JP4025612B2 - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP4025612B2
JP4025612B2 JP2002273927A JP2002273927A JP4025612B2 JP 4025612 B2 JP4025612 B2 JP 4025612B2 JP 2002273927 A JP2002273927 A JP 2002273927A JP 2002273927 A JP2002273927 A JP 2002273927A JP 4025612 B2 JP4025612 B2 JP 4025612B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
optical
optical fiber
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273927A
Other languages
Japanese (ja)
Other versions
JP2004109683A (en
Inventor
耕治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002273927A priority Critical patent/JP4025612B2/en
Publication of JP2004109683A publication Critical patent/JP2004109683A/en
Application granted granted Critical
Publication of JP4025612B2 publication Critical patent/JP4025612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子を収容するための光半導体素子収納用パッケージ、および光半導体素子収納用パッケージに光半導体素子を収容した後に光ファイバに光結合させた光半導体装置に関するものである。
【0002】
【従来の技術】
従来の光半導体素子収納用パッケージ(以下、光半導体パッケージともいう)を図6に斜視図で示す。同図は、光半導体素子に2方向から光ファイバが接続されて光スイッチ等として用いられる、光半導体素子を収容するための光半導体パッケージの例を示すものである。この光半導体パッケージに光半導体素子を収容した後に光ファイバに光結合させた光半導体装置を図7に斜視図で示す。
【0003】
光半導体パッケージは、上面に光半導体素子17が載置される載置部11aを有するとともに、外部電気回路基板(図示せず)にネジ止めされるように外周部に設けられたフランジ部11bを有する基体11と、載置部11aを囲繞するように取着され、相対する一両側面に貫通孔または切欠き部から成る入出力端子取付部(以下、取付部という)12aを有するとともに相対する他両側面の略中央部に光ファイバ18を導入するための貫通孔から成る光ファイバ導入部(以下、導入部という)12cを有し、さらに導入部12cの相対する外側側面にパイプ取着部(以下、取着部という)12bを有する枠体12と、取着部12bを囲繞するように接合されるとともに光ファイバ18を導入部12cに導くためのパイプ13と、取付部12aに嵌着されるとともに上面にメタライズ層14aと外部リード14bとを有する入出力端子14とから主に構成される(例えば、下記の特許文献1参照)。
【0004】
また、光半導体装置は、図7に示すように載置部11aの上面に光半導体素子17,光ファイバ整列器(以下、整列器という)16が載置用基台15を介して載置されるとともに、光ファイバ18が導入部12cを介してパイプ13から光半導体素子17にかけて導入され、光ファイバ18を整列器16上面の略V字状のV溝16aに沿って前後させることにより、光ファイバ18と光半導体素子17とが光結合される。光結合した後に、パイプ13の外側の先端部に、外周面の一部にメタライズ層が被着された光ファイバ18のそのメタライズ層の部位を半田付け等により接合し封止する。次に、蓋体19を枠体12の上面にシームウェルドや半田付けにより接合することによって、光半導体パッケージ内部が気密に封止された光半導体装置が作製される。この光半導体装置は光半導体素子17を内部に気密に収容し、高速光通信等に用いられる。
【0005】
【特許文献1】
特開平10−223962号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の光半導体パッケージにおいては、大容量の情報を光伝送するために複数の光ファイバ18を光半導体パッケージ内部に導入する場合、複数の光ファイバ18を光半導体パッケージ内部にパイプ13および導入部12cを介してそれぞれ挿入し、光半導体素子17に各々の光ファイバ18を光結合させるのは作業性が悪く、手間がかかるとともに非常に困難な作業である。また、上記従来の構成では、光ファイバ18の半田封止工程および蓋体19の封止工程と2度の封止工程を経る必要があり、封止作業に手間がかかり作業の効率が悪いという問題点があった。
【0007】
また、光ファイバ18を安定して載置固定する部位が整列器16のV溝16aの部位のみであるため、光ファイバ18が複数ある場合には、たとえ1本目の光ファイバ18が光結合できたとしても他の光ファイバ18を光結合させる際に1本目の光ファイバ18の光結合が損なわれ易く、すなわち光軸がずれることがあるため、全ての光ファイバ18の光軸を良好に合わせるのは非常に困難であるという問題点があった。また、作業が非常に煩雑であるため、作業中に光ファイバ18を折ってしまう可能性も高いという問題点もあった。
【0008】
また、たとえ複数の光ファイバ18と光半導体素子17とを光結合できたとしても、その後に光ファイバ18をパイプ13に半田付けする工程と、蓋体19を枠体12の上面に接合する工程の少なくとも2つの熱処理工程が必要であり、その際の熱履歴により、光ファイバ18を歪ませる程度の応力が発生し、光半導体素子17と光ファイバ18との光結合がわずかながらも劣化するという問題点もあった。
【0009】
そのため、従来の光半導体パッケージおよび光半導体装置においては、光半導体素子17の作動性を良好とできず大容量の情報を光伝送できないことがあるという問題点があった。
【0010】
従って、本発明は、上記問題点に鑑み完成されたものであり、その目的は、複数の光ファイバと光半導体素子とを容易に光学的に結合できるとともに光半導体パッケージを容易に気密封止できるようにすることにより、光半導体パッケージの実装工程を簡略化することにある。また、一本の光ファイバはもちろんのこと複数の光ファイバと光半導体素子との光信号の結合効率をも良好なものとすることができ、光半導体素子を長期にわたり正常かつ安定に作動させ得るものとすることである。
【0011】
【課題を解決するための手段】
本発明は、光半導体素子が載置される基体と、光半導体素子の載置部を囲んで基体に取着された枠体と、枠体の上面に被着されたメッキ層とを備えている。枠体は、光半導体素子に光学的に結合される複数の光ファイバが通されてロウ付けされる複数の光ファイバ導入溝を有している。枠体の上面における枠体の内周縁に沿った部位にメッキ層の非形成部が設けられている。複数の光ファイバ導入溝は、複数の光ファイバの各々に対応して設けられている。
【0012】
本発明の光半導体素子収納用パッケージは、上面に光半導体素子が載置される載置部を有する基体と、基体の上面に載置部を囲繞するように取着され、側部の上面に光ファイバを通してロウ付けするための断面形状が略U字状の溝から成る光ファイバ導入部を有し、上面に蓋体がロウ付けされる枠体と、この枠体の側部または基体の枠体の内側の部位に形成された貫通孔または切欠き部から成る入出力端子取付部に嵌着された入出力端子とを具備したことから、従来のように光ファイバをパイプを介して光半導体素子収納用パッケージ内部に導入する必要がなく、また光ファイバを導入部に仮固定してパッケージの内部に載置される光半導体素子と正確に光結合させることができるので、少なくとも一本の光ファイバと光半導体素子との光結合の作業性を非常に効率の高いものとできるとともに少なくとも一本の光ファイバを安定して固定し保持することができる。また、光ファイバを枠体上部の光ファイバ導入部に通してロウ付けすることにより、従来のように蓋体を枠体の上面にYAG溶接またはロウ付けするとともに、パイプを介して光半導体素子収納用パッケージの内部に導入された光ファイバを半田付けすることが不要となり、蓋体を枠体の上面にロウ付けするのと同時に、同一の熱履歴によって光ファイバ導入部と光ファイバとの間の気密封止が実現できることから、熱履歴工程が1回で済むために、熱履歴が加わる毎に発生する応力を光ファイバを歪ませる程度に至らない大きさにまで非常に小さくすることができる。そのため、複数の光ファイバと光半導体素子との光信号の結合効率を良好なものとでき、光半導体素子を長期にわたり正常かつ安定に作動させることができる。
【0013】
また、基体および枠体は、露出する表面が略全面にわたって金メッキ層が被着されているとともに、枠体の上面の光ファイバ導入部の両側で枠体の内周縁に沿った部位に、枠体の厚み方向の幅が0.1乃至0.5mmとされ枠体の内周縁に沿った方向の長さが0.1乃至15mmとされた金メッキ層の非形成部が設けられていることから、光ファイバを光ファイバ導入部に半田付けする際に光ファイバ導入部から半田が必要以上に流れ出るのを防止して、光ファイバ導入部に適度に半田を溜めることができ、光ファイバ導入部において光ファイバを気密に接合することが可能となる。
【0014】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、前記載置部に載置された光半導体素子と、前記光ファイバ導入部に通されてロウ付けされた光ファイバと、前記枠体の上面にロウ付けされた、前記光半導体素子および前記光ファイバ導入部を気密に封止する蓋体とを具備したことを特徴とする。
【0015】
本発明の光半導体装置は、このような構成により、気密性に優れ大容量の情報を光伝送することの可能なものとなる。
【0016】
【発明の実施の形態】
本発明の光半導体素子収納用パッケージおよび光半導体装置について以下に詳細に説明する。図1は本発明の光半導体パッケージについて実施の形態の一例を示す斜視図であり、図2は本発明の光半導体パッケージにおける光ファイバ導入部(以下、導入部ともいう)およびその周辺部の部分拡大斜視図である。図1において、1は基体、2は枠体、4は入出力端子であり、これら基体1,枠体2,入出力端子4とで、光半導体素子7(図3)を収容する容器が基本的に構成される。
【0017】
本発明の光半導体パッケージは、上面に光半導体素子7が載置される載置部1aを有する基体1と、基体1の上面に載置部1aを囲繞するように取着され、側部の上面に光ファイバ8を通してロウ付けするための断面形状が略U字状の溝から成る光ファイバ導入部2cを有し、上面に蓋体9がロウ付けされる枠体2と、枠体2の側部または基体1の枠体2の内側の部位に形成された貫通孔または切欠き部から成る入出力端子取付部2aに嵌着された入出力端子4とを具備し、基体1および枠体2は、露出する表面が略全面にわたって金メッキ層が被着されているとともに、枠体2の上面の光ファイバ導入部2cの両側で枠体2の内周縁に沿った部位に、枠体2の厚み方向の幅d(図2)が0.1乃至0.5mmとされ枠体2の内周縁に沿った方向の長さc(図2)が0.1乃至15mmとされた金メッキ層の非形成部2dが設けられている。
【0018】
本発明の基体1は、光半導体素子7を支持するための支持部材ならびに光半導体素子7から発せられる熱を放散するための放熱板として機能し、その上面の略中央部に光半導体素子7を載置するための載置部1aを有している。また、基体1の外周部で一対の端部には外部電気回路基板にネジ止めされるように貫通孔から成るフランジ部が形成されている。この基体1は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属から成り、例えばFe−Ni−Co合金から成る場合、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって、略四角形等の所定形状に製作される。
【0019】
また、基体1は、その上面に光半導体素子7が載置される載置部1aを囲繞するように略四角形等の形状の枠体2が接合されており、枠体2の内側に光半導体素子7を収容するための空所が形成される。この枠体2は、基体1と同様の金属から成り、基体1と同様の加工法で所定形状に加工されて作製される。即ち、枠体2は、その側部に貫通孔または切欠き部から成る入出力端子取付部(以下、取付部ともいう)2aが形成され、側部の上面に光ファイバ8(図3)を通してロウ付けするための断面形状が略U字状の溝から成る導入部2cが形成された形状である。また、枠体2は、その下面が基体1上面に敷設した適度なボリュームを有するプリフォームとされた銀(Ag)ロウ等のロウ材を介して基体1上面にロウ付け接合される。その後、基体1および枠体2は露出する表面が略全面にわたってAuメッキ層が被着される。
【0020】
本発明の枠体2に設けられる導入部2cは、光ファイバ8を通してロウ付けするための断面形状が略U字状の溝から成る。この導入部2cは、複数の光ファイバ8が取着されるように複数設けられていてもよい。また、導入部2cは、枠体2が四角形の場合には一辺に相当する枠部の上面の中央部にあってもよいし、枠部の端部にあってもよいが、光半導体素子7との位置合わせのし易さの点で枠部の上面の中央部にあるのがよい。
【0021】
導入部2cは断面形状が略U字状の溝から成るが、溝はその内面が光ファイバ8の軸方向の中央部で凹んでいるのが好ましい。この場合、その凹みに半田の溜りが形成されて光ファイバ8が導入部2cに強固に接合される。また、その凹みは溝の両端間にわたる溝部であってもよい。
【0022】
さらに、導入部2cを構成する断面形状が略U字状の溝は、その上端の幅(枠体2の内外面に沿った方向の幅)が、中央部の幅よりも若干狭くなっていることがよい。この場合、溝に通した光ファイバ8が溝から外れにくくなるとともに、光ファイバ8の外周面の大部分を均一の厚さの半田で接合できるため光ファイバ8に加わる歪みを緩和することができる。
【0023】
枠体2の上面には蓋体9が接合されて光半導体素子7および導入部2cを気密に封止するが、蓋体9を接合するためのAu−Sn半田等の半田9a(図3)は、予め枠状に成形されたものを蓋体9の下面に、融着や熱圧着等の方法で固定されている。そして、基体1の上面の載置部1aに光半導体素子7を樹脂接着剤等で載置固定し、枠体2の取付部2aに入出力端子4を嵌着し導入部2cに光ファイバ8をロウ付けた後、枠体2の上面に蓋体9を載せ、枠体2上面と蓋体9下面の外周部とをシームウェルドにより溶接することによって、気密封止を行うことができる。
【0024】
このとき、蓋体9に固定された半田9aはシームウェルドによる熱で溶け、枠体2上面の接触部に濡れ広がるが、導入部2cでは枠体2の内外面へ流れ出る傾向がある。枠体2上面のうち導入部2cを除く部位では、充分に気密封止できるように半田9aが濡れ広がるが、導入部2cでは半田9aが流れ出ることにより、半田9aの量が減少してしまい易い。その場合、光ファイバ8と導入部2cと蓋体9との隙間を半田9aが充分に埋めることができず、ボイドが発生して気密封止が困難になる。そこで、本発明のように、枠体2の上面の導入部2cの両側で枠体2の内周縁に沿った部位に金メッキ層の非形成部2d(図2)を設けることにより、導入部2cから半田9aが必要以上に流れ出すのを防ぐことができ、光ファイバ8と導入部2cと蓋体9との隙間を半田9aで確実に過不足なく埋めることができ、光半導体パッケージの気密封止を良好に行なうことができる。
【0025】
本発明において、金メッキ層の非形成部2dは、枠体2の厚み方向の幅(枠体2の枠部の厚み方向の幅)が0.1乃至0.5mmとされ枠体2の内周縁に沿った方向の長さが0.1乃至15mmとされていることにより、導入部2cから枠体2の内面へ半田9aが必要以上に流れ出すのを防ぐことができる。半田9aの流れ出しを適度に防ぐことで、光ファイバ8と導入部2cと蓋体9との隙間を半田9aで確実に過不足なく埋めることができる。これにより、基体1,枠体2,蓋体9とから主に構成される光半導体パッケージの内部を気密に封止することができる。
【0026】
非形成部2dの幅が0.1mm未満では、半田9aの流れ出しが多くなり、光ファイバ8と導入部2cと蓋体9との隙間の半田9aにボイドが発生して、光半導体パッケージの気密性が劣化し易くなる。非形成部2dの長さが0.1mm未満では、同様に、光半導体パッケージの気密性が劣化し易くなる。非形成部2dの幅が0.5mmを超えると、枠体2上面の導入部2cの両側で枠体2と蓋体9との接合強度が劣化して気密封止が破れ易くなる。非形成部2dの長さが15mmを超えると、同様に、枠体2上面の導入部2cの両側で枠体2と蓋体9との接合強度が劣化して気密封止が破れ易くなる。
【0027】
非形成部2dは、図4に示すように、枠体2の内面の導入部2c周囲に延設してもよい。この場合、延設部の幅d1は0.1乃至0.5mmであるのがよく、延設部の幅d1が0.1mm未満であると、導入部2cからの半田9aの流れ出しを有効に防ぐことが困難になる。延設部の幅d1が0.5mmを超えると、非形成部2dの面積が必要以上に大きくなり、非形成部2dから枠体2が腐食する場合がある。
【0028】
導入部2cが連続した複数の溝からなる場合、図5に示すように、非形成部2dの延設部も連続するようにして設けてもよい。
【0029】
また、非形成部2dは、枠体2の外面にあると、非形成部2dで枠体2が外部の雰囲気により腐食し易くなるため、非形成部2dは枠体2の外面に設けないのがよい。
【0030】
さらに、枠体2の上面において、非形成部2dの枠体2外面側の端から枠体2の外面までの距離が0.5mm以上であるのがよい。即ち、図2に示すt−dが0.5mm以上であるのがよい。この構成により、枠体2上面の非形成部2d付近で光半導体パッケージ内部の気密が破れるのを防止できる。
【0031】
本発明の非形成部2dは、基体1と枠体2とを接合した後にそれらの全面に厚さ0.5〜5μm程度の金メッキ層を被着する際に非形成部2dとなる部位にレジスト樹脂膜等から成るマスクを設けておく方法、基体1および枠体2の全面に金メッキ層を被着した後に非形成部2dとなる部位を研削やエッチングで除去する方法等によって、設けることができる。
【0032】
また、光半導体パッケージと外部電気回路基板との電気的接続を行うために、枠体2の側部に設けられた取付部2aに入出力端子4が嵌着されている。この入出力端子4は、その一部に形成されたメタライズ層4aと光半導体素子7とをボンディングワイヤ(図示せず)で電気的に接続することにより、光半導体素子7に高周波信号を入出力する。この入出力端子4は、高周波信号が伝送する線路導体や接地導体としてのメタライズ層4aが枠体2の内外を導通するように形成された、略直方体状の誘電体から成る平板部と、この平板部の上面にメタライズ層4aの一部を間に挟んで接合され、枠体2内外を遮断するように設けられた略直方体状の誘電体から成る立壁部とから成る。平板部および立壁部の材料としては、誘電率や熱膨張係数等の特性を考慮して、アルミナ(Al23)質焼結体(セラミックス)や窒化アルミニウム(AlN)質焼結体等が適宜選定される。
【0033】
そして、入出力端子4は以下のようにして作製される。メタライズ層4aとなるタングステン(W),モリブデン(Mo),マンガン(Mn)等の粉末に有機溶剤,溶媒を添加混合して得た金属ペーストを作製する。また、平板部および立壁部となる原料粉末に適当な有機バインダや溶剤等を添加混合しペースト状と成し、このペーストをドクターブレード法やカレンダーロール法によってセラミックグリーンシートを作製する。次に、このセラミックグリーンシートの所望の部位に、上記金属ペーストを従来周知のスクリーン印刷法により所望のパターンに印刷塗布し、約1600℃の高温で焼結することにより作製される。
【0034】
また、枠体2の外側に位置するメタライズ層4a上面には、光半導体パッケージと外部電気回路基板とを電気的に接続する外部リード4bがAgロウ等のロウ材を介して接合される。この外部リード4bは、入出力端子4との接合を強固なものとするために、入出力端子4の熱膨張係数に近似する材料からなる。例えば、外部リード4bは、入出力端子4の平板部がAl23セラミックスから成る場合、Fe−Ni−Co合金やFe−Ni合金から成る。
【0035】
なお、メタライズ層4aおよび外部リード4bの露出する部分には、耐蝕性に優れ、ロウ材との濡れ性に優れ、かつワイヤボンディング性に優れる金属、具体的には厚さ0.5〜9μmのNi層および厚さ0.5〜5μmのAu層を順次メッキ法により被着させるのが良く、この場合酸化腐食を有効に防止できるとともにメタライズ層4aおよび光半導体素子7をボンディングワイヤで強固に接続できる。
【0036】
このような本発明の光半導体パッケージは、載置部1aの上面に光半導体素子7,整列器6が載置用基台5を介して載置されるとともに、光ファイバ8が導入部2cを介して外部から光半導体素子7にかけて導入され、光ファイバ8を整列器6上面のV溝6a上に樹脂接着剤等で載置固定されることにより光半導体素子7に光結合される。その後、下面に金(Au)−錫(Sn)ロウ材等の低温ロウ材9aが融着、熱圧着等により形成されている蓋体9を、導入部2cを含む枠体2の上面にシームウェルドによる熱でロウ付けすることにより、光半導体パッケージ内部が気密に封止された光半導体装置が作製される。
【0037】
この光半導体装置は、導入部2cに固定される光ファイバ8の部位の保護用の被覆(樹脂被覆等)を剥がして石英ガラスから成る光ファイバ8の芯線を露出させ、その芯線の外周面の全面にNi,Au等のメッキ層を順次被着させておくことにより、光ファイバ8の外周面がメッキ層を介して導入部2cおよび蓋体9にロウ付けされ導入部2cが気密封止されることになる。そして、この光半導体装置は大容量の情報を光伝送することが可能なものとなる。
【0038】
【実施例】
本発明の光半導体素子収納用パッケージの実施例を以下に説明する。
【0039】
図1の光半導体パッケージを以下のようにして製作した。縦42mm×横20mm×高さ1mmでCu−W合金から成る直方体状の基体1の上面に、外形寸法が縦32mm×横20mm×高さ3.5mmで枠部の厚さt(図2)が1mmであるFe−Ni−Co合金から成る枠体2を、Agロウ材で接合した。枠体2には、対向する一対の側部に貫通孔から成る取付部2aを設けるとともに、対向する他の一対の側部の上面の略中央部に断面形状が略U字状の溝から成る導入部2cを、一つの側部に8個ずつの計16個設けた。導入部2cの開口の幅A(図2)は0.2mmとし、深さB(図2)は0.3mmとした。
【0040】
そして、枠体2の非形成部2dとなる部位にレジスト樹脂膜から成るマスクを設けておき、その後基体1および枠体2の全面に厚さ2μmの金メッキ層を被着し、マスクを除去することにより非形成部2dを設けた。このとき、下記の表1,表2のように、非形成部2dの幅d、長さcが種々の値となるように設定した。
【0041】
次に、取付部2aにAl23セラミックスから成る平板部および立壁部とメタライズ層4aとを有する入出力端子4をAgロウ材を介して嵌着し接合した。なお、本実施例は導入部2cにおける光ファイバ8の接合および気密性の信頼性を評価するものであるため、入出力端子4は外部電気回路との電気的な接続を行なわず、従って外部リード4bは設けなかった。
【0042】
そして、図3に示すように、基板1の上面の載置部1aに、載置用基台5,整列器6,光半導体素子7を錫(Sn)−鉛(Pb)半田等の低温ロウ材でそれぞれ接合して載置固定し、また、直径が0.125mmの光ファイバ8を導入部2cにそれぞれ通して上記低温ロウ材から成る半田9aで接合固定し、光ファイバ8と光半導体素子7との光結合を行なった。このとき、光ファイバ8を固定するための半田9aの量は、枠体2と蓋体9とを気密に接合するとともに導入部2cと光ファイバ8との隙間を埋めて導入部2cを気密封止するのに十分な適宜の量とした。
【0043】
次に、下面に半田9aがクラッドされている蓋体9を、導入部2cを含む枠体2の上面に半田9aを介して接合することによって、同時に各光ファイバ8を各導入部2cにロウ付けして、光半導体装置の各種試料を作製した。これらの試料においては、導入部2cに通してロウ付けされる光ファイバ8の部位において、樹脂から成る保護用の被覆を剥がして石英ガラスから成る光ファイバ8の芯線を露出させ、その芯線の外周面の全面に厚さ1μmのNiメッキ膜および厚さ1μmのAuメッキ膜を順次被着しておき、光ファイバ8の芯線の外周面のNiメッキ膜,Auメッキ膜が導入部2cにロウ付けされるようにした。
【0044】
得られた各試料について気密性の評価を以下の手順で行った。まず、各試料をフロリナート系の揮発性の高い液体中に浸漬しグロスリーク試験を行い、液体中への気泡の発生の有無を評価し、気泡の生じない試料を良品とし、気泡の生じた試料を不良品とした。さらに、グロスリーク試験で良品であった試料について、4900Pa(パスカル)で2時間He加圧を行った後にHeリーク試験を実施し、即ち光半導体装置の内部にHeを加圧侵入させ、その後光半導体装置の外部へ漏れ出てくるHeを検出する試験を実施し、Heの検出量が5.0×10-9Pa・m3/sec以下の試料を最終的に良品とし、検出量が5.0×10-9Pa・m3/secを超える試料を不良品とした。評価結果を表1,表2に示す。
【0045】
なお、表1は非形成部2dの長さcを0.1mmとして幅dを変化させた10種の試料を各20個ずつ作製して評価した結果であり、表2は幅dを0.1mmとして長さcを変化させた14種の試料を各20個ずつ作製して評価した結果である。
【0046】
【表1】

Figure 0004025612
【0047】
【表2】
Figure 0004025612
【0048】
表1より、幅dが0.1mm未満では導入部2cで気密性不良が発生し、0.5mmを超えると枠体2と蓋体9との接合部で気密性不良が発生した。
【0049】
表2より、長さcが0.1mm未満では導入部2cで気密性不良が発生し、15mmを超えると枠体2と蓋体9との接合部で気密性不良が発生した。
【0050】
以上より、非形成部2dの幅dが0.1乃至0.5mm、長さcが0.1乃至15mmであるときに、光半導体装置内部の気密を良好に保持できることが判った。
【0051】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を行なうことは何等差し支えない。
【0052】
【発明の効果】
本発明の光半導体素子収納用パッケージは、基体および枠体は、露出する表面が略全面にわたって金メッキ層が被着されているとともに、枠体の上面の光ファイバ導入部の両側で枠体の内周縁に沿った部位に、枠体の厚み方向の幅が0.1乃至0.5mmとされ枠体の内周縁に沿った方向の長さが0.1乃至15mmとされた金メッキ層の非形成部が設けられていることにより、従来のように光ファイバをパイプを介して光半導体素子収納用パッケージ内部に導入する必要がなく、また光ファイバを導入部に仮固定してパッケージの内部に載置される光半導体素子と正確に光結合させることができるので、少なくとも一本の光ファイバと光半導体素子との光結合の作業性を非常に効率の高いものとできるとともに少なくとも一本の光ファイバを安定して固定し保持することができる。また、光ファイバを枠体上部の光ファイバ導入部に通してロウ付けすることにより、従来のように蓋体を枠体の上面にYAG溶接またはロウ付けするとともに、パイプを介して光半導体素子収納用パッケージの内部に導入された光ファイバを半田付けすることが不要となり、蓋体を枠体の上面にロウ付けするのと同時に、同一の熱履歴によって光ファイバ導入部と光ファイバとの間の気密封止が実現できることから、熱履歴工程が1回で済むために、熱履歴が加わる毎に発生する応力を光ファイバを歪ませる程度に至らない大きさにまで非常に小さくすることができる。そのため、複数の光ファイバと光半導体素子との光信号の結合効率を良好なものとでき、光半導体素子を長期にわたり正常かつ安定に作動させることができる。
【0053】
また、基体および枠体は、露出する表面が略全面にわたって金メッキ層が被着されているとともに、枠体の上面の光ファイバ導入部の両側で枠体の内周縁に沿った部位に、枠体の厚み方向の幅が0.1乃至0.5mmとされ枠体の内周縁に沿った方向の長さが0.1乃至15mmとされた金メッキ層の非形成部が設けられていることから、光ファイバを光ファイバ導入部に半田付けする際に光ファイバ導入部から半田が必要以上に流れ出るのを防止して、光ファイバ導入部に適度に半田を溜めることができ、光ファイバ導入部において光ファイバを気密に接合することが可能となる。
【0054】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、載置部に載置された光半導体素子と、光ファイバ導入部に通されてロウ付けされた光ファイバと、枠体の上面にロウ付けされた、光半導体素子および光ファイバ導入部を気密に封止する蓋体とを具備したことにより、気密性に優れ大容量の情報を光伝送することが可能なものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージについて実施の形態の一例を示す斜視図である。
【図2】本発明の光半導体素子収納用パッケージにおける光ファイバ導入部およびその周辺部の部分拡大斜視図である。
【図3】本発明の光半導体装置について実施の形態の一例を示す斜視図である。
【図4】本発明の光半導体素子収納用パッケージについて実施の形態の他の例を示す斜視図である。
【図5】本発明の光半導体素子収納用パッケージについて実施の形態の他の例を示す斜視図である。
【図6】従来の光半導体素子収納用パッケージの斜視図である。
【図7】従来の光半導体装置の斜視図である。
【符号の説明】
1:基体
1a:載置部
2:枠体
2a:入出力端子取付部
2c:光ファイバ導入部
2d:金メッキ層の非形成部
7:光半導体素子
8:光ファイバ
9:蓋体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD), and an optical fiber after housing the optical semiconductor element in the optical semiconductor element housing package. The present invention relates to an optically coupled optical semiconductor device.
[0002]
[Prior art]
FIG. 6 is a perspective view of a conventional package for housing an optical semiconductor element (hereinafter also referred to as an optical semiconductor package). The figure shows an example of an optical semiconductor package for housing an optical semiconductor element, which is used as an optical switch or the like by connecting an optical fiber to the optical semiconductor element from two directions. FIG. 7 is a perspective view showing an optical semiconductor device in which an optical semiconductor element is accommodated in this optical semiconductor package and then optically coupled to an optical fiber.
[0003]
The optical semiconductor package has a mounting portion 11a on which an optical semiconductor element 17 is mounted on the upper surface, and a flange portion 11b provided on the outer peripheral portion so as to be screwed to an external electric circuit board (not shown). The substrate 11 is attached so as to surround the mounting portion 11a, and has an input / output terminal mounting portion (hereinafter referred to as a mounting portion) 12a composed of a through hole or a notch portion on one opposite side surface and is opposed to the mounting portion 11a. It has an optical fiber introduction part (hereinafter referred to as an introduction part) 12c composed of a through hole for introducing the optical fiber 18 at the substantially central part of the other both side faces, and a pipe attachment part on the outer side face opposite to the introduction part 12c (Hereinafter, referred to as an attachment portion) 12b having a frame body 12, a pipe 13 that is joined so as to surround the attachment portion 12b and that guides the optical fiber 18 to the introduction portion 12c, and is fitted to the attachment portion 12a And the metallized layer 14a on the top surface And an input / output terminal 14 having an external lead 14b (see, for example, Patent Document 1 below).
[0004]
Further, in the optical semiconductor device, as shown in FIG. 7, an optical semiconductor element 17 and an optical fiber aligner (hereinafter referred to as an aligner) 16 are mounted on the upper surface of the mounting portion 11a via a mounting base 15. In addition, the optical fiber 18 is introduced from the pipe 13 to the optical semiconductor element 17 through the introduction part 12c, and the optical fiber 18 is moved back and forth along the substantially V-shaped V-groove 16a on the upper surface of the aligner 16. The fiber 18 and the optical semiconductor element 17 are optically coupled. After optical coupling, the metallized layer portion of the optical fiber 18 having a metallized layer deposited on a part of the outer peripheral surface is joined and sealed to the outer end of the pipe 13 by soldering or the like. Next, an optical semiconductor device in which the inside of the optical semiconductor package is hermetically sealed is manufactured by joining the lid 19 to the upper surface of the frame 12 by seam welding or soldering. This optical semiconductor device contains the optical semiconductor element 17 in an airtight manner, and is used for high-speed optical communication and the like.
[0005]
[Patent Document 1]
JP-A-10-223962
[0006]
[Problems to be solved by the invention]
However, in the conventional optical semiconductor package described above, when a plurality of optical fibers 18 are introduced into the optical semiconductor package in order to optically transmit a large amount of information, the plurality of optical fibers 18 are connected to the pipe 13 and the optical semiconductor package. Inserting the optical fibers 18 through the introduction portions 12c and optically coupling the optical fibers 18 to the optical semiconductor element 17 is inconvenient, laborious and extremely difficult. Further, in the above-described conventional configuration, it is necessary to go through the sealing process of the optical fiber 18 and the sealing process of the lid body 19, and the sealing work is troublesome and the work efficiency is poor. There was a problem.
[0007]
In addition, since the part where the optical fiber 18 is stably placed and fixed is only the part of the V groove 16a of the aligner 16, if there are a plurality of optical fibers 18, the first optical fiber 18 can be optically coupled. Even if other optical fibers 18 are optically coupled, the optical coupling of the first optical fiber 18 is likely to be lost, that is, the optical axes may be shifted, so that the optical axes of all the optical fibers 18 are well aligned. There was a problem that it was very difficult. In addition, since the work is very complicated, there is a problem that the optical fiber 18 is likely to be broken during the work.
[0008]
Further, even if the plurality of optical fibers 18 and the optical semiconductor element 17 can be optically coupled, the step of soldering the optical fiber 18 to the pipe 13 and the step of bonding the lid 19 to the upper surface of the frame 12 At least two heat treatment steps are required, and the heat history at that time generates a stress that distorts the optical fiber 18, and the optical coupling between the optical semiconductor element 17 and the optical fiber 18 is slightly deteriorated. There was also a problem.
[0009]
For this reason, the conventional optical semiconductor package and optical semiconductor device have a problem that the operability of the optical semiconductor element 17 cannot be improved and a large amount of information may not be optically transmitted.
[0010]
Accordingly, the present invention has been completed in view of the above-described problems, and an object of the present invention is to easily optically couple a plurality of optical fibers and optical semiconductor elements and to easily hermetically seal an optical semiconductor package. By doing so, the mounting process of the optical semiconductor package is to be simplified. In addition to a single optical fiber, optical signal coupling efficiency between a plurality of optical fibers and an optical semiconductor element can be improved, and the optical semiconductor element can be operated normally and stably over a long period of time. Is to be.
[0011]
[Means for Solving the Problems]
The present invention includes a base body on which an optical semiconductor element is placed, a frame body that is attached to the base body so as to surround the mounting portion of the optical semiconductor element, and a plating layer that is deposited on the upper surface of the frame body. Yes. The frame has a plurality of optical fiber introduction grooves through which a plurality of optical fibers optically coupled to the optical semiconductor element are passed. A plating layer non-formation part is provided in a portion along the inner peripheral edge of the frame on the upper surface of the frame. The plurality of optical fiber introduction grooves are provided corresponding to each of the plurality of optical fibers.
[0012]
An optical semiconductor element storage package according to the present invention has a base having a mounting portion on which an optical semiconductor element is mounted on an upper surface, and is mounted on the upper surface of the base so as to surround the mounting portion, A frame body having an optical fiber introduction portion formed of a groove having a substantially U-shaped cross section for brazing through an optical fiber, and a lid body brazed on the upper surface, and a side portion of the frame body or a frame of a base body And an input / output terminal fitted in an input / output terminal mounting portion formed of a through-hole or a notch formed in a portion inside the body, so that an optical semiconductor is connected to the optical semiconductor through a pipe as in the prior art. There is no need to introduce into the element storage package, and since the optical fiber can be temporarily fixed to the introduction portion and optically coupled with the optical semiconductor element placed inside the package, it is possible to connect at least one light. Optical coupling between fiber and optical semiconductor element At least one optical fiber with the workability can be very high efficiency can be stably fixed retention. Also, the optical fiber is brazed through the optical fiber introduction part at the top of the frame, so that the lid is YAG welded or brazed to the upper surface of the frame as in the prior art, and the optical semiconductor element is housed via a pipe. It is no longer necessary to solder the optical fiber introduced into the package, and at the same time, the lid is brazed to the upper surface of the frame, and at the same time, between the optical fiber introducing portion and the optical fiber by the same thermal history. Since the hermetic sealing can be realized, since the heat history process is performed only once, the stress generated each time the heat history is applied can be reduced to a level that does not cause the optical fiber to be distorted. Therefore, the optical signal coupling efficiency between the plurality of optical fibers and the optical semiconductor element can be improved, and the optical semiconductor element can be operated normally and stably over a long period of time.
[0013]
Further, the base body and the frame body are provided with a gold plating layer applied over substantially the entire exposed surface, and the frame body is located at both sides of the optical fiber introduction portion on the upper surface of the frame body along the inner peripheral edge of the frame body. Since the non-formation part of the gold plating layer in which the width in the thickness direction is 0.1 to 0.5 mm and the length in the direction along the inner peripheral edge of the frame is 0.1 to 15 mm is provided, the optical fiber is an optical fiber. When soldering to the lead-in part, it is possible to prevent the solder from flowing out from the optical fiber lead-in part more than necessary, and it is possible to accumulate the solder appropriately in the fiber-optic lead-in part. It becomes possible to do.
[0014]
An optical semiconductor device according to the present invention includes an optical semiconductor element storage package according to the present invention, an optical semiconductor element placed on the mounting portion, and an optical fiber brazed through the optical fiber introduction portion. And a lid body brazed to the upper surface of the frame body for hermetically sealing the optical semiconductor element and the optical fiber introduction portion.
[0015]
With such a configuration, the optical semiconductor device of the present invention is excellent in airtightness and capable of optically transmitting a large amount of information.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The optical semiconductor element housing package and optical semiconductor device of the present invention will be described in detail below. FIG. 1 is a perspective view showing an example of an embodiment of an optical semiconductor package of the present invention, and FIG. 2 is an optical fiber introducing portion (hereinafter also referred to as introducing portion) and its peripheral portion in the optical semiconductor package of the present invention. It is an expansion perspective view. In FIG. 1, 1 is a base, 2 is a frame, 4 is an input / output terminal, and the base 1, the frame 2, and the input / output terminal 4 are basically a container for accommodating an optical semiconductor element 7 (FIG. 3). Constructed.
[0017]
The optical semiconductor package of the present invention is attached to the base 1 having the mounting portion 1a on which the optical semiconductor element 7 is mounted on the upper surface and the mounting surface 1a so as to surround the mounting portion 1a on the upper surface of the base 1. A frame body 2 having an optical fiber introduction portion 2c having a substantially U-shaped cross section for brazing through the optical fiber 8 on the upper surface, and a lid body 9 being brazed on the upper surface; An input / output terminal 4 fitted to an input / output terminal mounting portion 2a formed of a through-hole or a notch formed in a side portion or a portion inside the frame body 2 of the base body 1, and the base body 1 and the frame body 2, the exposed surface is covered with a gold plating layer over substantially the entire surface, and the frame 2 is disposed on both sides of the optical fiber introduction portion 2 c on the upper surface of the frame 2 along the inner peripheral edge of the frame 2. The width d in the thickness direction (FIG. 2) is 0.1 to 0.5 mm and the length in the direction along the inner periphery of the frame 2 c-free portion 2d (FIG. 2) is gold plated layer is 0.1 to 15mm is provided.
[0018]
The substrate 1 of the present invention functions as a support member for supporting the optical semiconductor element 7 and a heat radiating plate for dissipating heat emitted from the optical semiconductor element 7. It has the mounting part 1a for mounting. In addition, a flange portion including a through hole is formed at a pair of end portions on the outer peripheral portion of the base 1 so as to be screwed to the external electric circuit board. The base 1 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) alloy. For example, when the base 1 is made of an Fe-Ni-Co alloy, the ingot By applying a conventionally known metal processing method such as rolling or punching to a predetermined shape such as a substantially square shape.
[0019]
The base body 1 is joined to a frame body 2 having a substantially quadrangular shape or the like so as to surround the mounting portion 1 a on which the optical semiconductor element 7 is mounted. A space for accommodating the element 7 is formed. The frame body 2 is made of the same metal as that of the base body 1 and is manufactured by being processed into a predetermined shape by the same processing method as that of the base body 1. That is, the frame body 2 is formed with an input / output terminal mounting portion (hereinafter also referred to as mounting portion) 2a composed of a through-hole or a notch on a side portion thereof, and an optical fiber 8 (FIG. 3) is passed through the upper surface of the side portion. The cross-sectional shape for brazing is a shape in which an introduction portion 2c composed of a groove having a substantially U shape is formed. The frame body 2 is brazed to the upper surface of the base body 1 via a brazing material such as silver (Ag) brazing, whose lower surface is a preform having an appropriate volume laid on the upper surface of the base body 1. Thereafter, the Au plating layer is applied to the base 1 and the frame 2 so that the exposed surfaces are substantially the entire surface.
[0020]
The introduction part 2c provided in the frame 2 of the present invention is composed of a groove having a substantially U-shaped cross section for brazing through the optical fiber 8. A plurality of introduction portions 2c may be provided so that a plurality of optical fibers 8 are attached. In addition, when the frame body 2 is a quadrangle, the introduction portion 2c may be at the center of the upper surface of the frame portion corresponding to one side or at the end portion of the frame portion. It is preferable to be in the center of the upper surface of the frame portion in terms of easy alignment.
[0021]
The introduction portion 2 c is formed of a groove having a substantially U-shaped cross section, and the groove preferably has an inner surface recessed at the center in the axial direction of the optical fiber 8. In this case, a pool of solder is formed in the recess, and the optical fiber 8 is firmly joined to the introduction portion 2c. Further, the recess may be a groove portion extending between both ends of the groove.
[0022]
Further, the groove having a substantially U-shaped cross section constituting the introduction portion 2c has a width at the upper end (a width in a direction along the inner and outer surfaces of the frame body 2) slightly smaller than the width of the central portion. It is good. In this case, the optical fiber 8 that has passed through the groove is unlikely to come out of the groove, and most of the outer peripheral surface of the optical fiber 8 can be joined with a uniform thickness of solder, so that strain applied to the optical fiber 8 can be reduced. .
[0023]
A lid body 9 is joined to the upper surface of the frame body 2 to hermetically seal the optical semiconductor element 7 and the introduction portion 2c, but a solder 9a such as Au-Sn solder for joining the lid body 9 (FIG. 3). Is fixed to the bottom surface of the lid 9 by a method such as fusion or thermocompression bonding. Then, the optical semiconductor element 7 is placed and fixed on the mounting portion 1a on the upper surface of the base 1 with a resin adhesive or the like, the input / output terminal 4 is fitted into the mounting portion 2a of the frame 2, and the optical fiber 8 is inserted into the introducing portion 2c. After the brazing, the lid 9 is placed on the upper surface of the frame body 2, and the upper surface of the frame body 2 and the outer peripheral portion of the lower surface of the lid body 9 are welded together by seam welding, so that airtight sealing can be performed.
[0024]
At this time, the solder 9a fixed to the lid body 9 is melted by the heat generated by the seam weld and spreads on the contact portion on the upper surface of the frame body 2, but tends to flow out to the inner and outer surfaces of the frame body 2 at the introduction portion 2c. The solder 9a wets and spreads at the portion of the upper surface of the frame body 2 excluding the introduction portion 2c so that it can be sufficiently hermetically sealed, but the amount of the solder 9a tends to decrease due to the solder 9a flowing out at the introduction portion 2c. . In this case, the solder 9a cannot sufficiently fill the gaps between the optical fiber 8, the introduction part 2c, and the lid 9, and voids are generated, making hermetic sealing difficult. Therefore, as in the present invention, the introduction portion 2c is formed by providing the non-formation portion 2d (FIG. 2) of the gold plating layer on the both sides of the introduction portion 2c on the upper surface of the frame body 2 along the inner peripheral edge of the frame body 2. The solder 9a can be prevented from flowing out more than necessary, and the gap between the optical fiber 8, the introducing portion 2c and the lid 9 can be filled with the solder 9a without any excess or deficiency, and the optical semiconductor package is hermetically sealed. Can be performed satisfactorily.
[0025]
In the present invention, the non-formed part 2d of the gold plating layer has a width in the thickness direction of the frame body 2 (width in the thickness direction of the frame part of the frame body 2) of 0.1 to 0.5 mm, and extends along the inner periphery of the frame body 2. By setting the length in the direction to 0.1 to 15 mm, it is possible to prevent the solder 9a from flowing out from the introduction portion 2c to the inner surface of the frame body 2 more than necessary. By appropriately preventing the solder 9a from flowing out, the gap between the optical fiber 8, the introducing portion 2c, and the lid 9 can be reliably filled with the solder 9a without excess or deficiency. Thereby, the inside of the optical semiconductor package mainly comprised from the base | substrate 1, the frame 2, and the cover body 9 can be sealed airtight.
[0026]
When the width of the non-formed portion 2d is less than 0.1 mm, the solder 9a flows out more, and voids are generated in the solder 9a in the gap between the optical fiber 8, the introducing portion 2c, and the lid 9, and the airtightness of the optical semiconductor package Tends to deteriorate. Similarly, if the length of the non-formed portion 2d is less than 0.1 mm, the airtightness of the optical semiconductor package is likely to deteriorate. When the width of the non-formed part 2d exceeds 0.5 mm, the bonding strength between the frame 2 and the lid 9 is deteriorated on both sides of the introduction part 2c on the upper surface of the frame 2, and the hermetic sealing is easily broken. If the length of the non-formed part 2d exceeds 15 mm, similarly, the bonding strength between the frame 2 and the lid 9 is deteriorated on both sides of the introduction part 2c on the upper surface of the frame 2, and the hermetic sealing is easily broken.
[0027]
The non-forming portion 2d may extend around the introduction portion 2c on the inner surface of the frame 2 as shown in FIG. In this case, the width d1 of the extending portion is preferably 0.1 to 0.5 mm. If the width d1 of the extending portion is less than 0.1 mm, it is difficult to effectively prevent the solder 9a from flowing out from the introduction portion 2c. become. If the width d1 of the extended part exceeds 0.5 mm, the area of the non-formed part 2d becomes larger than necessary, and the frame body 2 may corrode from the non-formed part 2d.
[0028]
When the introduction part 2c is composed of a plurality of continuous grooves, as shown in FIG. 5, the extension part of the non-forming part 2d may be provided so as to be continuous.
[0029]
Further, if the non-formed part 2d is on the outer surface of the frame body 2, the non-formed part 2d is likely to be corroded by the outside atmosphere in the non-formed part 2d, so the non-formed part 2d is not provided on the outer surface of the frame body 2. Is good.
[0030]
Furthermore, on the upper surface of the frame body 2, the distance from the outer surface side end of the non-forming part 2 d to the outer surface of the frame body 2 is preferably 0.5 mm or more. That is, td shown in FIG. 2 is preferably 0.5 mm or more. With this configuration, it is possible to prevent the airtightness inside the optical semiconductor package from being broken near the non-formed portion 2d on the upper surface of the frame body 2.
[0031]
The non-formed part 2d of the present invention has a resist resin film on a part that becomes the non-formed part 2d when a gold plating layer having a thickness of about 0.5 to 5 μm is deposited on the entire surface after the base 1 and the frame 2 are joined. The mask can be provided by a method of providing a mask made of the like, or a method of removing a portion to be the non-formed portion 2d by grinding or etching after depositing a gold plating layer on the entire surface of the substrate 1 and the frame 2.
[0032]
In order to make electrical connection between the optical semiconductor package and the external electric circuit board, an input / output terminal 4 is fitted to a mounting portion 2 a provided on the side portion of the frame 2. This input / output terminal 4 inputs and outputs a high-frequency signal to and from the optical semiconductor element 7 by electrically connecting the metallized layer 4a formed in a part thereof and the optical semiconductor element 7 with a bonding wire (not shown). To do. The input / output terminal 4 includes a flat plate portion made of a substantially rectangular parallelepiped dielectric material formed such that a line conductor for transmitting a high-frequency signal and a metallized layer 4a serving as a ground conductor are electrically connected to the inside and outside of the frame 2. It consists of a standing wall portion made of a substantially rectangular parallelepiped dielectric material, which is joined to the upper surface of the flat plate portion with a part of the metallized layer 4a interposed therebetween and is provided so as to block the inside and outside of the frame body 2. As materials for the flat plate portion and the standing wall portion, in consideration of characteristics such as dielectric constant and thermal expansion coefficient, alumina (Al2OThree) Sintered sintered body (ceramics), aluminum nitride (AlN) sintered body, etc. are appropriately selected.
[0033]
The input / output terminal 4 is manufactured as follows. A metal paste obtained by adding and mixing an organic solvent and a solvent to a powder of tungsten (W), molybdenum (Mo), manganese (Mn) or the like to be the metallized layer 4a is prepared. Further, an organic binder, a solvent, or the like is added to and mixed with the raw material powder to be the flat plate portion and the standing wall portion to form a paste, and a ceramic green sheet is produced from this paste by a doctor blade method or a calender roll method. Next, the metal paste is printed and applied to a desired portion of the ceramic green sheet by a well-known screen printing method and sintered at a high temperature of about 1600 ° C.
[0034]
Also, external leads 4b that electrically connect the optical semiconductor package and the external electric circuit board are joined to the upper surface of the metallized layer 4a located outside the frame 2 via a brazing material such as Ag brazing. The external lead 4 b is made of a material that approximates the thermal expansion coefficient of the input / output terminal 4 in order to strengthen the joint with the input / output terminal 4. For example, the external lead 4b has a flat plate portion of the input / output terminal 4 made of Al.2OThreeWhen it is made of ceramics, it is made of an Fe—Ni—Co alloy or an Fe—Ni alloy.
[0035]
Note that the exposed portions of the metallized layer 4a and the external leads 4b are metals having excellent corrosion resistance, excellent wettability with a brazing material, and excellent wire bonding properties, specifically, a Ni layer having a thickness of 0.5 to 9 μm. It is preferable that the Au layer having a thickness of 0.5 to 5 μm is sequentially deposited by a plating method. In this case, oxidative corrosion can be effectively prevented and the metallized layer 4a and the optical semiconductor element 7 can be firmly connected by a bonding wire.
[0036]
In such an optical semiconductor package of the present invention, the optical semiconductor element 7 and the aligner 6 are placed on the upper surface of the placement portion 1a via the placement base 5, and the optical fiber 8 leads the introduction portion 2c. The optical fiber 8 is optically coupled to the optical semiconductor element 7 by being placed and fixed on the V groove 6a on the upper surface of the aligner 6 with a resin adhesive or the like. Thereafter, a lid body 9 having a low-temperature brazing material 9a such as gold (Au) -tin (Sn) brazing material formed on the lower surface by fusion bonding, thermocompression bonding, or the like is seamed on the upper surface of the frame body 2 including the introduction portion 2c. By brazing with heat due to the weld, an optical semiconductor device in which the inside of the optical semiconductor package is hermetically sealed is manufactured.
[0037]
In this optical semiconductor device, the protective coating (resin coating or the like) on the portion of the optical fiber 8 fixed to the introducing portion 2c is peeled to expose the core wire of the optical fiber 8 made of quartz glass, and the outer peripheral surface of the core wire is exposed. By sequentially depositing a plated layer of Ni, Au or the like on the entire surface, the outer peripheral surface of the optical fiber 8 is brazed to the introduction part 2c and the lid body 9 via the plating layer, and the introduction part 2c is hermetically sealed. Will be. This optical semiconductor device can optically transmit a large amount of information.
[0038]
【Example】
Examples of the optical semiconductor element storage package of the present invention will be described below.
[0039]
The optical semiconductor package of FIG. 1 was manufactured as follows. On the upper surface of a rectangular parallelepiped base 1 made of Cu-W alloy having a length of 42 mm, a width of 20 mm, and a height of 1 mm, the outer dimensions are 32 mm in length, 20 mm in width, 3.5 mm in height, and the thickness t (FIG. 2). The frame body 2 made of a Fe—Ni—Co alloy having a thickness of 1 mm was joined with an Ag brazing material. The frame body 2 is provided with a mounting portion 2a composed of a through hole in a pair of opposing side portions, and a groove having a substantially U-shaped cross section in the substantially central portion of the upper surface of the other pair of opposing side portions. A total of 16 introduction parts 2c, 8 each, were provided on one side part. The width A (FIG. 2) of the opening of the introduction part 2c was 0.2 mm, and the depth B (FIG. 2) was 0.3 mm.
[0040]
Then, a mask made of a resist resin film is provided on the portion of the frame body 2 where the non-formed portion 2d is formed, and then a gold plating layer having a thickness of 2 μm is deposited on the entire surface of the substrate 1 and the frame body 2 to remove the mask. Thus, the non-formed part 2d was provided. At this time, as shown in the following Tables 1 and 2, the width d and the length c of the non-formed part 2d were set to various values.
[0041]
Next, the mounting portion 2a is made of Al.2OThreeThe input / output terminal 4 having a flat plate portion and a standing wall portion made of ceramics and the metallized layer 4a was fitted and joined via an Ag brazing material. Since the present embodiment evaluates the reliability of the optical fiber 8 bonding and airtightness in the introduction portion 2c, the input / output terminal 4 is not electrically connected to the external electric circuit, and therefore the external lead 4b was not provided.
[0042]
Then, as shown in FIG. 3, the mounting base 5, the aligner 6, and the optical semiconductor element 7 are placed on the mounting portion 1 a on the upper surface of the substrate 1 at a low temperature such as tin (Sn) -lead (Pb) solder. Each of the optical fibers 8 having a diameter of 0.125 mm is passed through the introduction portion 2c and bonded and fixed by the solder 9a made of the low-temperature brazing material. Was optically coupled. At this time, the amount of solder 9a for fixing the optical fiber 8 is such that the frame body 2 and the lid body 9 are hermetically bonded and the gap between the introduction portion 2c and the optical fiber 8 is filled to hermetically seal the introduction portion 2c. Appropriate amount sufficient to stop.
[0043]
Next, the lid 9 with the solder 9a clad on the lower surface is joined to the upper surface of the frame 2 including the introduction portion 2c via the solder 9a, so that each optical fiber 8 is simultaneously connected to the introduction portion 2c. In addition, various samples of the optical semiconductor device were produced. In these samples, at the portion of the optical fiber 8 that is brazed through the introduction portion 2c, the protective coating made of resin is peeled off to expose the core wire of the optical fiber 8 made of quartz glass, and the outer periphery of the core wire A 1 μm thick Ni plating film and a 1 μm thick Au plating film are sequentially deposited on the entire surface, and the Ni plating film and the Au plating film on the outer peripheral surface of the core of the optical fiber 8 are brazed to the introduction portion 2c. It was made to be.
[0044]
Each sample obtained was evaluated for airtightness by the following procedure. First, each sample is immersed in a highly volatile liquid such as florinate, and a gross leak test is performed to evaluate the presence or absence of bubbles in the liquid. Were considered defective. Furthermore, the He leak test was performed on the sample that was a non-defective product in the gross leak test at 4900 Pa (Pascal) for 2 hours, and the He leak test was performed. A test to detect He leaking out of the semiconductor device is conducted, and the detected amount of He is 5.0 × 10-9Pa · mThree/ Sec or less is finally good, and the detection amount is 5.0 × 10-9Pa · mThreeA sample exceeding / sec was regarded as a defective product. The evaluation results are shown in Tables 1 and 2.
[0045]
Table 1 shows the results of the evaluation of 20 samples of 10 kinds each of which the length c of the non-formed portion 2d is 0.1 mm and the width d is changed. Table 2 shows the results when the width d is 0.1 mm. It is the result of producing and evaluating 20 samples of 14 types with different lengths c.
[0046]
[Table 1]
Figure 0004025612
[0047]
[Table 2]
Figure 0004025612
[0048]
According to Table 1, when the width d is less than 0.1 mm, poor airtightness occurs at the introduction portion 2 c, and when it exceeds 0.5 mm, poor airtightness occurs at the joint between the frame body 2 and the lid body 9.
[0049]
From Table 2, when the length c is less than 0.1 mm, an airtight defect occurs at the introduction portion 2c, and when the length c exceeds 15 mm, an airtight defect occurs at the joint between the frame body 2 and the lid body 9.
[0050]
From the above, it has been found that when the width d of the non-formed part 2d is 0.1 to 0.5 mm and the length c is 0.1 to 15 mm, the airtightness inside the optical semiconductor device can be satisfactorily maintained.
[0051]
The present invention is not limited to the above-described embodiment and examples, and various modifications can be made without departing from the scope of the present invention.
[0052]
【The invention's effect】
In the package for housing an optical semiconductor element of the present invention, the base and the frame have a gold plating layer deposited over the entire exposed surface, and the inside of the frame is formed on both sides of the optical fiber introduction portion on the upper surface of the frame. A non-formation portion of the gold plating layer in which the width in the thickness direction of the frame is 0.1 to 0.5 mm and the length in the direction along the inner periphery of the frame is 0.1 to 15 mm is provided at a portion along the periphery. As a result, there is no need to introduce an optical fiber into a package for housing an optical semiconductor element through a pipe as in the prior art, and an optical semiconductor that is temporarily fixed to the introduction portion and placed inside the package. Since it can be optically coupled with the element accurately, the workability of optical coupling between at least one optical fiber and the optical semiconductor element can be made very efficient, and at least one optical fiber can be fixed stably. It can be held. Also, the optical fiber is brazed through the optical fiber introduction part at the top of the frame, so that the lid is YAG welded or brazed to the upper surface of the frame as in the prior art, and the optical semiconductor element is housed via a pipe. It is no longer necessary to solder the optical fiber introduced into the package, and at the same time, the lid is brazed to the upper surface of the frame, and at the same time, between the optical fiber introducing portion and the optical fiber by the same thermal history. Since the hermetic sealing can be realized, since the heat history process is performed only once, the stress generated each time the heat history is applied can be reduced to a level that does not cause the optical fiber to be distorted. Therefore, the optical signal coupling efficiency between the plurality of optical fibers and the optical semiconductor element can be improved, and the optical semiconductor element can be operated normally and stably over a long period of time.
[0053]
Further, the base body and the frame body are provided with a gold plating layer applied over substantially the entire exposed surface, and the frame body is located at both sides of the optical fiber introduction portion on the upper surface of the frame body along the inner peripheral edge of the frame body. Since the non-formation part of the gold plating layer in which the width in the thickness direction is 0.1 to 0.5 mm and the length in the direction along the inner peripheral edge of the frame is 0.1 to 15 mm is provided, the optical fiber is an optical fiber. When soldering to the lead-in part, it is possible to prevent the solder from flowing out from the optical fiber lead-in part more than necessary, and it is possible to accumulate the solder appropriately in the fiber-optic lead-in part. It becomes possible to do.
[0054]
An optical semiconductor device according to the present invention includes an optical semiconductor element storage package according to the present invention, an optical semiconductor element mounted on a mounting portion, an optical fiber brazed through an optical fiber introduction portion, and a frame. By providing a lid body hermetically sealing the optical semiconductor element and the optical fiber introduction part brazed to the upper surface of the body, it is possible to optically transmit a large amount of information with excellent airtightness Become.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of an optical semiconductor element housing package of the present invention.
FIG. 2 is a partially enlarged perspective view of an optical fiber introducing portion and its peripheral portion in the optical semiconductor element housing package of the present invention.
FIG. 3 is a perspective view showing an example of an embodiment of an optical semiconductor device of the present invention.
FIG. 4 is a perspective view showing another example of the embodiment of the optical semiconductor element housing package of the present invention.
FIG. 5 is a perspective view showing another example of the embodiment of the package for housing an optical semiconductor element of the present invention.
FIG. 6 is a perspective view of a conventional package for housing an optical semiconductor element.
FIG. 7 is a perspective view of a conventional optical semiconductor device.
[Explanation of symbols]
1: Substrate
1a: Placement part
2: Frame
2a: Input / output terminal mounting part
2c: Optical fiber introduction part
2d: Gold plating layer non-formation part
7: Optical semiconductor element
8: Optical fiber
9: Lid

Claims (3)

光半導体素子が載置される基体と、
前記光半導体素子に光学的に結合される複数の光ファイバされてロウ付けされる複数の光ファイバ導入を有しているとともに、前記光半導体素子の載置部を囲んで前記基体に取着されており、蓋体がロウ付けされる枠体と、
前記枠体の上面に被着されたメッキ層とを備えており、
前記枠体の前記上面における前記枠体の内周縁に沿った部位に前記メッキ層の非形成部が設けられており、
前記複数の光ファイバ導入溝が、前記複数の光ファイバの各々に対応して設けられていることを特徴とする光半導体素子収納用パッケージ。
A substrate on which the optical semiconductor element is placed;
A plurality of optical fibers optically coupled has a plurality of optical fibers introducing groove to be brazed are passing on the optical semiconductor element, the base body surrounds the mounting portion of the optical semiconductor element A frame that is attached and the lid is brazed;
A plating layer deposited on the upper surface of the frame ,
A non-forming portion of the plating layer is provided in a portion along the inner peripheral edge of the frame body on the upper surface of the frame body;
The optical semiconductor element housing package, wherein the plurality of optical fiber introduction grooves are provided corresponding to each of the plurality of optical fibers.
前記複数の光ファイバ導入溝の各々の内面は、前記複数の光ファイバの各々の軸方向における中央部で凹んでいることを特徴とする請求項1記載の光半導体素子収納用パッケージ。  2. The optical semiconductor element housing package according to claim 1, wherein an inner surface of each of the plurality of optical fiber introduction grooves is recessed at a central portion in the axial direction of each of the plurality of optical fibers. 請求項1または請求項2記載の光半導体素子収納用パッケージと、
前記基体に載置された光半導体素子と、
前記光半導体素子に光学的に結合されており、前記複数の光ファイバ導入溝に通されてロウ付けされた複数の光ファイバと、
前記枠体の前記上面にロウ付けされた蓋体と
を備えた光半導体装置。
The optical semiconductor element storage package according to claim 1 or 2 ,
An optical semiconductor element mounted on the substrate ;
Is optically coupled to the optical semiconductor element, a plurality of optical fibers brazed is passed through a plurality of optical fibers introducing groove,
A brazed lid on the upper surface of the frame,
An optical semiconductor device comprising:
JP2002273927A 2002-09-19 2002-09-19 Optical semiconductor element storage package and optical semiconductor device Expired - Fee Related JP4025612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273927A JP4025612B2 (en) 2002-09-19 2002-09-19 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273927A JP4025612B2 (en) 2002-09-19 2002-09-19 Optical semiconductor element storage package and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2004109683A JP2004109683A (en) 2004-04-08
JP4025612B2 true JP4025612B2 (en) 2007-12-26

Family

ID=32270556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273927A Expired - Fee Related JP4025612B2 (en) 2002-09-19 2002-09-19 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4025612B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077014A (en) * 2020-08-17 2022-02-22 华为机器有限公司 Optical fiber sealing junction, wavelength selection switch, circuit board and communication equipment

Also Published As

Publication number Publication date
JP2004109683A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4025612B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP6034054B2 (en) Electronic component storage package and electronic device
JP4142928B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004191422A (en) Package for optical semiconductor device and optical semiconductor device
JP2005217093A (en) Storage package for photo-semiconductor element
JP3314163B2 (en) Package for storing semiconductor elements
JP3615697B2 (en) Package for storing semiconductor elements
JP2004119910A (en) Package for containing optical semiconductor device, and optical semiconductor device
JP3935085B2 (en) Semiconductor element storage package and semiconductor device
JP3766589B2 (en) Optical semiconductor element storage package
JP7196249B2 (en) Packages for semiconductor devices and semiconductor devices
JP2004258269A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP3619450B2 (en) Package for storing semiconductor elements
JP2004146395A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2004145148A (en) Package for optical element storage and optical module
JP2004145149A (en) Package for optical element storage and optical module
JP2004145147A (en) Package for optical element storage, and optical module
JP3457921B2 (en) Package for storing input / output terminals and semiconductor elements
JP3898521B2 (en) Optical semiconductor element storage package
JP4025617B2 (en) Optical element storage package and optical module
JP2003068903A (en) Package for semiconductor element storage and semiconductor device
JP4497762B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3825337B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2002246494A (en) Package for accommodating semiconductor device
JP2004296576A (en) Package for housing semiconductor element, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees