internal heat exchanger 5, and part of the high-pressure refrigerant flows into the auxiliary throttle 4 as a branched high-pressure refrigerant through the branch flow path 4a. The auxiliary throttle 4 depressurizes the flowing high-pressure refrigerant. The branched refrigerant that has been depressurized to an intermediate pressure flows into the other inlet 52 of the internal heat exchanger 5.

流入口51から流入する高圧冷媒と流入口52から流入する中間圧の分岐冷媒とは、内部熱交換器5で熱交換を行う。高圧冷媒の温度が下がり、分岐冷媒の温度は上がる。内部熱交換器5の一方の流出口53から流出する高圧冷媒は、主絞り6を通って減圧され、蒸発器である室外機7に流入して外気と熱交換を行う。ファン7bは、外気を室外機7に送風する。室外機7から流出する冷媒は、低段圧縮機1に吸入される。内部熱交換器5の他方の流出口54から流出する分岐冷媒は、温度が上昇してガス化して高段圧縮機2に吸入される。   The internal heat exchanger 5 exchanges heat between the high-pressure refrigerant flowing from the inlet 51 and the intermediate-pressure branch refrigerant flowing from the inlet 52. The temperature of the high-pressure refrigerant decreases and the temperature of the branch refrigerant increases. The high-pressure refrigerant flowing out from one outlet 53 of the internal heat exchanger 5 is reduced in pressure through the main throttle 6, flows into the outdoor unit 7 that is an evaporator, and exchanges heat with the outside air. The fan 7 b blows outside air to the outdoor unit 7. The refrigerant flowing out of the outdoor unit 7 is sucked into the low stage compressor 1. The branched refrigerant flowing out from the other outlet 54 of the internal heat exchanger 5 is increased in temperature, gasified, and sucked into the high stage compressor 2.

補助絞り4、主絞り6は、電子膨張弁を用いて、開度を調節することにより冷媒量を調節することができる。これらの絞りは、所定の流路抵抗を与える、例えばキャピラリチューブであってもよい。   The auxiliary throttle 4 and the main throttle 6 can adjust the refrigerant amount by adjusting the opening degree using an electronic expansion valve. These throttles may be, for example, capillary tubes that provide a predetermined flow path resistance.

以上のように、高段圧縮機2には、室内サブ熱交換器3aを通った中間圧冷媒が吸入されるともに、室内機3から流出する高圧冷媒の一部が分岐して中間圧に減圧された減圧冷媒が吸入される。いずれの冷媒もガス化されているので、液インジェクションとはならず、液圧縮を引き起こすこともない。   As described above, the intermediate-pressure refrigerant that has passed through the indoor sub heat exchanger 3a is sucked into the high-stage compressor 2, and part of the high-pressure refrigerant that flows out of the indoor unit 3 is branched to reduce the intermediate pressure. The reduced pressure refrigerant is sucked. Since any refrigerant is gasified, it does not become liquid injection and does not cause liquid compression.

本実施形態では、低段圧縮機1から吐出する中間圧冷媒を室内サブ熱交換器3aに通し、中間圧冷媒の温度を下げて高段圧縮機2に吸入させる。これにより、高段圧縮機2の吐出温度を低下させることができ、圧縮機の信頼性を高めることができる。また、液インジェクションを用いるのではないので、液圧縮を避けることができる。   In the present embodiment, the intermediate pressure refrigerant discharged from the low-stage compressor 1 is passed through the indoor sub heat exchanger 3a, and the temperature of the intermediate-pressure refrigerant is lowered and sucked into the high-stage compressor 2. Thereby, the discharge temperature of the high stage compressor 2 can be lowered | hung and the reliability of a compressor can be improved. Further, since liquid injection is not used, liquid compression can be avoided.

図2は、本発明の第2の実施形態を示す図である。第2の実施形態では、低段圧縮機1から吐出する中間圧冷媒の温度を低下させる熱交換器として室外に配置された熱交換器を用いる。図1に示した第1の実施形態と同じ部材、同じ要素は、同一の番号を用いて示す。   FIG. 2 is a diagram showing a second embodiment of the present invention. In the second embodiment, a heat exchanger arranged outdoors is used as a heat exchanger that lowers the temperature of the intermediate pressure refrigerant discharged from the low-stage compressor 1. The same members and the same elements as those in the first embodiment shown in FIG.

図2に示すように、低段圧縮機1から吐出する中間圧冷媒は、室外機7の近傍に配置された室外サブ熱交換器7aを通過して高段圧縮機2に吸入される。第2の実施形態は、室内サブ熱交換器3aの代わりに室外サブ熱交換器7aを用いたもので、その他は第1の実施形態と同様である。例えば、室内機3を通過した高圧冷媒の一部が補助絞り4、内部熱交換器5を通ってガス化した中間圧冷媒となり、高段圧縮機2に吸入されるのは第1の実施形態と同様である。   As shown in FIG. 2, the intermediate pressure refrigerant discharged from the low-stage compressor 1 passes through the outdoor sub heat exchanger 7 a disposed in the vicinity of the outdoor unit 7 and is sucked into the high-stage compressor 2. In the second embodiment, an outdoor sub heat exchanger 7a is used instead of the indoor sub heat exchanger 3a, and the rest is the same as that of the first embodiment. For example, a part of the high-pressure refrigerant that has passed through the indoor unit 3 becomes an intermediate-pressure refrigerant that has been gasified through the auxiliary throttle 4 and the internal heat exchanger 5, and is sucked into the high-stage compressor 2 according to the first embodiment. It is the same.

第2の実施形態では、室外に配置される室外サブ熱交換器7aを用いており、暖房時には室外温度が低いのでより冷媒温度を下げることができる。室外サブ熱交換器7aの配置は特に限定されないが、図2に示すように、室外サブ熱交換器7aを、電動ファン7bと室外機7の間に配置して、室外機7の風上に配置するようにすると、室外機7に送風される空気の温度を高めることができ、室外機7のヒータとして使用することができる。これにより吸熱能力が高まる。さらに、暖房運転する場合室外機7には霜が付くことが多いが、室外サブ熱交換器7aにより室外機7の温度を高めることができるので、室外機7の霜の付着を抑制することもできる。   In the second embodiment, the outdoor sub heat exchanger 7a disposed outside is used, and since the outdoor temperature is low during heating, the refrigerant temperature can be further lowered. Although arrangement | positioning of the outdoor sub heat exchanger 7a is not specifically limited, as shown in FIG. 2, the outdoor sub heat exchanger 7a is arrange | positioned between the electric fan 7b and the outdoor unit 7, and it winds up the outdoor unit 7. If it arrange | positions, the temperature of the air ventilated by the outdoor unit 7 can be raised, and it can be used as a heater of the outdoor unit 7. This increases the endothermic capacity. Furthermore, when the heating operation is performed, the outdoor unit 7 often has frost. However, since the outdoor sub-heat exchanger 7a can increase the temperature of the outdoor unit 7, the frost on the outdoor unit 7 can be suppressed. it can.

図3は、本発明の第3の実施形態を示す図である。第3の実施形態は、低段圧縮機1から吐出する中間圧冷媒の温度を低下させる熱交換器として、内部熱交換器を利用する。図1に示した第1の例と同じ部材、同じ要素は、同一の番号を用いて示す。   FIG. 3 is a diagram showing a third embodiment of the present invention. The third embodiment uses an internal heat exchanger as a heat exchanger that reduces the temperature of the intermediate pressure refrigerant discharged from the low-stage compressor 1. The same members and the same elements as those in the first example shown in FIG. 1 are denoted by the same reference numerals.

図3に示すように、低段圧縮機1から吐出する中間圧冷媒は、内部熱交換器5の冷媒流入口52から内部熱交換器5に流入する。冷媒流入口52には、室内機3を通過した高圧冷媒の一部が補助絞り4により減圧されて中間圧冷媒となって流入する。したがって、低段圧縮機1から吐出する中間圧冷媒は、補助絞り4から流出する中間圧の冷媒と混合して、内部熱交換器5に流入することになる。内部熱交換器5で高圧冷媒と熱交換してガス化した中間圧冷媒は、冷媒流出口54から流出して高段圧縮機2に吸入される。この場合、内部熱交換器5の流出側は飽和に近い状態の低温に制御することができる。したがって、第3例においても、高段圧縮機2の吸入温度を下げることができ、高段圧縮機2の吐出温度を下げることができる。   As shown in FIG. 3, the intermediate pressure refrigerant discharged from the low stage compressor 1 flows into the internal heat exchanger 5 from the refrigerant inlet 52 of the internal heat exchanger 5. A part of the high-pressure refrigerant that has passed through the indoor unit 3 is decompressed by the auxiliary throttle 4 and flows into the refrigerant inlet 52 as intermediate-pressure refrigerant. Therefore, the intermediate pressure refrigerant discharged from the low-stage compressor 1 is mixed with the intermediate pressure refrigerant flowing out from the auxiliary throttle 4 and flows into the internal heat exchanger 5. The intermediate pressure refrigerant gasified by exchanging heat with the high pressure refrigerant in the internal heat exchanger 5 flows out of the refrigerant outlet 54 and is sucked into the high stage compressor 2. In this case, the outflow side of the internal heat exchanger 5 can be controlled to a low temperature close to saturation. Therefore, also in the third example, the intake temperature of the high stage compressor 2 can be lowered, and the discharge temperature of the high stage compressor 2 can be lowered.

図4は、第3の実施形態におけるモリエル線図の概略を示す図である。破線は、従来の冷凍サイクルのモリエル線図であり、実線は、第3の実施形態によるモリエル線図である。p1〜p2〜p3は、圧縮過程を示し、p2は中間圧を示す。p3〜p4〜p5は、凝縮過程を示す。p5〜p6は、膨張過程を示し、p6〜p1は蒸発過程を示す。高段吐出温度が低減されているのは、第1〜3の実施形態に共通するが、第3の実施形態では、凝縮器出口側のサブクール度(過冷却度)が減少している。しかしながら、高段圧縮機2の吸入温度が低くなっているので、冷媒密度が高く、冷媒流量は増加するので、冷凍サイクルの能力が大きく低下するということはない。液インジェクションと比較して、能力・成績係数(COP)は変わらないが、内部熱交換器5の出口温度を制御することで、高段圧縮機2の入口を確実にガス化することができ液圧縮を起こすことがない。   FIG. 4 is a diagram showing an outline of the Mollier diagram in the third embodiment. A broken line is a Mollier diagram of a conventional refrigeration cycle, and a solid line is a Mollier diagram according to the third embodiment. p1 to p2 to p3 indicate a compression process, and p2 indicates an intermediate pressure. p3 to p4 to p5 indicate a condensation process. p5 to p6 indicate an expansion process, and p6 to p1 indicate an evaporation process. Although the high stage discharge temperature is reduced in common with the first to third embodiments, the subcool degree (supercooling degree) on the condenser outlet side is reduced in the third embodiment. However, since the suction temperature of the high stage compressor 2 is low, the refrigerant density is high and the refrigerant flow rate is increased, so that the capacity of the refrigeration cycle is not greatly reduced. Although the capacity / coefficient of performance (COP) does not change compared to liquid injection, the inlet temperature of the high-stage compressor 2 can be reliably gasified by controlling the outlet temperature of the internal heat exchanger 5. There is no compression.

第3の実施形態においても、液圧縮の発生を防ぎながら、高段圧縮機2の吐出温度を低くすることができる。また、内部熱交換器5を利用するので、第1、2の実施形態と比較して、新たな熱交換器を配置する必要がないという利点を有する。   Also in the third embodiment, the discharge temperature of the high stage compressor 2 can be lowered while preventing the occurrence of liquid compression. Moreover, since the internal heat exchanger 5 is utilized, it has the advantage that it is not necessary to arrange a new heat exchanger as compared with the first and second embodiments.

なお、本明細書に記載の実施形態の冷凍サイクルはすべて、内部熱交換器5を備えるが、第1および第2の実施形態にあっては、内部熱交換器5したがって補助絞り4を備えることなく、室内機3から流出する冷媒を主絞り6に流すようにした冷凍サイクルを用いることもできる。   In addition, although all the refrigerating cycle of embodiment described in this specification is provided with the internal heat exchanger 5, in 1st and 2nd embodiment, it is provided with the internal heat exchanger 5 and hence the auxiliary throttle 4. It is also possible to use a refrigeration cycle in which the refrigerant flowing out of the indoor unit 3 flows through the main throttle 6.

1 低段圧縮機
2 高段圧縮機
3 室内機(凝縮器)
3a 室内サブ熱交換器
3b ファン
4 補助絞り
5 内部熱交換器
6 主絞り
7 室外機(蒸発器)
7a 室外サブ熱交換器
7b ファン
1 Low stage compressor 2 High stage compressor 3 Indoor unit (condenser)
3a Indoor sub heat exchanger 3b Fan 4 Auxiliary throttle 5 Internal heat exchanger 6 Main throttle 7 Outdoor unit (evaporator)
7a Outdoor sub heat exchanger 7b Fan

Claims (6)

低圧冷媒を圧縮して中間圧冷媒として吐出する低段圧縮機(1)と、
前記低段圧縮機(1)から吐出した中間圧冷媒を圧縮して高圧冷媒として吐出する高段圧縮機(2)と、
前記高段圧縮機(2)から吐出した高圧冷媒を熱交換させて放熱する凝縮器(3)と、
前記凝縮器(3)から流出する前記高圧冷媒を減圧膨張して低圧冷媒とする絞り機構(6)と、
前記絞り機構(6)から流出する低圧冷媒を熱交換させて吸熱し、吸熱した冷媒を前記低段圧縮機(1)に吸入させる蒸発器(7)と、を有する冷凍サイクルであって、
前記低段圧縮機(1)から吐出した中間圧冷媒を熱交換させて放熱する熱交換器(3a、7a、4)を備え、前記熱交換器(3a、7a、4)により放熱した中間圧冷媒を前記高段圧縮機(2)に吸入させる冷凍サイクル。
A low-stage compressor (1) that compresses the low-pressure refrigerant and discharges it as an intermediate-pressure refrigerant;
A high-stage compressor (2) that compresses the intermediate-pressure refrigerant discharged from the low-stage compressor (1) and discharges it as a high-pressure refrigerant;
A condenser (3) for exchanging heat by exchanging heat from the high-pressure refrigerant discharged from the high-stage compressor (2);
A throttle mechanism (6) that expands the high-pressure refrigerant flowing out of the condenser (3) under reduced pressure to form a low-pressure refrigerant;
A refrigeration cycle comprising: an evaporator (7) that heat-exchanges the low-pressure refrigerant flowing out of the throttle mechanism (6) to absorb heat and sucks the absorbed refrigerant into the low-stage compressor (1),
A heat exchanger (3a, 7a, 4) for exchanging heat by exchanging the intermediate pressure refrigerant discharged from the low-stage compressor (1), and the intermediate pressure dissipated by the heat exchanger (3a, 7a, 4) A refrigeration cycle for sucking refrigerant into the high stage compressor (2).
前記凝縮器(3)から流出した高圧冷媒と、前記凝縮器(3)から流出した高圧冷媒の一部を分岐し減圧膨張させて中間圧冷媒とした分岐冷媒との間で熱交換を行う内部熱交換器(5)を備え、前記内部熱交換器(5)から流出する高圧冷媒は前記絞り機構(6)に流入し、前記内部熱交換器(5)から流出する前記分岐冷媒は高段圧縮機(2)に吸入される、請求項1に記載の冷凍サイクル。   Internal heat exchange between the high-pressure refrigerant that has flowed out of the condenser (3) and the branched refrigerant that has branched and decompressed and expanded part of the high-pressure refrigerant that has flowed out of the condenser (3). A high-pressure refrigerant that includes a heat exchanger (5), flows out from the internal heat exchanger (5), flows into the throttle mechanism (6), and the branched refrigerant that flows out from the internal heat exchanger (5) The refrigeration cycle according to claim 1, wherein the refrigeration cycle is sucked into the compressor (2). 前記熱交換器は、前記凝縮器(3)とともに室内に配置され、前記低段圧縮機(1)から吐出した中間圧冷媒を室内側空気と熱交換する、請求項1または請求項2に記載の冷凍サイクル。   The said heat exchanger is arrange | positioned indoors with the said condenser (3), and heat-exchanges the intermediate pressure refrigerant | coolant discharged from the said low stage compressor (1) with indoor air. Refrigeration cycle. 前記熱交換器は、前記蒸発器(7)とともに室外に配置され、前記低段圧縮機(1)から吐出した中間圧冷媒を室外側空気と熱交換する、請求項1または請求項2に記載の冷凍サイクル。   The said heat exchanger is arrange | positioned outdoors with the said evaporator (7), and heat-exchanges the intermediate pressure refrigerant | coolant discharged from the said low stage compressor (1) with outdoor air. Refrigeration cycle. 前記熱交換器(7a)は、前記蒸発器(7)の風上側に配置される、請求項4に記載の冷凍サイクル。   The refrigeration cycle according to claim 4, wherein the heat exchanger (7a) is arranged on the windward side of the evaporator (7). 前記熱交換器は、前記内部熱交換器(4)であって、前記低段圧縮機(1)から吐出した中間圧冷媒は、前記分岐冷媒と混合して前記内部熱交換器(4)に流入する、請求項2に記載の冷凍サイクル。   The heat exchanger is the internal heat exchanger (4), and the intermediate pressure refrigerant discharged from the low-stage compressor (1) is mixed with the branched refrigerant to the internal heat exchanger (4). The refrigeration cycle according to claim 2, which flows in.
JP2011043741A 2011-03-01 2011-03-01 Refrigeration cycle Withdrawn JP2012180963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043741A JP2012180963A (en) 2011-03-01 2011-03-01 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043741A JP2012180963A (en) 2011-03-01 2011-03-01 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2012180963A true JP2012180963A (en) 2012-09-20

Family

ID=47012306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043741A Withdrawn JP2012180963A (en) 2011-03-01 2011-03-01 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2012180963A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344059A (en) * 2013-07-04 2013-10-09 天津商业大学 Secondary throttling middle complete cooling variable flow two-stage compression refrigerating system
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
WO2017073212A1 (en) * 2015-10-27 2017-05-04 株式会社デンソー Refrigeration cycle device
WO2020067196A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Multistage compression system
JP2020094760A (en) * 2018-12-13 2020-06-18 ダイキン工業株式会社 Multi-stage compression system
CN114811986A (en) * 2022-06-06 2022-07-29 珠海格力电器股份有限公司 Refrigeration system, defrosting control method and refrigeration equipment
US11428226B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11428225B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11994127B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Multistage compression system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344059A (en) * 2013-07-04 2013-10-09 天津商业大学 Secondary throttling middle complete cooling variable flow two-stage compression refrigerating system
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
US10845096B2 (en) 2015-10-27 2020-11-24 Denso Corporation Refrigeration cycle device
JPWO2017073212A1 (en) * 2015-10-27 2018-03-01 株式会社デンソー Refrigeration cycle equipment
WO2017073212A1 (en) * 2015-10-27 2017-05-04 株式会社デンソー Refrigeration cycle device
WO2020067196A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Multistage compression system
CN112752934A (en) * 2018-09-28 2021-05-04 大金工业株式会社 Multi-stage compression system
CN112752934B (en) * 2018-09-28 2022-03-01 大金工业株式会社 Multi-stage compression system
US11415342B2 (en) 2018-09-28 2022-08-16 Daikin Industries, Ltd. Multistage compression system
US11428226B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11428225B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11994127B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Multistage compression system
JP2020094760A (en) * 2018-12-13 2020-06-18 ダイキン工業株式会社 Multi-stage compression system
CN114811986A (en) * 2022-06-06 2022-07-29 珠海格力电器股份有限公司 Refrigeration system, defrosting control method and refrigeration equipment

Similar Documents

Publication Publication Date Title
JP2012180963A (en) Refrigeration cycle
US7461517B2 (en) Refrigerant cycle unit
JP3925545B2 (en) Refrigeration equipment
US20100058781A1 (en) Refrigerant system with economizer, intercooler and multi-stage compressor
US8356491B2 (en) Refrigerant system with intercooler utilized for reheat function
JP2002327967A (en) Ejector cycle
WO2013145537A1 (en) Air conditioner device for vehicle
JP4031849B2 (en) Refrigeration air conditioner
JP2011214753A (en) Refrigerating device
US11092369B2 (en) Integrated suction header assembly
JP2011133133A (en) Refrigerating device
JP2007051841A (en) Refrigeration cycle device
JP2001056156A (en) Air conditioning apparatus
JP5163161B2 (en) Auxiliary heating unit and air conditioner
US7555915B2 (en) Air conditioner
JP2007051788A (en) Refrigerating device
KR100528292B1 (en) Heat-pump type air conditioner
JP2020192965A (en) Heat exchange system
JP6926460B2 (en) Refrigerator
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
KR101170613B1 (en) Cooling system of air conditioner for vehicle
KR100248719B1 (en) Cooling cycle and heating cycle
JP2003106688A (en) Refrigerating cycle
KR20100128516A (en) Cooling system of air conditioner for vehicle
JP2010112618A (en) Air conditioning device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513