JP4027115B2 - 撮像素子及び撮像装置 - Google Patents

撮像素子及び撮像装置 Download PDF

Info

Publication number
JP4027115B2
JP4027115B2 JP2002044645A JP2002044645A JP4027115B2 JP 4027115 B2 JP4027115 B2 JP 4027115B2 JP 2002044645 A JP2002044645 A JP 2002044645A JP 2002044645 A JP2002044645 A JP 2002044645A JP 4027115 B2 JP4027115 B2 JP 4027115B2
Authority
JP
Japan
Prior art keywords
light
refractive index
pixel
region
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002044645A
Other languages
English (en)
Other versions
JP2003243638A (ja
Inventor
英記 土橋
英利子 鯰江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002044645A priority Critical patent/JP4027115B2/ja
Priority to US10/369,938 priority patent/US7250973B2/en
Priority to EP03003855A priority patent/EP1339225B1/en
Priority to AT03003855T priority patent/ATE495548T1/de
Priority to DE60335685T priority patent/DE60335685D1/de
Priority to KR10-2003-0010939A priority patent/KR100508068B1/ko
Publication of JP2003243638A publication Critical patent/JP2003243638A/ja
Application granted granted Critical
Publication of JP4027115B2 publication Critical patent/JP4027115B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被写体像を撮像する撮像素子に関するものである。
【0002】
【従来の技術】
撮像素子に入射した光線を効率良く取り込むための構造が特開平06−224398号公報に公開されている(図34)。上記公報に記載された構造における入射光線をトレースした結果を図35に示す。16は樹脂からなるキャップ層で1.6程度の屈折率を持つ材質で形成される。17は低屈折率層であり、キャップ層16よりも低屈折率の樹脂や中空(空気や窒素等の不活性ガスを充填)で形成されている。これによりキャップ層16と低屈折率層17の界面が全反射しやすい面となるため斜入射光を取り込もうというものである。
【0003】
【発明が解決しようとする課題】
しかし、上記従来例には次のような問題点が存在する。図34のように高屈折率材料で形成されているキャップ層16と低屈折率層17との界面であって物体側である入射部の形状がR形状となっていると図35の光線トレース結果に示すように、斜入射光の一部はR面で反射しても反対側の面で全反射条件を超える角度となり、そのまま低屈折率層17へと抜けてしまう。これでは抜けてしまった光線が隣の画素に進入してしまったりして逆に問題となることがある。
【0004】
そこで本発明では、このような従来の問題点に着眼してなされたもので、光電変換部に取り込む光線の効率を上げることを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するために、光電変換部と、前記光電変換部よりも光の入射側に形成され、前記第1の波長範囲の光を透過するとともに、前記第1の波長範囲と異なる第2の波長範囲の光を光軸に対して斜め方向であって前記光の入射方向に反射する波長選択部と、第1の屈折率を有し前記光電変換部へ光を導く第1の領域と、
前記第1の領域の周辺部に形成された前記第1の屈折率よりも低い第2の屈折率を有する第2の領域とを有し、第1の領域と第2の領域の界面は、入射部が広がったテーパ形状であり、斜め方向から入射してくる前記第2の波長範囲の光が前記第2の領域に入射するのを抑制するように前記テーパ形状を形成していることを特徴とする撮像素子を提供する。
【0006】
【発明の実施の形態】
(第1の実施の形態)
図1〜22に本発明の第1の実施の形態を示す。図1は撮像素子の断面図で、1はシリコンウェハ、2はマイクロレンズ、3は受光した光子を電荷へと変換する機能を有する光電変換部、4(4r、4g)は光線を波長分離するための波長選択部であるダイクロイック膜、5は第3の屈折率を有する第3の屈折率領域、6は第4の屈折率を有する第4の屈折率領域、7は第5の屈折率を有する第5の屈折率領域、8は第1の屈折率を有する第1の屈折率領域、9は第2の屈折率を有する第2の屈折率領域、10は光電変換部の電荷を制御するゲートの役割を果たすPoly配線層である。11〜13はアルミニウムなどの金属でできた配線層で、11は各部間の結線および出力線の役割を果たすAL1配線層、12はウェル電源線および制御線の役割を果たすAL2配線層、13は遮光および電源線の役割を果たすAl3配線層である。また、図2は撮像素子を斜め上面から見た斜視図で多数個存在する撮像素子の内9個のみを取り出して図式化したものである。さらに図3は図2の中央部でマイクロレンズ2およびダイクロイック膜4からAL3配線層までの構造を切断した断面図を表す。
【0007】
図1において、マイクロレンズ2は、上に凸の球面形状であり正のレンズパワーを有する。従ってマイクロレンズ2上に到達した光線は光電変換部3に対して集光する働きをする。これにより、より多くの光線を光電変換部3に取り込むことができるため撮像素子の感度を上げることが可能となる。第3の屈折率領域5は低屈折率の材料で形成されており、例えば屈折率1.38のフッ化マグネシウム(MgF)などを用いることができる。また、第3の屈折率領域5とダイクロイック膜4に挟まれた第4の屈折率領域6は高屈折率の材料で形成されており、例えば屈折率2.5の二酸化チタン(TiO)などを用いることができる。このような構成を採る事によって第4の屈折率領域6から第3の屈折率領域5へと進む光線はその界面で全反射しやすくなるという性質を持つことになる。
【0008】
第1の屈折率領域8は二酸化チタンのような高屈折率の材料で形成され、第2の屈折率領域9は屈折率1.46の二酸化ケイ素(SiO)やフッ化マグネシウムといった低屈折率の材料を用いて成形する。これにより第1の屈折率領域に入射した光線は第2の屈折率領域との界面で全反射しやすくなるため、光電変換部3に至るまでの導光路の役割を果たす。第5の屈折率領域7は第1の屈折率領域との界面で全反射しないようにする必要があるため、第1の屈折率領域と同じかそれよりも低い屈折率を持つ材料で成形する必要がある。但し、第2の屈折率領域6との屈折率差があまり大きくない方が望ましいため、例えば屈折率2.0である窒化シリコン(Si)などを用いることができる。
【0009】
一般的にダイクロイック膜とは、注目する波長λの1/4の整数倍の膜厚で高屈折率の物質と低屈折率の物質を交互に積層することによって形成されたものである。このような構造を採ることにより透過光線の波長を選択することができるようになる。本実施例で用いたダイクロイック膜4の例として図17に示す。高屈折率の材料として二酸化チタン、低屈折率の材料として二酸化ケイ素を用い、図のような膜厚、層数とした。このダイクロイック膜4の透過特性を図18に示す。図18の特性図を見て分かるように、図33に示す従来の色素を用いたカラーフィルタの特性図に近い特性を持つ。従って本構成のダイクロイック膜4を用いたものであっても従来の撮像素子に近い特性を持つようにすることができる。これらの積層膜はPVD(Physical Vapor Deposition)を用いることによって容易に作成することができる。
【0010】
次に本構造における撮像素子内の光線の挙動について図5および6を用いて説明する。図5は緑色光を受光する画素100gに入射してダイクロイック膜4gによって反射された光線、すなわち青色光と赤色光を含む光線のみの挙動を示している。画素の大きさに対して十分に遠い位置にある結像レンズの瞳から出た光線は赤外線カットフィルタを通過して物体光110のような光束となる。本図上方より来た物体光110はマイクロレンズ2へ入射して集光作用を受ける。次に第3の屈折率領域5、第4の屈折率領域6と順に入射してダイクロイック膜4gへと到達する。ここでダイクロイック膜4gの特性により緑色以外の光線は反射作用を受ける。これにより第3の屈折率領域5の方向へ進行する訳であるが、ダイクロイック膜4gは図4に示すような四角錐の形状をしている面に形成されているために反射した光線は中心より外側に方向を変えて進行する。前述の通り、第4の屈折率領域6は第3の屈折率領域5よりも高屈折率であるため臨界角以上の光線は界面で全反射作用を受けることになる。界面で全反射した光線はダイクロイック膜4r方向に向いて隣接画素である赤色光を受光する画素100rおよび101rに向かって進行する。これらの画素100r、101rのダイクロイック膜4rは赤色光を透過して緑色光と青色光を反射する特性を持つ。従って画素100gより反射してきた光線のうち赤色光のみが透過して青色光はダイクロイック膜4rによって反射作用を受ける。ここでは反射作用を受ける青色光は撮像素子外へと進むため図示していない。反射光線が透過するダイクロイック膜4rは膜厚分だけ透過できる面積が小さくなっているが、マイクロレンズ2の集光作用によりダイクロイック膜4gに入射する光線の面積(反射光の面積)はマイクロレンズ2の開口面積に比べて小さくなっている。従って反射光線はダイクロイック膜4rでのケラレを小さくすることができる。ダイクロイック膜4rを透過した光線は第5の屈折率領域7、第1の屈折率領域8と順に進行する。続いて第1の屈折率領域8から第の屈折率領域9へ進行しようとするが、これも前述の通り、第1の屈折率領域8は第2の屈折率領域9よりも高屈折率であるため、臨界角以上の光線は界面で全反射をする。第1の屈折率領域8と第2の屈折率領域9の界面は入射部が広がったテーパ形状をしているため入射光線を取り込む間口が広くなり第1の屈折率領域8に多くの光線を取り込むことができるようになっている。仮に、第1の屈折率領域8の入射部がテーパ形状をしていないと、反射光線のうち図の下側に位置する光線が第5の屈折率領域7から第2の屈折率領域9へと進行する。そうすると第5の屈折率領域7は第2の屈折率領域9よりも高屈折率であるため光線は上方向に曲げられることになる。次に第1の屈折率領域8に進行するが第2の屈折率領域9よりも高屈折率であるためさらに上方向に曲げられることになる。従ってこのようなルートを辿る光線は光電変換部3には導かれず損失してしまうため、第1の屈折率領域8がテーパ形状をなしていて第5の屈折率領域7から第2の屈折率領域9へ進行する光線をなくすことで隣接画素からの反射光を十分取り込めるのである。
【0011】
そして、垂直方向に略平行な2面で形成されているため、一度目の全反射によって光電変換部3に入射しなかった光線は再び反対側の界面で全反射して最終的にはすべて光電変換部3へと入射することになる。
【0012】
画素100gにおいて紙面に垂直な方向には青色光を受光する画素が存在する。これも赤色の場合と同様に、画素100gで反射された光線のうち青色光のみを取り込む挙動を示す。
【0013】
図6はダイクロイック膜4において透過作用を受ける光線の挙動を示している。本図上方より来た光線はマイクロレンズ2へ入射して集光作用を受ける。次に第3の屈折率領域5、第4の屈折率領域6と順に入射してダイクロイック膜4gへと到達する。ダイクロイック膜4gでは所定の波長の光線のみを選択的に透過して第5の屈折率領域7へと入射する。そして第1の屈折率領域8へ進行し第1の屈折率領域8と第2の屈折率領域9の界面で全反射を繰り返す作用を受けることによって光電変換部3へと導くものとしている。また第2の屈折部8と第3の屈折部9の界面は入射部が広がったテーパ形状をしている。テーパ形状を形成するテーパ面81aはあまり角度がつきすぎるとテーパ面81aで全反射しない場合があり、したとしても今度は反対側の面で全反射せずに透過してしまう。本実施例の場合では、画素の中心軸より25°程度までの角度であればテーパ面81aでも全反射して光電変換部3へ導くことができる。以上のことからテーパ面81aを適当な角度に設定して用いることによって広範囲な光線を取り込むことが可能となる。
【0014】
次にダイクロイック膜の透過・反射を用いて光線を取り込む際の効率について考えていく。例えば、色再現性が良いとされる原色フィルタ付きの画素をモザイク状に配置したCCD撮像素子では、R(赤色)G(緑色)B(青色)の光学フィルタがマイクロレンズ2と光電変換領域3の間に一つずつ配置される。
【0015】
このとき、赤色の光学フィルタを配した画素では赤色光のみが光電変換され青色光や緑色光は光学フィルタで吸収されて熱となる。緑色の光学フィルタを配した画素では同様に青色光と赤色光が光電変換されずに熱となり、青色の光学フィルタを配した画素では同様に緑色光と赤色光が光電変換されずに熱となる。すなわち、従来のカラー撮像素子の各画素では入射する光束のうち所定の光学フィルタを透過した光のみを光電変換し、電気信号として出力するので、その光学フィルタを透過できなかった光は熱などとして捨てられている訳である。
【0016】
図103は撮像素子内のRGBのカラーフィルタの分光透過率特性である。赤外線の透過率が高いので、実際には撮像素子と撮影レンズの間にさらに650nm以上の波長を遮断する赤外線カットフィルタが重ねて用いられる。これより分かるように、1画素の中では可視光の内のおよそ1/3だけが有効に用いられる。
【0017】
さらに詳しくRGBの色別に利用効率を考えれば、例えば図102に示すベイヤー配列のカラー撮像素子のRGB画素面積比率は、規則的配列を構成する1単位の面積を1としたとき、1/4:2/4:1/4であるので、全体の光量を1とした時の緑色光の利用割合は波長選択性の項と面積比率の項の積として1/3×2/4=1/6、赤色光と青色光が1/3×1/4=1/12、合計すれば1/6+1/12+1/12=1/3で、やはり利用効率1/3ということになる。逆に、全体の光量を1とした時に、そのうち緑色光で2/3×2/4=1/3が、赤色光や青色光で2/3×1/4=1/6が有効に利用されないことになる。
【0018】
以上は、原色系のカラーフィルタを用いた撮像素子で説明を行ったが、補色フィルタを用いた撮像素子では、可視光のうちのおよそ1/3が光電変換されず、有効に利用されない。このように、原色系・補色系のいずれにしても従来型の単板式撮像素子ではカラーフィルタで撮像面を分割していることが起因して光利用効率は悪い。
【0019】
図19はダイクロイック膜の各色の透過特性を単純化したものである。本図においてそれぞれの色の透過曲線の裏返しが反射特性ということになる。また、計算の簡略化のため透過しない光線はすべて反射するものとし、反射した光線はすべて隣接画素に平等に到達するものとして考える。さらに画素配列は図7のようなベイヤー配列をしているものとする。
【0020】
緑色の画素内のダイクロイック膜で反射した光線が青色の画素内のダイクロイック膜で透過して青色の光電変換部に取り込まれる場合を考えると、前述の通り、緑色の透過特性の裏返しが反射特性になるため、この曲線と青色の透過特性との積が求めるものとなる。これを表したものが図20である。残りの色に関しても同様に考えを進めると、緑色の画素から赤色の画素へ到達するものが図21、赤色の画素から緑色の画素へ到達するものが図22、青色の画素から緑色画素へ到達するものが図23のように示される。
【0021】
緑色の画素内に隣接画素から反射してくるものについて考えると、画素配列はベイヤー配列であることから隣接画素は赤と青が2個ずつである。このことから緑色の画素が隣接画素より受け取る光線は{(青色の反射)×1/4×2+(赤色の反射)×1/4×2}となる。元々緑色の画素が受け取る光線量は透過率曲線の積分量であるためこれを1とすると図22の大きさ(赤色画素から反射するもの)は0.37、図23の大きさ(青色画素から反射するもの)は0.43となる。従って反射光の合計は0.39となるため、透過する光線だけを取り込む場合に対して1.39倍となることが分かる。
【0022】
青色の画素について考えると、隣接画素は緑色の画素が4個である。青色の画素の透過率曲線の積分量を1とすると図20の積分量は0.84となる。隣接画素より受け取る光線は{(緑色の反射)×1/4×4}であるから合計は0.84となり、元々の透過量に対して1.84倍となることが分かる。
【0023】
最後の赤色の画素について考えると、隣接画素は青色の画素と同じく緑色が4個である。赤色の画素の透過率曲線の積分量を1とすると図21の積分量は0.67となる。隣接画素より受け取る光線は{(緑色の反射)×1/4×4}であるから合計は0.67となり、元々の透過量に対して1.67倍となることが分かる。
【0024】
以上のようにベイヤー配列のような隣接する画素が同色でない場合であれば、どの画素についても本構造を用いて不要な波長成分を隣接する画素に分割・反射させることで、隣接する画素で有効な波長成分として光電変換することができ、光の利用効率を大幅に向上させることが可能である。
【0025】
次に本構成による作用の一つとしてのローパスフィルタ効果について説明する。一般に良好な画像特性を得るための撮像は、物体像を光学装置によって形成する第1のプロセス、物体像の空間周波数特性の高周波成分を抑制するように調節する第2のプロセス、空間周波数特性が調節された物体像を光電変換する第3のプロセス、得られた電気信号に対して空間周波数に応じてレスポンスを補正する第4のプロセスよりなる。この際、有限の画素数の撮像素子で光学像のサンプリングを行うわけであるから、良質な画像出力を得るためには、標本化定理に従って光学像の空間周波数特性に撮像素子固有のナイキスト周波数以上の成分を少なくする必要がある。ここでナイキスト周波数とは画素ピッチで決まるサンプリング周波数の1/2の周波数である。したがって、最適化された一連のプロセスは、サンプリングされる光学像を撮像素子固有のナイキスト周波数に応じた特性の光学像に調節することで、折り返し歪みが目立たない、すなわちモワレの目立たない良質な画像を得るものである。
【0026】
画像の空間周波数伝達特性であるMTF(Modulation Transfer Function)はデジタルスティルカメラやビデオカメラなどの鮮鋭度に関する特性をよく表現できる評価量である。このMTFに影響を与える具体的要素は、光学装置である結像光学系、物体像の帯域制限のための光学ローパスフィルタ、撮像素子の光電変換領域の開口形状、デジタルアパーチャ補正等であり、最終の画像特性を表す全体のMTFは各要素のMTFの積として与えられる。すなわち、上記の第1のプロセスから第4のプロセスまでのMTFをそれぞれ求め、その積を計算すればよい。
【0027】
ただし、第4のプロセスであるデジタルフィルタ処理は、撮像素子によって既にサンプリングされた画像出力に対して行われるので、ナイキスト周波数を超える高周波について考慮する必要はない。
【0028】
したがって、光学像の空間周波数特性に撮像素子固有のナイキスト周波数以上の成分を少なくする構成とは、第4のプロセスを除き、第1のプロセスのMTF、第2のプロセスのMTFおよび第3のプロセスのMTFの積においてナイキスト周波数以上の成分が小さいということである。ここで、デジタルスティルカメラのように静止画の鑑賞を前提とする場合、ナイキスト周波数を超える高周波がゼロではなく、多少残っていても、ナイキスト周波数をやや下回る周波数におけるレスポンスが高い方が、解像感のある画像となりやすいことを考慮する必要がある。
【0029】
第1のプロセスである結像光学系による物体像の形成において、一般に画面の中央は周辺に比べて光学収差を補正しやすい。画面の周辺で良好な画像を得ようとすると、画面の中央では結像レンズのFナンバーで決定される回折限界MTFに近い極めて良好な特性を得る必要がある。近年、撮像素子の小ピクセル化が進んでおり、この必要性はますます高まっている。したがって、結像光学系については無収差の理想レンズと仮定してMTFを考えると良い。
【0030】
また、幅dの受光開口が隙間なく敷きつめられた撮像素子においては、受光開口の幅が画素ピッチと一致するので、ナイキスト周波数u=d/2における第3のプロセスのレスポンス値はかなり高い。この理由から、ナイキスト周波数付近の総合MTFを下げるために第2のプロセスにおいてナイキスト周波数付近をトラップするのが一般的である。
【0031】
第2のプロセスにおいては、通常、光学ローパスフィルタが用いられる。光学ローパスフィルタには水晶等の複屈折特性を有する物質を利用する。また、位相型の回折格子を利用しても良い。
【0032】
光学装置の光路中に複屈折板を介在させ、その光学軸を結像面の水平方向と並行するように傾けて配置すると、常光線による物体像と異常光線による物体像は所定量だけ水平方向にずれて形成される。複屈折板によって特定の空間周波数をトラップするということは、その空間周波数の縞の明部と暗部とが重なるようにずらすということである。光学ローパスフィルタによるMTFは式(1)で表される。
【0033】
(u)=|cos(π・u・ω)|・・・(1)
ここで、R(u)はレスポンス、uは光学像の空間周波数、ωは物体像分離幅である。
【0034】
複屈折板の厚さを適当に選択すれば、撮像素子のナイキスト周波数においてレスポンスをゼロとすることが可能である。回折格子を利用する場合には、回折によって光学像を所定の位置関係の複数の像に分離し重畳させることで、同様の効果を得ることが出来る。
【0035】
しかしながら、複屈折板を作製するには水晶やニオブ酸リチウムなどの結晶を成長させてから薄く研磨する必要があって、極めて高価になるという問題点がある。また、回折格子にしても高度に精密な微細構造が求められるため、やはり高価であることに変わりはない。
【0036】
本発明の実施形態による撮像素子では、実質的な受光開口が各画素よりも大きくなる。RGBの色毎に図7に示したベイヤー配列の従来の撮像素子と比較すると、まず、従来のG画素の開口はマイクロレンズの大きさであったが、本発明本実施の形態による撮像素子では図8に示すように92a、92b、92c、92dの部分を隣接画素より受け取ることから本来の画素開口91よりも大きい。これにより隣接する画素から緑色光成分を分けてもらうことを含めた実質的な受光開口は図9に示すようなものとなる。B画素、R画素についても隣接画素から各色光成分を分けてもらうため、実効的な受光開口は同様の形状となる。従って、全ての画素について考えると、実効的に互いにオーバーラップした受光開口を有することが分かる。
【0037】
このように実質的な受光開口が各画素よりも大きくなると、通常の単板式の撮像装置では考えられなかったMTF特性を得ることができる。この結果、光学ローパスフィルタを省略しても画像の品位を損なわない。すなわち、前述した物体像の空間周波数特性の高周波成分を抑制するように調節する第2のプロセスを省き、物体像を光電変換する第3のプロセスだけで、折り返し歪みが目立たない良質な画像を得ることが可能である。図10から図16はその説明図である。
【0038】
まず、図10は本発明本実施の形態による撮像素子の画素110gについての水平方向の空間周波数成分に対するMTF特性である。また、図11は通常型の矩形開口を有する画素のMTF特性である。何れも1画素の大きさを□3μmとし、マイクロレンズは1画素分の大きさを有しているとした。さらに、本発明本実施の形態の画素については隣接画素の中央部にまで伸びた開口を有するものとしてある。
【0039】
図7に示した従来型の矩形開口画素のレスポンスについては簡単に式(2)のようなSINC関数で表すことができる。
【0040】
【外1】
Figure 0004027115
【0041】
ここで、R(u)はレスポンス、dは撮像素子の受光開口の幅である。
【0042】
式(2)の最初のゼロ点(カットオフ周波数)は、u=1/dの位置である。すなわち、受光開口の幅に一致した波長においてレスポンスがゼロになる。受光開口が隙間なく敷きつめられた撮像素子においては、受光開口の幅が画素ピッチと一致するので、ナイキスト周波数u=d/2における式(2)のレスポンス値は0.636であってかなり高い。したがって、従来の矩形開口画素には図12に示したMTF特性の光学ローパスフィルタを併せて使用する必要がある。ここでは、デジタルスティルカメラのように静止画の鑑賞を前提とする場合、ナイキスト周波数を超える高周波がゼロではなく、多少残っていても、ナイキスト周波数をやや下回る周波数におけるレスポンスが高い方が、解像感のある画像となりやすいことを考慮してある。
【0043】
これに対して、本発明の本実施の形態による画素100gは図9に示したような菱形様の開口に起因して、高周波側までレスポンスが伸びる。これは式(2)でMTF特性を表せる無限に細い短冊状の矩形開口が集まったと考えれば良い。短冊状の矩形開口全体を積分した結果は図10のようになって、画素ピッチを3μmとしたときのナイキスト周波数167本/mmにおいては画素100gの方がかなり低いレスポンスを有していることが分かる。
【0044】
次に、図13はFナンバーを4.0、物体像の波長を550nmと仮定したときの無収差レンズのMTF特性である。幾何光学的に収差がない理想レンズでは、そのMTFは光の回折によって決定される。回折限界MTFはFナンバーによって決まり、式(3)で表される。
【0045】
【外2】
Figure 0004027115
【0046】
β=cos−1(u・F・λ)
ここで、uは光学像の空間周波数、Fは光学系のFナンバー、λは光学像の波長である。
【0047】
この結像レンズのカットオフ周波数は455本/mmである。
【0048】
さて、これで物体像を光学装置によって形成する第1のプロセス、(物体像の空間周波数特性の高周波成分を抑制するように調節する第2のプロセス、)空間周波数特性が調節された物体像を光電変換する第3のプロセスの総合MTFを知る材料が揃った。
【0049】
図14は画素100gを用いたときの結像レンズと撮像素子の画素の総合MTFである。一方、図15は従来の画素を用いたときの結像レンズと光学ローパスフィルタと撮像素子の画素の総合MTFである。両者はナイキスト周波数167本/mmにおいてほぼ同等のレスポンスを有し、全体としてよく似た特性となっている。一方、従来の画素で光学ローパスフィルタを用いないと図16のようにナイキスト周波数でのレスポンスが高くなりすぎてしまう。このように、画素100gを用いれば、光学ローパスフィルタを省略できることが分かる。
【0050】
本実施の形態では、波長透過部として図1のようなダイクロイック膜ではなく、特定の波長範囲の光を透過し、他の波長範囲の光を吸収する図28で示すようなカラーフィルタを持った構成のものであってもよい。
【0051】
(第2の実施の形態)
図24に第2の実施の形態を示す。同一番号のものは同一の機能を果たすものとする。本構造における撮像素子内の光線の挙動は図25および26に示すようになる。図24に示す構成は結像レンズの光軸より離れた場所に位置する撮像素子である。本図の右側に光軸があるため結像レンズの瞳中心が右側に位置しておりマイクロレンズ2に入射する光線は右方向よりの角度をもつ。そのためマイクロレンズ2は画素の中心よりも右側に片寄った配置とすることで、より斜入射となった光線も取り込むことができるようになる。第1の実施例と同様に図25は緑色光を受光する画素200gに入射してダイクロイック膜4gによって反射された光線、すなわち青色光と赤色光を含む光線のみの挙動を示している。画素の大きさに対して十分に遠い位置にある結像レンズの瞳から出た光線は赤外線カットフィルタを通過して物体光120のような光束となる。本図上方より来た物体光120はマイクロレンズ2へ入射して集光作用を受ける。次に第3の屈折率領域5、第4の屈折率領域6と順に入射してダイクロイック膜4gへと到達する。ここでダイクロイック膜4gの特性により緑色以外の光線は反射作用を受ける。ダイクロイック膜4gは図4に示すような四角錐の形状をしている面に形成されているために反射した光線は中心より外側に方向を変えて進行する。またダイクロイック膜4を形成する四角錐の頂点は光線が図の右側に片寄っていることから右側に片寄った形状としている。さらに本実施例においては斜面の角度も異なるようにしている。これによってダイクロイック膜4gの右側斜面と左側斜面のそれぞれに入射する光線の角度を合わせることができる。そして第4の屈折率領域6と第3の屈折率領域5の界面で臨界角以上の光線は全反射作用を受ける。もう一度下方向に向いた光線は隣接画素である赤色光を受光する画素200rおよび201rに向かって進行する。ダイクロイック膜4rを透過した光線は第5の屈折率領域7、第1の屈折率領域8と順に進行する。続いて第1の屈折率領域8から第2の屈折率領域9へ進行しようとするが、これも前述の通り、第1の屈折率領域8は第2の屈折率領域9よりも高屈折率であるため、臨界角以上の光線は界面で全反射をする。第1の屈折率領域8と第2の屈折率領域9の界面は入射部が広がったテーパ形状をしているため入射光線を取り込む間口が広くなり第1の屈折率領域8に多くの光線を取り込むことができるようになっている。また光電変換部3近傍の界面は垂直方向に略平行な2面で形成されているため、一度目の全反射によって光電変換部3に入射しなかった光線は再び反対側の界面で全反射して最終的にはすべて光電変換部3へと入射することになる。
【0052】
図26はダイクロイック膜4において透過作用を受ける光線の挙動を示している。本図上方より来た光線はマイクロレンズ2へ入射して集光作用を受ける。次に第3の屈折率領域5、第4の屈折率領域6と順に入射してダイクロイック膜4gへと到達する。ダイクロイック膜4では所定の波長の光線のみを選択的に透過して第5の屈折率領域7へと入射する。そして第1の屈折率領域8へ進行し第1の屈折率領域8と第2の屈折率領域9の界面で全反射を繰り返す作用を受けることによって光電変換部3へと導く。第1の屈折率領域8と第2の屈折率領域9の界面は入射部が広がったテーパ形状をしているため、テーパ面81においても全反射して光電変換部3へ導くことができる。このテーパ面81aが図27に示すように結像レンズの光軸中心付近の画素と同じ形状であると、場合によってはテーパ面81aで全反射した光線が反対側の面で全反射できずに第2の屈折率領域9へ抜けてしまうことがある。これを防止するために光軸とテーパ面のなす角度を中心付近のものに比べて小さくすることで、テーパ面で反射した光線が反対側の面で臨界角を超えないようになり、中心付近の画素と同様に十分に広範囲な光線を取り込むことができる。
【0053】
なお、本実施の形態における図24に示す形態ではテーパ面の角度を画素の中心軸に対して対称なものとしている。しかし図26と図27から判るように、右側の斜面で全反射する光線はどちらでも取り込めている。従って、必ずしも対称にする必要はなく、テーパ部を形成するテーパ面毎に異なる角度をもつようにしてもよい。
【0054】
(第3の実施の形態)
図28、29に第3の実施の形態を示す。同一番号のものは同一の機能を果たすものとする。図28は結像レンズの光軸中心付近の画素で、図29は結像レンズの光軸中心から離れた場所に位置する画素である。本構造における撮像素子内の光線の挙動はそれぞれ図30および31に示すようになる。これは従来の色素を用いたカラーフィルタ41g、41rを備えた撮像素子に本構造を用いたものである。画素の大きさに対して十分に遠い位置にある結像レンズの瞳から出た光線は赤外線カットフィルタを通過してマイクロレンズ2へ入射し集光作用を受ける。次にカラーフィルタ41(41g、41r)に入射して透過光線の波長選択が行われる。カラーフィルタ41gであれば緑色のカラーフィルタであるため、緑色の光線だけが透過してそれ以外はカラーフィルタ41gに吸収される。
【0055】
そして第1の屈折率領域8へ進行し第1の屈折率領域8と第2の屈折率領域9の界面で全反射を繰り返す作用を受けることによって光電変換部3へと導く。第1の屈折率領域8と第2の屈折率領域9の界面は入射部が広がったテーパ形状をしているため、テーパ面81においても全反射して光電変換部3へ導くことができる。本実施例においては、結像レンズの光軸中心付近の画素(図28)も中心から離れた画素(図29)もテーパ面の角度は同じである。しかし、場合によってはテーパ面81aの角度が同じであると全反射した光線が反対側の面で全反射できずに第2の屈折率領域9へ抜けてしまうことがある。その場合には光軸とテーパ面のなす角度を中心付近のものに比べて小さくすることで、テーパ面で反射した光線が反対側の面で臨界角を超えないようになり、中心付近の画素と同様に十分に広範囲な光線を取り込むことができる。
【0056】
上記で説明した第1〜第3の実施の形態の構成を持った固体撮像素子は、CCD型固体撮像素子等の電荷転送型のものであってもよいし、CMOSイメ−ジセンサ等のXYアドレス型のものであってもよい。
【0057】
(第4の実施の形態)
図32に基づいて、上記で説明した第1の実施の形態〜第3の実施の形態で説明した構成を持つ固体撮像素子を用いた撮像装置について説明する。
【0058】
図32において、101はレンズのプロテクトとメインスイッチを兼ねるバリア、102は被写体の光学像を固体撮像素子104に結像させるレンズ、103はレンズ102を通った光量を可変するための絞り、104はレンズ102で結像された被写体を画像信号として取り込むための固体撮像素子、105は、固体撮像素子104から出力される画像信号を増幅するゲイン可変アンプ部及びゲイン値を補正するためのゲイン補正回路部等を含む撮像信号処理回路、106は固体撮像素子104より出力される画像信号のアナログーディジタル変換を行うA/D変換器、107はA/D変換器106より出力された画像データに各種の補正を行ったりデータを圧縮する信号処理部、108は固体撮像素子104、撮像信号処理回路105、A/D変換器106、信号処理部107に、各種タイミング信号を出力するタイミング発生部、109は各種演算と撮像装置全体を制御する全体制御・演算部、110は画像データを一時的に記憶する為のメモリ部、111は記録媒体に記録または読み出しを行うためのインターフェース部、112は画像データの記録または読み出しを行う為の半導体メモリ等の着脱可能な記録媒体、113は外部コンピュータ等と通信する為のインターフェース部である。
【0059】
次に、前述の構成における撮影時の撮像装置の動作について説明する。
【0060】
バリア1がオープンされるとメイン電源がオンされ、次にコントロール系の電源がオンし、更にA/D変換器106などの撮像系回路の電源がオンされる。
【0061】
それから、露光量を制御する為に、全体制御・演算部109は絞り103を開放にし、固体撮像素子104から出力された信号はA/D変換器106で変換された後、信号処理部107に入力される。
【0062】
そのデータを基に露出の演算を全体制御・演算部109で行う。この測光を行った結果により明るさを判断し、その結果に応じて全体制御・演算部109は絞りを制御する。
【0063】
次に、固体撮像素子104から出力された信号をもとに、高周波成分を取り出し被写体までの距離の演算を全体制御・演算部109で行う。その後、レンズを駆動して合焦か否かを判断し、合焦していないと判断した時は、再びレンズを駆動し測距を行う。
【0064】
そして、合焦が確認された後に本露光が始まる。
【0065】
露光が終了すると、固体撮像素子104から出力された画像信号はA/D変換器106でA/D変換され、信号処理部107を通り全体制御・演算部109によりメモリ部に書き込まれる。その後、メモリ部110に蓄積されたデータは、全体制御・演算部109の制御により記録媒体制御I/F部を通り半導体メモリ等の着脱可能な記録媒体12に記録される。
【0066】
また、外部I/F部113を通り直接コンピュータ等に入力して画像の加工を行ってもよい。
【0067】
【発明の効果】
以上説明したように、本発明によれば、光の集光率を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を表す図である。
【図2】本発明の第1の実施例の斜視図である。
【図3】本発明の第1の実施の形態の断面斜視図である。
【図4】ダイクロイック膜部を示す斜視図である。
【図5】本発明の第1の実施の形態の光線トレース図(反射光)である。
【図6】本発明の第1の実施の形態の光線トレース図(透過光)である。
【図7】画素構成を示す図である。
【図8】緑色画素を光線取り込み状況を示す図である。
【図9】緑色画素の光線の有効取り込み範囲を示す図である。
【図10】画素100gの水平方向の空間周波数成分に対するMTF特性を示す図である。
【図11】矩形開口画素のMTFを示す図である。
【図12】光学ローパスフィルタのMTFを示す図である。
【図13】Fナンバーを4.0、物体像の波長を550nmと仮定したとき無収差レンズのMTF特性を示す図である。
【図14】画素100gを用いたときの結像レンズと撮像素子の画素の総合MTFを示す図である。
【図15】従来の画素を用いたときの結像レンズと光学ローパスフィルタと撮像素子の画素の総合MTFを示す図である。
【図16】従来の画素で光学ローパスフィルタを用いないときの総合MTFを示す図である。
【図17】ダイクロイック膜の構成を示す図である。
【図18】ダイクロイック膜の特性を示す図である。
【図19】ダイクロイック膜の特性を示す簡略図である。
【図20】G透過用ダイクロイック膜で反射しB透過用ダイクロイック膜で透過した時の特性を示す簡略図である。
【図21】G透過用ダイクロイック膜で反射しR透過用ダイクロイック膜で透過した時の特性を示す簡略図である。
【図22】R透過用ダイクロイック膜で反射しG透過用ダイクロイック膜で透過した時の特性を示す簡略図である。
【図23】B透過用ダイクロイック膜で反射しG透過用ダイクロイック膜で透過した時の特性を示す簡略図である。
【図24】本発明の第2の実施の形態を表す図である。
【図25】本発明の第2の実施の形態を表す図である。
【図26】本発明の第2の実施の形態の光線トレース図(反射光)である。
【図27】本発明の第2の実施の形態の光線トレース図(透過光)である。
【図28】本発明の第3の実施の形態を表す図である。
【図29】本発明の第3の実施の形態を表す図である。
【図30】本発明の第3の実施の形態の光線トレース図(反射光)である。
【図31】本発明の第3の実施の形態の光線トレース図(透過光)である。
【図32】撮像装置をあらわす図である。
【図33】カラーフィルタの特性をあらわす図である。
【図34】従来の撮像素子を表す図である。
【図35】従来の撮像素子の光線トレース図である。
【符号の説明】
1 シリコンウェハ
2 マイクロレンズ
3 光電変換部
4 波長選択部
4g 緑色透過用波長選択部
4r 赤色透過用波長選択部
5 第1の屈折率層
6 第2の屈折率層
7 第1の屈折率部
8 第2の屈折率部
81a、81b テーパ面
9 第3の屈折率部
10 Poly配線層
11 AL1配線層
12 AL2配線層
13 AL3配線層
14 平坦化層
15 屈折層
16 キャップ層
17 マイクロレンズ支持層
18 低屈折率層
41 カラーフィルタ
41g 緑色カラーフィルタ
41r 赤色カラーフィルタ
61 撮像素子(従来)
61mnr 赤色用画素
61mng、 61mng2 緑色用画素
61mnb 青色用画素
91 有効画素開口
92 有効画素開口(反射光分)
100 撮像素子
100g、200g、300g、400g 緑色用画素
100r、101r、200r、201r、300r、301r 赤色用画素
110、120、130 物体光
150 斜入射光

Claims (3)

  1. 光電変換部と、
    前記光電変換部よりも光の入射側に形成され、前記第1の波長範囲の光を透過するとともに、前記第1の波長範囲と異なる第2の波長範囲の光を光軸に対して斜め方向であって前記光の入射方向に反射する波長選択部と、
    第1の屈折率を有し前記光電変換部へ光を導く第1の領域と、
    前記第1の領域の周辺部に形成された前記第1の屈折率よりも低い第2の屈折率を有する第2の領域とを有し、第1の領域と第2の領域の界面は、入射部が広がったテーパ形状であり、斜め方向から入射してくる前記第2の波長範囲の光が前記第2の領域に入射するのを抑制するように前記テーパ形状を形成していることを特徴とする撮像素子。
  2. 請求項1において、前記撮像素子の中心部に対して周辺部は、前記光軸に対するテーパ面の角度を小さくしたことを特徴とする撮像素子。
  3. 請求項1又は2に記載の撮像素子と、前記撮像素子からの信号をディジタル信号に変換するアナログ・ディジタル変換部と、前記アナログ・ディジタル変換部からの信号を処理する信号処理回路とを有することを特徴とする撮像装置。
JP2002044645A 2002-02-21 2002-02-21 撮像素子及び撮像装置 Expired - Fee Related JP4027115B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002044645A JP4027115B2 (ja) 2002-02-21 2002-02-21 撮像素子及び撮像装置
US10/369,938 US7250973B2 (en) 2002-02-21 2003-02-19 Image pickup apparatus for reflecting light at an area between successive refractive areas
EP03003855A EP1339225B1 (en) 2002-02-21 2003-02-20 Image pickup apparatus
AT03003855T ATE495548T1 (de) 2002-02-21 2003-02-20 Abbildungsvorrichtung
DE60335685T DE60335685D1 (de) 2002-02-21 2003-02-20 Abbildungsvorrichtung
KR10-2003-0010939A KR100508068B1 (ko) 2002-02-21 2003-02-21 촬상장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044645A JP4027115B2 (ja) 2002-02-21 2002-02-21 撮像素子及び撮像装置

Publications (2)

Publication Number Publication Date
JP2003243638A JP2003243638A (ja) 2003-08-29
JP4027115B2 true JP4027115B2 (ja) 2007-12-26

Family

ID=27783943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044645A Expired - Fee Related JP4027115B2 (ja) 2002-02-21 2002-02-21 撮像素子及び撮像装置

Country Status (1)

Country Link
JP (1) JP4027115B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341235A3 (en) * 2002-02-28 2006-05-10 Canon Kabushiki Kaisha Image pickup apparatus
WO2005101067A1 (ja) 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. 集光素子および固体撮像装置
JP5224685B2 (ja) * 2005-12-19 2013-07-03 キヤノン株式会社 光電変換装置、その製造方法、撮像モジュール及び撮像システム
US8384818B2 (en) 2008-06-18 2013-02-26 Panasonic Corporation Solid-state imaging device including arrays of optical elements and photosensitive cells

Also Published As

Publication number Publication date
JP2003243638A (ja) 2003-08-29

Similar Documents

Publication Publication Date Title
JP4652634B2 (ja) 撮像装置
KR100553056B1 (ko) 촬상장치
US20230362507A1 (en) Image sensor and image-capturing device
KR100508068B1 (ko) 촬상장치
JP4421793B2 (ja) ディジタルカメラ
JP3981034B2 (ja) カラー画像取得装置およびカラー電子カメラ
EP2835965B1 (en) Imaging device and image sensor
US6859229B1 (en) Image pickup apparatus
JP4920839B2 (ja) 撮像装置
JP3478796B2 (ja) 固体撮像装置
JP2003258220A (ja) 撮像素子及び撮像装置
JP2005167356A (ja) 撮像素子
JP3397758B2 (ja) 撮像装置
JP4027116B2 (ja) 撮像素子及び撮像装置
JP3397754B2 (ja) 撮像装置
JP4027115B2 (ja) 撮像素子及び撮像装置
JP2004193284A (ja) 撮像装置
JP2004128201A (ja) 固体撮像装置及び撮像システム
JP4298209B2 (ja) 撮像装置およびシステム
JP3397757B2 (ja) 撮像装置
JP2005175893A (ja) 2板式カラー固体撮像装置及びデジタルカメラ
JP3397756B2 (ja) 撮像装置
JP2004201203A (ja) 撮像素子及びそれを備えたデジタル撮影装置
JP2004208212A (ja) 撮像装置
JP3916233B2 (ja) 撮像素子及びそれを備えたデジタル撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees