JP4024102B2 - Ofdm送信装置 - Google Patents

Ofdm送信装置 Download PDF

Info

Publication number
JP4024102B2
JP4024102B2 JP2002220691A JP2002220691A JP4024102B2 JP 4024102 B2 JP4024102 B2 JP 4024102B2 JP 2002220691 A JP2002220691 A JP 2002220691A JP 2002220691 A JP2002220691 A JP 2002220691A JP 4024102 B2 JP4024102 B2 JP 4024102B2
Authority
JP
Japan
Prior art keywords
circuit
data
transmission
output
transmission data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220691A
Other languages
English (en)
Other versions
JP2004064466A (ja
Inventor
豊 植田
英昭 小田切
雄造 川口
晃史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002220691A priority Critical patent/JP4024102B2/ja
Publication of JP2004064466A publication Critical patent/JP2004064466A/ja
Application granted granted Critical
Publication of JP4024102B2 publication Critical patent/JP4024102B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、無線LAN、あるいは、地上波デジタルテレビジョン放送等に使用されるデジタル変調方式の一つであるOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式のデータ送信装置の構成に関する。
【0002】
【従来の技術】
例えば、無線LANシステムにおけるデータを送信する側の装置については、IEEE802.11a−1999勧告に示されている。図20は、その勧告により示された構成を示す図である。
【0003】
図20では、入力した送信データは、最初のブロックで誤り制御と符号化が実施され、次のブロックでインターリーブ制御とマッピングが実施され、その次のブロックでIFFT(高速フーリエ変換)が実施され、さらに次のブロックでGI(ガードインターバル)等が挿入され、次のブロックで1つのデータシンボル波形に形成され、次のブロックでIQ(直交)変調され、その後、搬送波とミキシングされて出力される。図20のうち、点線で囲ったブロックが、送信データをOFDM変調信号に符号化する機能に関する部分である。
【0004】
図20のブロックは、規格に合わせて抽象化したブロックであり、図20の点線内を具体的な回路ブロックで示すと図21のようになる。
【0005】
スクランブル回路81は、ビット単位で、入力する送信データ(INDT)に対して、擬似ランダムパターンとの排他的論理和(EXOR)を演算することで、スクランブル処理を実施する。
【0006】
畳み込み符号化回路82は、スクランブル回路81からのビット単位で出力された送信データに対して、一定数の隣接するビットの排他的論理和(EXOR)を演算することで畳み込み符号化処理を実施する。
【0007】
インターリーブ制御回路83は、畳み込み符号化回路82から出力された送信データを一旦データ記憶回路83aに格納し、データ記憶回路83a内に1個のデータシンボル分の送信データが蓄積された場合に、データ記憶回路83aから送信データの読み出しが開始される。このデータ記憶回路83aからの送信データの読み出し時には、書き込み時とは異なる所定の順序で読み出し、データの順序を入れ替えることでインターリーブ処理が実施される。
【0008】
マッピング回路84は、インターリーブ制御回路83から出力された送信データをデータ送信の開始時に設定される送信レートから決まる変調方式により変調符号化し、実数部データと虚数部データからなる複素データとして出力する。変調方式は、前記のIEEE802.11a勧告で示される無線LANシステムにおいては、送信レートに合わせて、BPSK(Binary Phase Shift Keying:2相位相変調方式)、QPSK(Quadrature Phase Shift Keying:4相位相変調方式)、16−QAM(16-Quadrature Amplitude Modulation:16値直交位相振幅変調方式)、64−QAM(64-Quadrature Amplitude Modulation:64値直交位相振幅変調方式)の何れかが適用される。
【0009】
シリアル/パラレル(S/P)変換回路85は、マッピング回路84から出力された送信データ(複素データ)を、実数部データと虚数部データの各々について、後述する逆離散フーリエ変換(IDFT)回路86で使用される逆フーリエ変換の入力ポート数分の並列(パラレル)データに変換して出力する。
【0010】
IDFT回路86は、S/P変換回路85から出力された並列の送信データ(複素データ)を逆離散フーリエ変換する。S/P変換回路85から出力された並列の送信データを一旦データ記憶回路86aに格納し、データ記憶回路86a内に1個のデータシンボル分の送信データが蓄積された場合に、データ記憶回路86aから送信データの読み出しが開始され、逆離散フーリエ変換が実施される。なお、逆離散フーリエ変換の入力ポート数は、周波数分解能に関係し、無線LANあるいは地上波デジタルテレビジョン放送等の適用分野に対応して周波数分解能が決まり、それによりIDFT回路86の回路構成および入力ポート数が決まる。
【0011】
パラレル/シリアル(P/S)変換回路87は、IDFT回路86から出力された並列の送信データ(複素データ)を、実数部データと虚数部データの各々について、シリアルデータに変換して出力する。
【0012】
フレーミング回路88は、P/S変換回路87から出力されたシリアルの送信データ(複素データ)に対して、GI(ガードインターバル)等を挿入し、OFDMフレームを構成して送信データ(OTDT)を出力する。
【0013】
【発明が解決しようとする課題】
しかしながら、上記した従来のOFDM送信装置では、入力した送信データがマッピング回路84までシリアルに処理されていたため、送信処理におけるデータ入力からOFDM出力までに時間がかかるという問題があった。
【0014】
また、上記したように、インターリーブ制御回路83あるいはIDFT回路86では、入力した送信データを1個のデータシンボル分だけ一旦データ記憶回路に蓄積してから処理を実施するため時間がかかり、特に、インターリーブ制御回路83ではシリアルに送信データが蓄積されるため多くの時間がかかり、データ記憶回路83aには送信データをそのまま蓄積するため比較的大容量が必要であるという問題がある。
【0015】
従来のOFDM送信装置は、入力する送信データに対して、マッピング回路まではシリアルに処理するのみで並列処理を実施できなかったので、上記した問題に対処できなかった。
【0016】
本発明は、上述した如き従来の問題を解決するためになされたものであって、入力する送信データのOFDM出力までの時間と、データ記憶回路の記憶容量を軽減するOFDM送信装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
上述の目的を達成するため、本発明のOFDM送信装置は、m(m>1の整数)ビット単位で入力する送信データに対して並列にスクランブル処理するスクランブル回路と、mビット単位の送信データに対して並列に畳み込み符号化し、2mビット単位で出力する畳み込み符号化回路と、2mビット単位で受信した送信データを少なくとも1シンボル分同時に書き込み、複数の読み出しアドレスが入力されることで同時に複数の送信データを読み出すデータ記憶回路と、データ記憶回路から読み出された各送信データを、並列に符号化し、複素データ化して出力するマッピング回路と、符号化および複素データ化された各送信データを、高速逆フーリエ変換(IFFT)してOFDM変調するIFFT回路とを備える。
【0018】
また、本発明は、データ記憶回路に対して、送信レートにより異なる送信データのパターンに従い、複数の送信データをインターリーブ方式で読み出すための複数の読み出しアドレスを出力する読出制御回路をさらに備えるように構成しても良い。
【0019】
また、本発明は、送信データの送信パラメータを格納するパラメータ設定レジスタを有し、送信要求および送信パラメータを外部回路から受信し、スクランブル回路で入力した送信データに対する処理の準備が終了する毎に、外部回路に1データシンボル分の送信データの入力を要求し、送信パラメータをmビット単位で畳み込み符号化回路に出力すると共に、送信レートを畳み込み符号化回路、マッピング回路、および、読出制御回路に出力する送信受付回路をさらに備えるように構成しても良い。
【0020】
また、本発明のデータ記憶回路は、2mビット単位で受信した送信データを、送信レートにより異なる送信データのパターンに従って、所定の位置のビットを削減し、n(n≦2m)ビット単位で書き込むように構成しても良い。削減するビット位置については、送信レートによって可変とする。ここで、一定パターンでビット削減されたデータは、受信側でビタビ複合器により完全に復元されることが知られている。
【0021】
また、本発明の畳み込み符号化回路は、1データシンボル分の畳み込み符号化した送信データを出力した場合、読出制御回路に書き込み終了を通知し、読出制御回路は、該書き込み終了通知の受信により、読み出しアドレスを出力するように構成しても良い。
【0022】
また、本発明の読出制御回路は、送信レートによって符号化率を設定することによって読み出しアドレスを制御し、その制御によりビットを読み出さないように構成しても良い。
【0023】
また、本発明は、IFFT回路でOFDM変調された各送信データに対し、各シンボルの間隔および各データシンボル波形を補正し、所定の順に出力することでOFDMフレームを生成するフレーミング回路をさらに備え、該フレーミング回路は、OFDMフレームを生成する際に付加される固定パターンを格納するフレーミング用固定パターン記憶回路と、該固定パターン記憶回路の格納内容と、IFFT回路の出力内容とを選択して出力する出力セレクタとを有するように構成しても良い。
【0024】
また、本発明のフレーミング用固定パターン記憶回路は、ショートプリアンブル用記憶回路およびロングプリアンブル用記憶回路を有するように構成しても良い。
【0025】
また、本発明は、第2の畳み込み符号化回路、第2のデータ記憶回路、および、第2の読出制御回路からなる第2符号化回路と、データ記憶回路の出力と、第2のデータ記憶回路の出力から一方の出力を選択する出力セレクタをさらに備え、送信受付回路は、送信パラメータを、畳み込み符号化回路に代えて、第2符号化回路内の第2の畳み込み符号化回路に送出し、第2のデータ記憶回路は、データ記憶回路から同時に読み出される複数の送信データと同数の送信データを同時に読み出すように構成しても良い。
【0026】
また、本発明のIFFT回路は、各送信データに対する多段階のIFFT演算の何れか段階の演算結果を格納する第1記憶回路および第2記憶回路と、第1記憶回路および第2記憶回路を選択して、何れかの段階の演算結果または演算前の送信データを入力する記憶回路選択回路と、第1記憶回路および第2記憶回路の出力に対して、次段階のIFFT演算を実施するか、あるいは、フレーミング回路に出力するかを選択する出力選択回路を有するように構成しても良い。
【0027】
また、本発明は、少なくともスクランブル回路、畳み込み符号化回路、データ記憶回路、マッピング回路、および、IFFT回路の各クロック入力部に配置されるクロック入力切り替え回路と、各クロック入力切り替え回路に入力切り替え指示を出力するクロック制御回路を備えるように構成しても良い。
【0028】
また、本発明のIFFT回路は、送信データに加算される固定パターンをIFFT演算した演算結果を格納するIFFT用固定パターン記憶回路と、出力選択回路からフレーミング回路に出力される演算結果に対して正規化係数を乗算する乗算回路と、乗算回路の出力とIFFT用固定パターン記憶回路の格納内容を加算する加算回路を有するように構成しても良い。
【0029】
また、本発明は、データ記憶回路に受信した送信データを書き込ませるための制御信号を出力し、畳み込み符号化回路が1データシンボル分の畳み込み符号化した送信データを出力した場合、読出制御回路に書き込み終了を通知する書込制御回路を設け、該書込制御回路は、畳み込み符号化回路からデータ記憶回路に出力される送信データのビット数に対応する数のインターリーブ方式の書き込みアドレスを、データ記憶回路に出力する書き込みアドレス生成回路と、送信レートにより畳み込み符号化回路からデータ記憶回路に出力される送信データのビット数に対応する数で、所定のビット位置のビットを削減するための制御信号を出力するパンクチャ制御回路を有し、読出制御回路は、書き込み終了通知の受信により、畳み込み符号化回路からデータ記憶回路に出力される送信データのビット数に対応する数のインターリーブ方式の読み出しアドレスを出力するように構成しても良い。
【0030】
また、本発明は、畳み込み符号化回路とデータ記憶回路の間の接続と並列に、1個のデータシンボルのビット数が畳み込み符号化回路の符号化ビット数で割り切れない場合に、データシンボルのビット数よりも大きい符号化ビット数の倍数からデータシンボルのビット数を減算した残りのビット数の送信データを格納するビット保持回路を設け、パンクチャ制御回路は、送信レートよりビット保持回路からデータ記憶回路に出力される送信データのビット数に対応する数で、所定の位置のビットを削減するための制御信号を出力するように構成しても良い。
【0031】
また、本発明のマッピング回路は、各送信データの符号化を、送信レートにより異なる変調方式を用いて行うように構成しても良い。
【0032】
【発明の実施の形態】
以下、本発明を図示した実施形態に基づいて説明する。
【0033】
実施の形態1.
図1は、本発明の実施の形態1のOFDM送信装置の構成を示すブロック図である。
スクランブル回路1は、複数のm(m>1)ビット単位で入力する各送信データ(INDT)に対して、並列処理で同時に擬似ランダムパターンさせる擬似ランダム発生器を搭載し、その擬似ランダムパターンと入力データとの排他的論理和(EXOR)を演算することでスクランブル処理を実施する。
【0034】
畳み込み符号化回路2は、スクランブル回路1からのmビット単位で出力された各送信データのみでなく、後述する送信受付回路3からmビット単位で入力する送信パラメータに対しても、並列処理で同時に一定数の隣接するビットの排他的論理和(EXOR)を演算することで畳み込み符号化処理を実施し、2mビット単位で出力する。また、畳み込み符号化回路2は、1データシンボル分の畳み込み符号化した送信データを出力し、後述するデータ記憶回路4に1データシンボル分の送信データが書き込まれた場合、後述する読出制御回路6に書き込みが終了したことを書き込み終了フラグで通知する。
【0035】
送信受付回路3は、送信フレームデータ単位に設定される送信パラメータを格納するパラメータ設定レジスタを有し、送信パラメータを外部回路から受信する。また、1データシンボル分の送信データが後述するIFFT回路7に入力された時点で、外部回路に対して、次の1データシンボル分の送信データの入力を要求する。
【0036】
データ記憶回路4は、2mビット単位で受信した送信データを、複数の読み出しアドレスが指定されることで、少なくとも1シンボル分同時にアクセスして書き込むことができる記憶領域を有する。また、データ記憶回路4は、複数の読み出しアドレスが入力されることで、同時に複数の送信データを読み出すこともできる。また、データ記憶回路4は、送信パラメータをmビット単位で畳み込み符号化回路2に出力すると共に、送信レートを畳み込み符号化回路2、後述するマッピング回路5、および、読出制御回路6に出力する。
【0037】
また、書き込みの際に、例えば、2mビット単位で受信した送信データが、送信レートにより異なる送信データのパターンに従って、送信データ内で同じパターンが繰り返される場合には、データ記憶回路4は、その繰り返し部分のビットを削減し、n(n≦2m)ビット単位で書き込むようにする(=書き込み時のパンクチャ処理を実施する)。
【0038】
図1では、後段のマッピング回路で適用される変調方式に合わせて複数ビット単位に読み出される各送信データのビット数をpビットとし、k個のデータを同時に読み出して出力する構成を示している。
【0039】
マッピング回路5は、各送信データの符号化を、送信レートにより異なる変調方式を用いて行う。例えば、マッピング回路5は、データ記憶回路4から読み出されて出力されたk個の各送信データ(各pビット)を、データ送信の開始時に設定される送信レートから決まる変調方式(BPSK、QPSK、16QAM、および、64QAMの何れか)により、並列に位相変調して符号化し、実数部データと虚数部データからなる複素データとして出力する。
【0040】
一般的に、マッピング回路5は、グレイコードと称される数値表現法に従い、もとのビット列に対して複素データ(実数部drおよび虚数部データdiを割り当てる。もとのビット列に対して何ビット単位(pビット単位)で複素データへの変換を実行するかは、使用する変調方式により異なり、変調方式は、外部回路により設定される送信レートの値により決定される。例えば、16QAMを使用する場合には、4ビット単位で複素データへの変換が実施される。
【0041】
図3、図4は、16QAMを使用し、4ビット単位で入力した送信データを複素データへの変換を実施する場合を示している。図3の複素平面の図中で、16個のポイントには、各々異なる4ビットの値が割り当てられており、入力する送信データは、図中の何れかのポイントに対応する4ビット毎の入力ビット列に変換されている。図4の各4ビットの入力ビット列は、図3の座標に対応して、drとdiの複素データ列に変換される。
【0042】
実際には、変換後の複素データに対して、さらに正規化計数kが乗算されて、図3に示された各ポイントのレベルは正規化される。図3に示した16QAMの場合には、正規化計数kは1/√10となる。
【0043】
また、マッピング回路5は、複数(k個)の入力データに対応(同時に変換)できるように、複数(k個)の変換テーブルを有する構成とする。例えば、図1に示すように、pビット単位のk個の入力データdint_1〜dint_kを、同時に複素データであるdr_1〜dr_k(実数部データ)、および、di_1〜di_k(虚数部データ)に変換し、さらに、変換されたk個の複素データのペア(dr_iとdi_iのペア:i=1,2,3,・・・,k)が、同時に後述するIFFT回路7に出力される。
【0044】
マッピング回路5から出力されるk個の複素データのビット数qは、後段のIFFT回路7の演算制度に影響を与える数値であるので、無線LANあるいは地上波デジタルテレビジョン放送等の適用分野に対応して周波数分解能等の要求される性能に適応するように決定される。
【0045】
読出制御回路6は、畳み込み符号化回路2からの書き込み終了フラグの受信により、データ記憶回路4に対して、送信レートにより異なる送信データのパターンに従い、複数の送信データをインターリーブ方式で読み出すための複数の読み出しアドレスを出力する。また、読出制御回路6は、送信データの固定位置のビットを読み出さないように読み出しアドレスを制御することによって送信データを削減する(=読み出し時のパンクチャ処理を実施する)。入力データを畳み込み演算し、2倍のビット数のデータ列に変換した後、パンクチャ処理によって所定のビットを削減したビット列は、受信側でビタビ復号器により完全に元のビット列に復元できることが一般に知られている。
【0046】
IFFT(高速逆フーリエ変換)回路7は、マッピング回路5から出力された並列の送信データ(複素データ)に対し、高速逆フーリエ変換することでOFDM変調を実施する。高速逆フーリエ変換では、マッピング回路5から並列(パラレル)出力された複数の送信データ(実数部データdrおよび虚数部データdiのペア)を、一旦不図示のデータ記憶回路に格納し、そのデータ記憶回路内に1個のデータシンボル分の送信データが蓄積された場合に、必要なデータの入力が完了したと判断して、データ記憶回路から送信データが読み出されて、高速逆フーリエ変換の演算が開始される。演算が完了すると、変換後の複素データは、順次、次の後述するフレーミング回路8に出力される。
【0047】
また、IFFT回路7では、図2を用いて後述するショートプリアンブルおよびロングプリアンブルのフィールドを生成して出力する。ショートプリアンブルおよびロングプリアンブルのフィールドは、固定パターンからなり、フレーム中のシグナルフィールドおよびデータフィールドよりも先に出力する必要があるフィールドである。例えば、ショートプリアンブルおよびロングプリアンブ用のサブキャリア信号(固定パターン:複素データ)を定義して格納しておき、その固定パターンを高速逆フーリエ変換して出力する。
【0048】
なお、高速逆フーリエ変換の入力ポート数は、周波数分解能に関係し、無線LANあるいは地上波デジタルテレビジョン放送等の適用分野に対応して周波数分解能が決まり、それによりIFFT回路7の回路構成および入力ポート数が決まる。
【0049】
フレーミング回路8は、IFFT回路7でOFDM変調されて出力された各送信データ(複素データ)に対して、各シンボルの間隔および各データシンボル波形を補正し、所定の順(図2に示したショートプリアンブル、ロングプリアンブル、シグナルフィールド、データフィールドの順)に出力することでOFDMフレームを生成して送信データ(OTDT)を出力する。また、連続するシンボルの間には、GI(ガードインターバル)を挿入してOFDMフレームを生成する。
【0050】
図2は、図1のフレーミング回路8で構成されるOFDMフレームのフレーム構成を示すタイミングチャートである。
図2では、送信受付回路3が、外部回路から送信要求信号(TXRQ)と送信パラメータ信号(TXPM)を受信した場合を示している。符号化処理および送信処理あるいは復号処理および受信処理に必要となる送信レートおよび送信データ長等のパラメータ(送信パラメータ)は、この時に設定されて一旦送信受付回路3内のパラメータ設定レジスタに格納される。この送信パラメータ(tビット)は、送信受付回路3からm(m>1)ビット単位で畳み込み符号化回路2に出力され、特に、送信レート(TXRT)については、送信受付回路3から畳み込み符号化回路2、後述するマッピング回路5、および、読出制御回路6に出力され、各回路での符号化処理の動作モード切替等に使用される。
【0051】
フレーミング回路8では、送信要求信号(TXRQ)の受信によって、まず、受信側装置がフレームの検出あるいはデータの同期を検出するために必要となるショートプリアンブルとロングプリアンブルを送出する。
【0052】
送信受付回路3では、ロングプリアンブルの送出がほぼ終了して送信データに対する処理の準備が終了した時点で、第1のデータシンボルを生成する準備が整ったと判断して、外部回路に対して1個のデータシンボルに収容できる長さの第1のデータ(DATA#1)の要求信号(DTRQ)を出力する。データシンボルは、送信レートにより決定され、その送信データ長は固定長である。すると、第1のデータが外部回路から入力信号(INDT)としてスクランブル回路1に入力される。
【0053】
フレーミング回路8では、ロングプリアンブルの送出が完全に終了すると、次いで、受信側装置が受信データからフレーム構成を検出するために必要となる送信パラメータを送信受付回路3内のパラメータ設定レジスタから読み出し、その送信パラメータを含むシグナルフィールドをヘッダデータとして送出する。
【0054】
送信受付回路3では、シグナルフィールドの送出がほぼ終了して送信データに対する処理の準備が終了した時点で、第2のデータシンボルを生成する準備が整ったと判断して、外部回路に対して第2のデータ(DATA#2)の要求信号(DTRQ)を出力する。すると、第2のデータが外部回路から入力信号(INDT)としてスクランブル回路1入力される。
【0055】
フレーミング回路8では、シグナルフィールドの送出が完全に終了すると、次いで、第1のデータ(DATA#1)のデータフィールド、および、第2のデータ(DATA#2)のデータフィールドを送出する。データフィールドは、複数のデータシンボルにより構成される。図2では2個のデータシンボル(DATA#1、DATA#2)がデータフィールド内に含まれ、1個のOFDMフレームに収容されている。
【0056】
このように、本実施の形態では、スクランブル回路1への入力からIFFT回路7までの全回路ブロックについて、複数ビット単位の処理を可能にしたので、送信データの入力からOFDM変調信号の出力までの処理時間を短縮させることができる。
【0057】
また、従来のシリアルデータ転送でビット単位にインターリーブ処理を実施する場合には、例えば、データ記憶回路4を2重構成にして、一方のデータ記憶回路に一旦入力する送信データを書き込んでいる間に、他方のデータ記憶回路からインターリーブ処理を実施しつつ書き込まれたデータを読み出す処理が必要であった。つまり、データ記憶回路の記憶容量が、インターリーブ処理を実施しない場合の必要量の2倍必要であった。しかし、本実施の形態では、データ記憶回路4に入力する送信データを複数ビット単位のパラレル転送にでき、データ記憶回路4から出力する送信データは複数ビット単位のk個の送信データにできるので、インターリーブ処理を実施する場合でも記憶容量を増加させる必要が無くなり、ハードウエアの設置スペースおよびコストを抑制することができる。
【0058】
実施の形態2.
上記した実施の形態1では、OFDMフレームに使用されるショートプリアンブルとロングプリアンブルを、IFFT回路7で固定パターンから変換させて生成し、フレーミング回路8でOFDMフレームとして出力していた。しかし、変換後も固定パターンであるショートプリアンブルとロングプリアンブルを、IFFT回路7で必要になる毎に毎回演算して変換することは消費電力の点で効率が悪いことになる。
【0059】
そこで、以下に示す実施の形態2では、変換済みのショートプリアンブルとロングプリアンブルを固定パターンとしてフレーミング回路8に予め内蔵させることで、IFFT回路7の演算量を減少させ、消費電力を抑制する場合について説明する。
【0060】
図5は、本発明の実施の形態2のフレーミング回路8の内部構成を示すブロック図である。なお、本実施の形態で、図5に示していない回路は、実施の形態1と同様である。
【0061】
図5のフレーミング回路8中には、固定パターン記憶回路11と、その固定パターンの出力を選択する出力セレクタ12と、固定パターン記憶回路11と出力セレクタ12を制御する出力制御回路13とを有している。また、固定パターン記憶回路11の中には、ショートプリアンブル記憶回路21とロングプリアンブル記憶回路22を有している。
【0062】
ショートプリアンブル記憶回路21の出力(実数部データsp_r, 虚数部データsp_iの複素データペア)と、ロングプリアンブル記憶回路22の出力(実数部データlp_r, 虚数部データlp_iの複素データペア)は、個別に出力セレクタ12に入力され、さらに、IFFT回路7からの出力(実数部データdr_ifft, 虚数部データdi_ifftの複素データペア)も、出力セレクタ12に入力される。
【0063】
出力制御回路13からは、ショートプリアンブル記憶回路21とロングプリアンブル記憶回路22に制御信号rdが出力され、出力セレクタ12には制御信号selが出力される。
【0064】
また、上記したように、実施の形態1でIFFT回路7に格納されていたショートプリアンブルおよびロングプリアンブル用のサブキャリア信号は、固定パターンの複素データであり、その固定パターンを高速逆フーリエ変換して出力された複素データも固定パターンである。
【0065】
そこで、上記したように、フレーミング回路8内の固定パターン記憶回路11内に、ショートプリアンブル記憶回路21とロングプリアンブル記憶回路22を設け、上記した変換済みの固定パターンを予め記憶させておく。
【0066】
例えば、出力セレクタ12と出力制御回路13を用いて、各フレームのショートプリアンブルを出力させるタイミングでは、ショートプリアンブル記憶回路21の記憶内容を出力し、各データフレームのロングプリアンブルを出力させるタイミングでは、ロングプリアンブル記憶回路22の記憶内容を出力し、その他のタイミングでは、IFFT回路7からの入力をそのまま出力するようにして、時分割で出力データを切り替えることでデータフレームを生成する。
【0067】
また、データフレーム中のシグナルフィールドは、OFDMフレームの符号化パラメータを含み、データフレーム毎に異なるデータである。従って、シグナルフィールドは、データフィールドと同様に、固定パターンにはできないので、IFFT回路7からの入力をそのまま出力する。
【0068】
また、出力制御回路13は、出力セレクタ12に制御信号selを出力して出力の切り替え制御を行うだけでなく、ショートプリアンブル記憶回路21とロングプリアンブル記憶回路22に制御信号rdを出力することで、過去固定パターンの読み出しタイミングの制御も行う。
【0069】
このように、本実施の形態では、フレーミング回路8内にショートプリアンブル記憶回路21とロングプリアンブル記憶回路22を設け、予めショートプリアンブルとロングプリアンブルの内容を格納しておき、ショートプリアンブルとロングプリアンブルを出力させるタイミングでは、記憶回路から読み出した内容を出力するようにしたので、プリアンブル出力時のIFFT回路7の演算を不要にできる。従って、本実施の形態では、IFFT回路7の演算量を減少させ、消費電力を抑制することができる。
【0070】
実施の形態3.
上記した実施の形態2では、データフレーム中のシグナルフィールドは、データフレーム毎に異なるデータであり、固定パターンにはできないので、IFFT回路7およびフレーミング回路8ではデータフィールドと同様の処理が実施される。しかし、シグナルフィールドの送信データは、送信データ長が固定値であり、マッピング回路5で変調に用いられる方式はBPSK方式で固定されており、スクランブル処理も実施されない。そのため、畳み込み符号化回路2、データ記憶回路4、および、読み出し制御回路6において、シグナルフィールドの送信データを処理する場合には、送信レートによる動作の切替制御が不要であり、送信データを処理する場合に比べ、最長のデータ長を考慮した処理回路が不要となるため、データフィールドの送信データ処理回路に比べ回路規模を小さくできる。逆に考えると、畳み込み符号化回路2、データ記憶回路4、および、読み出し制御回路6では、データフィールドの送信データを処理する場合には、無駄な電力を消費していた。
【0071】
そこで、以下に示す実施の形態3では、畳み込み符号化回路2、データ記憶回路4、および、読み出し制御回路6について、データフィールドの送信データ用に規模の小さい第2の回路を設け、データフィールドの送信データを処理する時には第2の回路を使用すること消費電力を抑制する場合について説明する。
【0072】
図6は、本発明の実施の形態3のOFDM送信回路の構成を示すブロック図である。なお、図6において、図1に示した実施の形態1と同様の機能を有する部分は、同じ符号を付与し、重複する説明を省略する。
【0073】
図6では、データフィールドの送信データを処理するための比較的大規模な回路とは別に、シグナルフィールドの送信データを専用に処理するために比較的小規模な、第2畳み込み符号化回路32、第2データ記憶回路34、および、第2読み出し制御回路36からなる第2符号化回路30と、データ記憶回路4の出力と第2データ記憶回路34の出力を選択する出力セレクタ31を設けた。
【0074】
まず、送信受付回路3では、外部回路からの送信要求TXRQを受信した時に、送信レートあるいは送信データ長等の送信処理に必要な送信パラメータが設定され、この送信パラメータによりtビットのシグナルフィールドのデータが生成される。実施の形態1では、このシグナルフィールドのデータを畳み込み符号化回路2に入力させていたが、本実施の形態では、新たに追加された第2畳み込み符号化回路32に入力させる。
【0075】
第2畳み込み符号化回路32は、入力したシグナルフィールドのデータ(tビット)に対して、畳み込み演算することで2tビットのデータとして第2データ記憶回路34に出力する。第2データ記憶回路34では、入力した2tビットのデータに対して、書き込み時のパンクチャ処理を実施することによりuビット(u≦2t)のデータとして書き込む。
【0076】
第2読み出し制御回路34では、出力セレクタ31が選択により切り替わっても出力数が変わらないように、k個分のビット列(sig_1〜sig_k)を同時に読み出すように、読出アドレスをデータ記憶部34に出力する。
【0077】
データ記憶部34では、受信した読出アドレスに従って、格納したシグナルフィールドの送信データをk個分のビット列(sig_1〜sig_k)で読み出し、同時に出力セレクタ31に出力する。
【0078】
出力セレクタ31では、シグナルフィールドの送信データが出力され得るべきタイミングでは、第2符号化回路30(データ記憶回路34)側のデータを選択しているので、シグナルフィールドの送信データがマッピング回路5に正しく出力される。
【0079】
一方、データフィールドの送信データが出力されるべきタイミングでは、出力セレクタ31は、データ記憶回路4側のデータを選択しているので、データフィールドの送信データがマッピング回路5に正しく出力される。
【0080】
マッピング回路5では、シグナルフィールドの送信データもデータフィールドの送信データも同様にk個のビット列であるので、実施の形態1と同様にk個のテーブルを用いて並列に変調符号化する。
【0081】
第2符号化回路30では、固定値の送信データ長、BPSK方式に固定の変調方式(マッピング回路5)、スクランブル処理無しという条件のシグナルフィールドの送信データに限定されているため、第2畳み込み符号化回路32の符号化率が一定になる。それに対して、畳み込み符号化回路2では、データフィールドの送信データは、送信レート設定値により異なる符号化率で符号化が実施され、マッピング回路5の変調方式(動作モード)が切り替えられる。つまり、第2畳み込み符号化回路32は、1個の動作モード(BPSK方式)のみに対応する機能を実装すればよいので、畳み込み符号化回路2よりも構成を簡略化できる。同様にして、第2読み出し制御回路36も、1個の動作モード(BPSK方式)のみに対応する機能を実装すればよいので、読み出し制御回路6よりも回路規模を縮小できる。
【0082】
また、図2に示したように、シグナルフィールドは、データフィールドと比較してデータ長が短いので、データ記憶回路34はデータ記憶回路4よりも容量を小さくできる。例えば、IEEE勧告802.11aに規定された無線LANシステムを54Mbit/sの動作モードで動作させ、畳み込み演算後のデータフィールドをデータ記憶回路4に出力し、畳み込み演算後のシグナルフィールドのデータを第2データ記憶回路34に出力する場合の1データシンボルあたりのデータ数は、データフィールドをデータ記憶回路4に出力する方では432ビットであるが、シグナルフィールドのデータを第2データ記憶回路34に出力する方では48ビットである。従って、本実施の形態の第2符号化回路30を用いてシグナルフィールドのデータを処理する場合には、データ記憶回路34の記憶容量を、データ記憶回路4の記憶容量の1/9に減少させることができ、その分の消費電力を抑制することができることがわかる。
【0083】
このように、本実施の形態では、シグナルフィールドの送信データを畳み込み符号化処理するために回路規模を縮小した第2符号化回路30と出力セレクタ31を設けたので、シグナルフィールドの送信データを畳み込み符号化処理する際の消費電力を抑制することができる。
【0084】
実施の形態4.
上記した実施の形態3では、データフィールドの送信データ用に規模の小さい第2の回路を設け、特に第2の回路中のデータ記憶回路の記憶容量については大幅に減少させ、データフィールドの送信データを処理する時には第2の回路を使用することで消費電力を抑制したが、IFFT回路7中の記憶回路については、フィールドの種類では分類できず、消費電力を抑制することができなかった。
【0085】
そこで、以下に示す実施の形態4では、IFFT回路7中の記憶回路についても規模を小さくし、それにより消費電力を抑制する場合について説明する。
【0086】
図7は、本発明の実施の形態4のIFFT回路の内部構成を示すブロック図である。なお、本実施の形態で、図7に示していない回路は、実施の形態3と同様である。
【0087】
IFFT回路7では、逆離散フーリエ変換の高速演算アルゴリズムとして、一般的に知られている高速逆フーリエ変換(IFFT)処理を適用する。IFFT処理には、図8を用いて後述するバタフライ演算回路41が用いられる。本実施の形態では、バタフライ演算回路41の他に、2個の記憶回路43、44を設け、さらにその前後段に記憶回路選択回路42と出力選択回路45を設けると共に、それらの追加回路を制御する入出力制御回路46を設けた。
【0088】
IFFT回路7の第1記憶回路43および第2記憶回路44は、各送信データIFFT−inに対する多段階のIFFT演算の何れか段階の演算結果を格納し、記憶回路選択回路42は、第1記憶回路43および第2記憶回路44を選択して、多段階の何れかの段階の演算結果または演算前の送信データを入力し、出力選択回路45は、第1記憶回路43および第2記憶回路44の出力に対して、バタフライ演算回路41に戻して多段階の演算の次段階のIFFT演算を実施するか、あるいは、IFFT回路7の出力としてフレーミング回路8に出力するかを選択する。
【0089】
まず、バタフライ演算回路41の演算内容について、8ポイント入力のバタフライ演算回路の演算内容を示した図8を用いて説明する。
【0090】
図8の例では、入力信号がx0〜x7の8ポイントであり、それに対して3段階の演算が実施される。そして、1段目の演算結果がx10〜x17であり、2段目の演算結果がx20〜x27であり、3段目の演算結果がx30〜x37である。
【0091】
通常、1段目の演算結果x10〜x17は、一旦記憶回路に保持され、その1段目の演算結果x10〜x17を使用して2段目の演算が実施される。そして、2段目の演算結果x20〜x27も一旦記憶回路に保持され、その2段目の演算結果x20〜x27を使用して3段目の演算が実施される。従って、IFFTの演算が実施されている間は、記憶回路は演算結果の保持に占有される。
【0092】
図8に示された例は入力信号が8ポイントの場合であるので、演算する段数は3段になっているが、例えば、入力信号のポイント数をさらに増加させた場合には、演算する段数も増加する。その場合には、記憶回路が演算結果を保持する時間も長くなる。
【0093】
本実施の形態のIFFT回路7の動作としては、まず、IFFT回路7に入力されるk個単位の複素データ形式の送信データ(dr{:実数部データ}とdi{:虚数部データ}のペア)は、同時にバタフライ演算回路41に入力され演算が開始される。3段階の演算途中のバタフライ演算回路41から出力される送信データ(yr{:実数部データ}、yi{:虚数部データ})は、記憶回路選択回路42に出力され、記憶回路選択回路42で選択された第1記憶回路43あるいは第2記憶回路44の何れかの記憶回路に書き込まれる。
【0094】
記憶回路選択回路42は、出力される送信データを何れの記憶回路に書き込むかの選択制御を、入出力制御回路46からのセレクタ信号in_selにより行う。図9(a)には、セレクタ信号in_sel(0、1)により、複素データ形式の送信データ(yr、yi)を、第1記憶回路43(a1_r、a1_i)か、第2記憶回路(a2_r、a2_i)に選択して書き込む場合の図表を示した。
【0095】
一方、出力選択回路45では、第1記憶回路43と第2記憶回路44のそれぞれの出力を、バタフライ演算回路41への入力端子(xr{:実数部データ}、xi{:虚数部データ})、および、演算結果の出力端子(dr_ifft{:実数部データ}、di_ifft{虚数部データ})の何れに出力するかを選択して切り替える。
【0096】
第1記憶回路43および第2記憶回路44では、入出力制御回路46からの読み出しアドレスadrの入力により、第1記憶回路43(b1_r、b1_i)か、あるいは、第2記憶回路(b2_r、b2_i)か、が選択されると共に、読み出し順序、および、同時に読み出すデータ個数が制御されて読み出される。
【0097】
出力選択回路45は、送信データを何れの入力端子に出力するかの選択制御を、入出力制御回路46からの切替制御信号out_swにより行う。図9(b)には、切替制御信号out_sw(0、1)により、複素データ形式で第1記憶回路43から出力される送信データ(b1_r、b1_i)を、バタフライ演算回路41への入力端子(xr、xi)か、演算結果の出力端子(dr_ifft、di_ifft)に選択して出力でき、また、複素データ形式で第2記憶回路44から出力される送信データ(b2_r、b2_i)についても、演算結果の出力端子(dr_ifft、di_ifft)と、バタフライ演算回路41への入力端子(xr、xi)に選択して出力する場合の図表を示した。
【0098】
出力選択回路45の出力は、演算途中でバタフライ演算回路41へ出力する場合には、複素データのペアをk個単位であるが、演算結果を出力する場合には、複素データを1ペア単位でフレーミング回路8に出力する。
【0099】
第1記憶回路43と第2記憶回路44の入出力に対して、記憶回路選択回路42、出力選択回路45、および、入出力制御回路46を用いて上記したように切替制御を実施することにより、第1記憶回路43と第2記憶回路44のうちの一方を演算用に使用し、他方を演算結果の出力用に使用することができる。また、演算の終了時には、演算用に使用していた方の記憶回路を演算結果の出力用に切り替えて使用し、他方を次の演算用に切り替えて使用するように時分割で切り替える。
【0100】
図10は、(a)セレクタ信号in_sel、(b)切替制御信号out_sw、(c)第1記憶回路43の出力先、および、(d)第2記憶回路44の出力先を示すタイミングチャートである。
【0101】
最初(第1)の複素データの入力時には、第1記憶回路43で演算を実施し、第2の複素データの入力時には、第2記憶回路44で演算を実施すると共に第1記憶回路43は第1の複素データの演算結果を出力し、第3の複素データの入力時には、第1記憶回路43で再び演算を実施すると共に第2記憶回路44は第2の複素データの演算結果を出力し、第4の複素データの入力時には、第2記憶回路44で演算を実施すると共に第1記憶回路43は第3の複素データの演算結果を出力する。つまり、一方の記憶回路を使用して1個のデータシンボルに対するOFDM変調処理を実施する間に、他方の記憶回路を利用して全シンボルの演算結果を出力する。
【0102】
また、上記したように、出力選択回路45の出力は、演算途中では、複素データのペアがk個単位で、演算結果には、複素データが1ペア単位であるので、演算結果の出力よりも、演算の出力時間は短くなる。また、演算の出力時間は処理する送信データのデータ長に依存するので、データ長の最大値に対応する区間を演算区間として割り当てておけば、全てのデータ長の演算に対応することができる。また、後段の処理回路のデータ入力速度が多様に変化しても、2個のうちの一方を演算結果出力専用に割り当てることで、他方の演算はそのままの速度で出力しても、演算結果の出力速度のみを容易に後段の回路に合わせることができる。
【0103】
このように、本実施の形態では、演算用と演算結果出力用で2個の記憶回路を設けると共に、入力側と出力側に切り替え手段を設けて時分割に切替制御することで、IFFT演算に使用する記憶回路を効率的に割り振る。従って、本実施の形態では、記憶回路を1個のままで時分割でなく制御する場合に比べて、無駄な記憶容量や記憶回路の空き時間を削減できることから、記憶容量を縮小させることができる。また、OFDM変調処理時間を短くでき、全てのデータ長の送信データに対応でき、後段の処理回路のデータ入力速度に容易に対応することができる。
【0104】
実施の形態5.
上記した各実施の形態では、各回路にクロック信号は常時供給されており、送信データが入力しない時間でも、クロック信号入力による動作は継続して実施されている。しかし、送信データ入力が無い時間のクロック信号入力による動作は、送信データの出力には役だっておらず、当該回路におけるクロック信号のみが入力される期間では、無駄な電力を消費していた。
【0105】
そこで、以下に示す実施の形態5では、実施の形態3のスクランブル回路1、畳み込み符号化回路2、データ記憶回路4、マッピング回路5、読み出し制御回路6、IFFT回路7、フレーミング回路8、および、第2符号化回路30の各クロック入力部にクロック入力切り替え(CE)回路を配置すると共に、各CE回路に入力切り替え指示(イネーブル指示:EN)を出力するクロック制御回路を設け、各回路に送信データの入力がない期間ではクロックの供給を停止させて、消費電力を抑制する場合について説明する。
【0106】
図11は、本発明の実施の形態5のOFDM送信回路の構成を示すブロック図である。なお、図11において、図6に示した実施の形態3と同様の機能を有する部分は、同じ符号を付与し、重複する説明を省略する。
【0107】
図11では、スクランブル回路1にクロック入力を切り替えるCE回路51、畳み込み符号化回路2にCE回路52、データ記憶回路4にCE回路54、マッピング回路5にCE回路55、読み出し制御回路6にCE回路56、IFFT回路7にCE回路57、フレーミング回路8にCE回路58、および、第2符号化回路30にCE回路53が追加して設けられている。また、各CE回路には、クロック信号CLKが供給されると共に、そのクロック信号CLKの入力と停止を各々切り替えるイネーブル信号(EN1〜EN8)がクロック制御回路50から供給可能になっている。また、クロック制御回路50は、外部回路から送信要求信号TXRQが入力され、フレーミング回路8からOFDMフレームが送信されるまでの各回路の動作シーケンスを管理する。
【0108】
図12は、各回路内のクロック供給状況を概略的に示す図である。
図12の回路ブロックi(60)および回路ブロックj(70)には、各々クロック入力を切り替えるCE回路61およびCE回路71が設けられ、CE回路61およびCE回路71から、さらに複数のフリップフロップ等の内部回路にクロック信号が供給されるように接続されている。
【0109】
クロック制御回路50に外部から送信要求TXRQが入力されると、クロック制御回路50は、各回路に対して個別にクロックイネーブル信号ENを出力する。CE回路61には、クロックイネーブル信号EN_iが出力され、CE回路71には、クロックイネーブル信号EN_jが出力される。この各クロックイネーブル信号により、フリップフロップ等の内部回路へのクロック信号の供給が制御され。ディセーブルされた場合には、その回路へのクロック供給は停止する。
【0110】
図13は、クロック制御回路50がクロックイネーブル信号を出力するために必要な各回路のデータ処理時間を示すタイミングチャートである。
【0111】
動作分類の項で時間T1では、例えば、図5に示したフレーミング回路8の場合で、この場合にはプリアンブルが出力されるのみであるので、フレーミング回路8のみに対してイネーブル信号を出力し、以外の回路にはイネーブル信号を出力しない。
【0112】
次の時間T2(先の方)では、例えば、図6に示した第2符号化回路30でシグナルフィールドの符号化が実施される場合であるので(但し、プリアンブル出力は継続中)、第2符号化回路30とフレーミング回路8のみに対してイネーブル信号を出力し、第2符号化回路30以外の回路にはイネーブル信号を出力しない。
【0113】
次の時間T2(後の方)では、例えば、図6に示したマッピング回路5、読み出し制御回路6、および、IFFT回路7でシグナルフィールドの符号化とOFDM変調処理が実施される場合であるので(但し、プリアンブル出力は継続中)、マッピング回路5、読み出し制御回路6、IFFT回路7、および、フレーミング回路8のみに対してイネーブル信号を出力し、それ以外の回路にはイネーブル信号を出力しない。なお、IFFT回路7が、図7に示したように、2個の記憶回路を備えて、演算用と出力用に分類できる場合のこの時間では、演算用の記憶回路とその周辺回路のみにイネーブル信号が出力され、演算結果出力用の記憶回路にはイネーブル信号を出力しない。
【0114】
時間T3では、例えば、図1に示したスクランブル回路1および畳み込み回路2で第1の送信データ(DATA#1)の処理が実施され、図7のIFFT回路7の演算結果出力用の記憶回路とフレーミング回路8でシグナルフィールドが処理されるので、この時間では、スクランブル回路1、畳み込み回路2、IFFT回路7の演算用の記憶回路とその周辺回路、および、フレーミング回路8のみにイネーブル信号が出力され、それ以外の回路にはイネーブル信号を出力しない。
【0115】
時間T4では、例えば、図1に示したマッピング回路5、読出制御回路6、および、IFFT回路7の演算用の記憶回路とその周辺回路で第1の送信データ(DATA#1)の処理が実施され、図7のIFFT回路7の演算結果出力用の記憶回路とフレーミング回路8でシグナルフィールドが処理されるので、この時間では、マッピング回路5、読出制御回路6、IFFT回路7、および、フレーミング回路8のみにイネーブル信号が出力され、それ以外の回路にはイネーブル信号を出力しない。
【0116】
その後の時間T3、T4の動作区間については、各回路で処理する送信データの種類は異なっても、クロックの供給制御については同様となる。
【0117】
図14は、図13の時間T1〜T4の動作区間で分類した場合の、各回路へのイネーブル信号が出力される場合を示す図表である。
【0118】
図14の各回路に対応する動作区間T1〜T4以外の時間では、クロック制御回路50がクロックイネーブル信号を出力しない。従って、各回路で図14に示された以外の時間にクロック信号が入力した場合に、従来は消費されていた電力を、本実施の形態では削減して消費電力を改善することができる。
【0119】
このように、本実施の形態では、各回路内にクロック供給切替回路を設けると共に、各回路へのクロック供給を制御する信号を出力するクロック制御回路を設けて、実際に送信データに関する信号処理を実施する回路のみにクロックを供給するように制御するので、信号処理を実施しない回路にクロック信号が入力されることによる電力消費を削減でき、OFDM送信回路の消費電力の効率を改善することができる。
【0120】
実施の形態6.
上記した実施の形態1では、マッピング回路5における入力ビット列から複素データへの変調符号化では、複素データの出力値に対して正規化係数kが乗算されて、各ポイントのレベルが正規化されてからIFFT回路7に出力されていたが、マッピング回路5で正規化係数kを乗算すると、IFFT回路7への入力値は実数の小数(小数点以下の値を有する)になる。IFFT回路7の演算は、実施の形態4に示したように乗算と加算を複数段分繰り返す演算であるので、小数点演算の回数が増えれば増える程、演算時の丸め処理等により演算誤差が蓄積される。従って、演算誤差を減少させるためには、できるだけ整数演算の回数を増やすためにIFFT回路7への入力値は実数の整数であることが望ましい。
【0121】
特に、図8に示した例ではIFFT回路7の入力ポイント数が8ポイントであるため演算が3段階であり、1段目の演算までは、乗算される係数が−1の整数値であるが、残りの2段では小数値になるので後の2段での演算で誤差が蓄積する。さらに、例えば、IFFT回路7の入力ポイント数が64ポイントになると演算が6段階であり、3段目までの演算で乗算される係数が整数値で残りの3段が小数値演算となるため、後の3段での演算誤差が蓄積される。つまり、FFTで多段演算を行う際には、できるだけ整数演算の段数を増やすことによって誤差の蓄積を抑えることができる。
【0122】
また、IFFT回路7の送信データには、従来はパイロットシンボルと称される固定パターンが加算されていた。このパイロットシンボルは、IFFT回路7の入力データが正規化されている場合は整数値が挿入されるが、入力データが正規化されていない場合は実数の小数になる。従って、このパイロットシンボルについても、IFFT回路7への入力値は実数の整数であることが望ましい。
【0123】
そこで、本実施の形態では、マッピング回路5では正規化係数kを乗算せず、IFFT回路7の出力時に正規化係数kを乗算すると共に、パイロットシンボル等の固定パターンについても、IFFT回路7の入力データではなく出力データに加算するようにして、小数演算の丸め処理等による演算誤差を減少させる場合を説明する。
【0124】
図15は、本発明の実施の形態6のIFFT回路の内部構成を示すブロック図である。なお、本実施の形態で、図17に示していない回路は、実施の形態4と同様である。
【0125】
図15のIFFT回路7において、固定パターン記憶回路51は、送信データに加算されるパイロットシンボル等の固定パターンをIFFT演算した結果を格納する。乗算回路52は、出力選択回路からフレーミング回路に出力される演算結果に対して正規化係数を乗算する。加算回路53は、乗算回路52の出力と固定パターン記憶回路51の格納内容を加算する。
【0126】
パイロットシンボルは、データシンボル毎に固定のパターンであるため、これらをIFFT演算した結果も固定値となる。従って、固定パターン記憶回路51は、パイロットシンボル等の固定パターンのIFFT演算結果を格納する。
【0127】
本実施の形態の動作としては、出力選択回路45から演算終了データが出力されると、その演算終了データは乗算回路52に入力され、正規化係数kと乗算される。正規化係数kは、従来のマッピング回路で乗算されていた正規化係数kと同様の値である。
【0128】
乗算回路52の出力は、加算回路53に入力され、固定パターン記憶回路51に格納されていた固定パターンのIFFT演算結果と加算されてから出力される。
【0129】
このように本実施の形態では、マッピング回路5では正規化係数kを乗算せず、IFFT回路7の出力時に正規化係数kを乗算すると共に、パイロットシンボル等の固定パターンについても、IFFT回路7の入力データではなく出力データに加算する構成により、IFFT回路7のバタフライ演算回路41では、整数値のみの入力になり、多段階の演算処理における途中段階までは演算を整数値のみにより実施し、小数値の演算を途中段階からの最小限にして、IFFT演算における丸め誤差等の演算誤差の蓄積を最小限にできるので、演算制度を向上させることができる。
【0130】
実施の形態7.
上記した実施の形態1では、パンクチャ処理により畳み込み符号化後の送信データの容量を削減できることは示したが、回路全体を通して複数ビット処理が首題であるため、その方法については明確に記載していなかった。
【0131】
そこで、以下に示す実施の形態7では、パンクチャ処理の具体例について説明する。
【0132】
図16は、本発明の実施の形態7のデータ記憶回路4の周辺回路構成を示すブロック図である。なお、本実施の形態で、図16に示していない回路は、実施の形態3と同様である。
【0133】
上記した実施の形態1および実施の形態3では、畳み込み符号化回路2にデータ記憶回路4へのインターリーブ方式の書込制御機能を受け持たせていた。本実施の形態では、畳み込み符号化回路2から独立して書込制御回路60を設け、その内部に、インターリーブ方式の書き込みアドレス生成回路62と、パンクチャ制御回路63を備えるようにした。
【0134】
図16に示したように、畳み込み符号化回路2では、複数のmビット単位で入力する送信データを畳み込み符号化して2mビット単位で出力する。データ記憶回路4では、2mビットで出入力する送信データのうち、例えば、同じ内容が繰り返される場合にはその一部のビットを書き込まないように制御するパンクチャ処理を実施することで記憶する容量を削減する。
【0135】
書込制御回路60は、データ記憶回路4に受信した送信データを書き込ませるための制御信号wadr、weを出力し、畳み込み符号化回路2が1データシンボル分の畳み込み符号化した送信データを出力した場合、読出制御回路61に書き込み終了を通知する。
【0136】
書き込みアドレス生成回路62は、畳み込み符号化回路2からデータ記憶回路4に出力される送信データのビット数に対応する数のインターリーブ方式の書き込みアドレスwadrを、データ記憶回路4に出力する。
【0137】
パンクチャ制御回路は、畳み込み符号化回路2からデータ記憶回路4に出力される送信データのビット数に対応する数で、繰り返し部分のビットを削減するための制御信号weを出力する。
【0138】
読出制御回路61は、書き込み終了通知の受信により、畳み込み符号化回路2からデータ記憶回路4に出力される送信データのビット数に対応する数のインターリーブ方式の読み出しアドレスradrを出力する。
【0139】
パンクチャ処理は、例えば、設定された送信レートから一意に決まる符号化率Rにより一部のビットを削減する。畳み込み符号化回路2からデータ記憶回路4に2mビットで送信データが出力されるとすると、パンクチャ処理されてからデータ記憶回路4に書き込まれるビット数nはRx(2m)となる。
【0140】
図17は、畳み込み符号化回路から8ビット単位で出力される場合のパンクチャ処理の一例を示す図である。
【0141】
図17(a)が符号化率が2/3の場合であり、図17(b)が符号化率が3/4の場合である。図中の四角のマスがビットを示し、入力順序に従って図中の網掛けしたマス(ビット)をデータ記憶回路4に書き込まないようにして削減する。
【0142】
図17(a)では、入力する送信データのうち、最初に入力するビットからdt_a[3]とdt_a[4]を書き込まず、次に入力するビットからdt_a[0]とdt_a[5]とdt_a[6]を書き込まず、その次に入力するビットからdt_a[1]とdt_a[2]とdt_a[7]を書き込まないようにして、トータルの符号化率を2/3にしている。
【0143】
図17(b)では、入力する送信データのうち、最初に入力するビットからdt_a[0]とdt_a[4]を書き込まず、次に入力するビットからもdt_a[0]とdt_a[4]を書き込まず、その次に入力するビットからもdt_a[0]とdt_a[4]を書き込まないようにして、トータルの符号化率を3/4にしている。
【0144】
図16のパンクチャ制御回路63からは、データ記憶回路4に対してn本(=k本)の書き込み制御信号(we信号)が出力される。パンクチャ制御回路63は、データ記憶回路4の書き込むビット位置に対応するwe信号をアサートし、削除するビット位置に対応するwe信号をネゲートされることにより、有効なビットのみをデータ記憶回路4に書き込むようにしてパンクチャ処理を制御する。
【0145】
一方、図16の書き込みアドレス生成回路62からも、データ記憶回路4に対してn本(=k本)の書き込みアドレス(wadr信号)が出力されるが、パンクチャ処理によって削除されるビットについては、対応するアドレスが未使用領域のアドレスを出力する。書き込みアドレス生成回路62では、インターリーブ処理後の書き込みアドレスをデータ記憶回路4に出力することで、インターリーブ処理を制御する。インターリーブはデータフィールドのデータシンボル単位で実行されるため、入力するデータの順序からデータシンボル単位で書き込みアドレスが生成される。
【0146】
また、読出制御回路61からも、データ記憶回路4に対してn本(=k本)の読み出しアドレス(radr信号)が出力されるが、上記したように本実施の形態のデータ記憶回路4には、パンクチャ処理とインターリーブ処理が完了した状態で送信データ書き込まれるため、読み出し制御回路61では、単純にアドレスの並び順序で書き込まれたデータを読み出す処理で良い。仮に、書き込み時にインターリーブ処理が完了していない場合には、読み出し時にインターリーブ処理を実施した読み出しアドレスを出力する。
【0147】
但し、読出制御回路61は、後段のマッピング回路5が複数のk個単位でデータを同時に変調符号化するため、k個のアドレスを同時に読み出す必要がある。また、読出制御回路61は、書込制御回路60がデータ記憶回路4にデータシンボル単位でデータの書き込みを終了した時点で、書込制御回路60から書き込み完了信号(フラグ)WREFを受信して読み出しアドレスを出力する。
【0148】
このように、本実施の形態では、畳み込み符号化された送信データがデータ記憶回路に書き込まれる際にパンクチャ処理を実施するので、読み出し側で実施する場合よりもデータ記憶回路の記憶容量を削減することができ、また、畳み込み符号化された送信データがデータ記憶回路に書き込まれる際にデータのインターリーブ処理も実施するので、送信レートによって同時に読み出すビット数が異なる読み出し側の制御を簡易化することができ、回路規模を削減することができる。
【0149】
実施の形態8.
上記した実施の形態1では、スクランブル回路1への入力からIFFT回路7までの全回路ブロックについて複数ビット単位の処理を可能にして、送信データの入力からOFDM変調信号の出力までの処理時間を短縮させたが、入力データに対して複数ビット単位で処理を実施する場合、例えば、送信レートが設定されているのに、1シンボルを生成するために必要なデータ長が、処理単位のビット数で割り切れない場合がある。
【0150】
例えば、IEEE802.11a勧告で規定されている無線LANで使用されるOFDM変調符号方式で8ビット単位に処理する回路を構成した場合には、送信レートについては9Mbit/sに設定される場合がある。この場合、1シンボルあたりのデータ長は36ビットに規定されるため、処理単位の8ビットでは割り切れなくなる。他のレート設定の動作モードでは、全て8ビットの倍数となるので、8ビットの処理単位で割り切れるので、8ビットで割り切れない場合の動作モードでは、符号化処理回路を変更する必要がある。
【0151】
そこで、以下に示す実施の形態8では、送信レートが処理単位では割り切れない場合でも、符号化処理回路を変更する必要がないOFDM送信装置の回路構成について説明する。
【0152】
図18は、本発明の実施の形態8のデータ記憶回路4の周辺回路構成を示すブロック図である。なお、本実施の形態で、図18に示していない回路は、実施の形態7と同様である。
【0153】
本実施の形態では、実施の形態7と比較して、畳み込み符号化回路2とデータ記憶回路4の間の接続と並列に、1個のデータシンボルのビット数が畳み込み符号化回路2の符号化ビット数で割り切れない場合に、データシンボルのビット数よりも大きい符号化ビット数の倍数からデータシンボルのビット数を減算した残りのビット数の送信データを格納するビット保持回路71を設けている。また、パンクチャ制御回路73は、ビット保持回路71からデータ記憶回路4に出力される送信データのビット数に対応する数で、繰り返し部分のビットを削減するための制御信号bwe74を出力する。
【0154】
送信ブロックへのデータ入力条件として、例えば、1シンボルあたりのデータ量が36ビットの場合、各回路に8ビット単位でデータを入力するためには、最初のシンボルに対するデータを40ビット単位で畳み込み符号化回路2からデータ記憶回路4に入力し、次のシンボルに対するデータを32ビット単位に入力する作業を繰り返す。すなわち、例えば、奇数番目のシンボルに対するデータは40ビット単位、偶数番目のシンボルに対するデータは32ビット単位で、畳み込み符号化回路2からデータ記憶回路4に入力する。
【0155】
図19は、送信レートが処理単位では割り切れない場合の本実施の形態のデータ入力動作を示す図である。
【0156】
図19(a)は、奇数番目の40ビット単位のデータOD1をデータ記憶回路4に入力する場合で、先の36ビットについてはデータ記憶回路4に格納し、最後の4ビットOD1Eについては、ビット保持回路71に格納する。
【0157】
図19(b)は、次の、偶数番目の32ビット単位のデータを入力する場合で、先にビット保持回路71から格納しておいた4ビットのOD1Eを読み出してから、32ビット単位のデータEV1を入力する。これにより、データ記憶回路4に格納して出力されるビット数は、奇数番目も偶数番目も36ビットになる。
【0158】
ビット保持回路71からデータ記憶回路4へのデータ書き込み時のパンクチャ制御は、パンクチャ制御回路73に追加した書き込み制御信号bwe74を使用し、ビット保持回路71からデータ記憶回路4へのデータのうち、アサートされたビットのみに書き込み制御信号bweを出力してデータ記憶回路4に書き込む。
【0159】
このように、本実施の形態では、畳み込み符号化回路2とデータ記憶回路4の間の接続と並列に、1個のデータシンボルのビット数が畳み込み符号化回路2の符号化ビット数で割り切れない場合に、データシンボルのビット数よりも大きい符号化ビット数の倍数からデータシンボルのビット数を減算した残りのビット数の送信データを格納するビット保持回路71を設け、パンクチャ制御回路73は、ビット保持回路71からデータ記憶回路4に出力される送信データのビット数に対応する数で、繰り返し部分のビットを削減するための制御信号bwe74を出力するようにしたので、送信レートが処理単位では割り切れない場合でも、特殊な処理を実施する回路が必要ないので、符号化処理回路を変更する必要がなく、回路規模の増大を抑制できる。
【0160】
なお、上記した実施の形態4および6では、IFFT回路7の内部構成を説明したが、本発明はこれに限られるものではなく、例えば、一般の信号処理に利用される高速逆フーリエ変換の回路に適用しても良い。
【0161】
また、実施の形態5では、各回路ブロック毎に動作時間を区分して動作する回路のみにクロックを供給するようにしたが、本発明はこれに限られるものではなく、例えば、さらに細かい回路分類および時間区分によりクロックを細分制御して供給するように構成しても良い。
【0162】
【発明の効果】
上記のようにスクランブル回路への入力からIFFT回路までの全回路ブロックについて複数ビット単位の処理を可能にした本発明では、送信データの入力からOFDM変調信号の出力までの処理時間を短縮させることができる。
【0163】
また、データ記憶回路に入力する送信データを複数ビット単位のパラレル転送にでき、データ記憶回路から出力する送信データは複数ビット単位の複数個の送信データにできる本発明では、インターリーブ処理を実施する場合でも記憶容量を増加させる必要が無くなり、ハードウエアの設置スペースおよびコストを抑制することができる。
【0164】
また、フレーミング回路内にショートプリアンブル記憶回路とロングプリアンブル記憶回路を設け、予めショートプリアンブルとロングプリアンブルの内容を格納しておき、ショートプリアンブルとロングプリアンブルを出力させるタイミングでは、記憶回路から読み出した内容を出力するようにした本発明では、プリアンブル出力時のIFFT回路の演算を不要にでき、IFFT回路の演算量を減少させ、消費電力を抑制することができる。
【0165】
また、シグナルフィールドの送信データを畳み込み符号化処理するために回路規模を縮小した第2符号化回路と出力セレクタを設けた本発明では、シグナルフィールドの送信データを畳み込み符号化処理する際の消費電力を抑制することができる。
【0166】
また、演算用と演算結果出力用で2個の記憶回路を設けると共に、入力側と出力側に切り替え手段を設けて時分割に切替制御することで、IFFT演算に使用する記憶回路を効率的に割り振る本発明では、記憶回路を1個のままで時分割でなく制御する場合に比べて、無駄な記憶容量や記憶回路の空き時間を削減でき、記憶容量を縮小させることができる。また、さらに、OFDM変調処理時間を短くでき、全てのデータ長の送信データに対応でき、後段の処理回路のデータ入力速度に容易に対応することができる。
【0167】
また、各回路内にクロック供給切替回路を設けると共に、各回路へのクロック供給を制御する信号を出力するクロック制御回路を設けて、実際に送信データに関する信号処理を実施する回路のみにクロックを供給するように制御する本発明では、信号処理を実施しない回路にクロック信号が入力されることによる電力消費を削減でき、OFDM送信回路の消費電力の効率を改善することができる。
【0168】
また、マッピング回路では正規化係数を乗算せず、IFFT回路の出力時に正規化係数を乗算すると共に、パイロットシンボル等の固定パターンについても、IFFT回路の入力データではなく出力データに加算する構成にした本発明では、IFFT回路のバタフライ演算回路では、整数値のみの入力になり、多段階の演算処理における途中段階までは演算を整数値のみにより実施し、小数値の演算を途中段階からの最小限にして、IFFT演算における丸め誤差等の演算誤差の蓄積を最小限にできるので、演算制度を向上させることができる。
【0169】
また、畳み込み符号化された送信データがデータ記憶回路に書き込まれる際にパンクチャ処理を実施し、畳み込み符号化された送信データがデータ記憶回路に書き込まれる際にデータのインターリーブ処理も実施する本発明では、読み出し側で実施する場合よりもデータ記憶回路の記憶容量を削減することができ、送信レートによって同時に読み出すビット数が異なる読み出し側の制御を簡易化することができ、回路規模を削減することができる。
【0170】
また、畳み込み符号化回路とデータ記憶回路の間の接続と並列に、1個のデータシンボルのビット数が畳み込み符号化回路の符号化ビット数で割り切れない場合に、データシンボルのビット数よりも大きい符号化ビット数の倍数からデータシンボルのビット数を減算した残りのビット数の送信データを格納するビット保持回路を設け、パンクチャ制御回路は、ビット保持回路からデータ記憶回路に出力される送信データのビット数に対応する数で、繰り返し部分のビットを削減するための制御信号を出力する本発明では、送信レートが処理単位では割り切れない場合でも、特殊な処理を実施する回路が必要ないので、符号化処理回路を変更する必要がなく、回路規模の増大を抑制できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のOFDM送信装置の構成を示すブロック図である。
【図2】 図1のフレーミング回路で構成されるOFDMフレームのフレーム構成を示すタイミングチャートである。
【図3】 16QAMを使用し4ビット単位で入力した送信データを複素データへの変換をする場合を示す図である。
【図4】 16QAMを使用し4ビット単位で入力した送信データを複素データへの変換をする場合を示す図である。
【図5】 本発明の実施の形態2のフレーミング回路の内部構成を示すブロック図である。
【図6】 本発明の実施の形態3のOFDM送信回路の構成を示すブロック図である。
【図7】 本発明の実施の形態4のIFFT回路の内部構成を示すブロック図である。
【図8】 バタフライ演算回路の演算内容について8ポイント入力のバタフライ演算回路の演算内容を示した図である。
【図9】 (a)はセレクタ信号により複素データ形式の送信データを第1記憶回路か第2記憶回路に選択して書き込む場合の図表を示し、(b)は切替制御信号により複素データ形式で第1記憶回路から出力される送信データと複素データ形式で第2記憶回路から出力される送信データをバタフライ演算回路への入力端子か演算結果の出力端子に選択して出力する場合の図表を示した。
【図10】 (a)はセレクタ信号を示すタイミングチャートであり、(b)は切替制御信号を示すタイミングチャートであり、(c)は第1記憶回路の出力先を示すタイミングチャートであり、(d)は第2記憶回路の出力先を示すタイミングチャートである。
【図11】 本発明の実施の形態5のOFDM送信回路の構成を示すブロック図である。
【図12】 各回路内のクロック供給状況を概略的に示す図である。
【図13】 クロック制御回路がクロックイネーブル信号を出力するために必要な各回路のデータ処理時間を示すタイミングチャートである。
【図14】 図13の時間T1〜T4の動作区間で分類した場合の各回路へのイネーブル信号が出力される場合を示す図表である。
【図15】 本発明の実施の形態6のIFFT回路の内部構成を示すブロック図である。
【図16】 本発明の実施の形態7のデータ記憶回路の周辺回路構成を示すブロック図である。
【図17】 (a)、(b)は畳み込み符号化回路から8ビット単位で出力される場合のパンクチャ処理の一例を示す図である。
【図18】 本発明の実施の形態8のデータ記憶回路の周辺回路構成を示すブロック図である。
【図19】 (a)、(b)は送信レートが処理単位では割り切れない場合の本実施の形態のデータ入力動作を示す図である。
【図20】 IEEE802.11a−1999勧告により示された構成を示す図である。
【図21】 図20の点線内を具体的な回路ブロックで示した図である。
【符号の説明】
1 (mビット)スクランブル回路、 2 (mビット)畳み込み符号化回路、 3 送信受付回路、 4 (nビット)データ記憶回路、 5 マッピング(符号化)回路、 6 読出制御回路、 7 IFFT(高速逆フーリエ変換)回路、 8 フレーミング回路。

Claims (15)

  1. m(m>1の整数)ビット単位で入力する送信データに対して並列にスクランブル処理するスクランブル回路と、
    前記mビット単位の送信データに対して並列に畳み込み符号化し、2mビット単位で出力する畳み込み符号化回路と、
    前記2mビット単位で受信した送信データを少なくとも1シンボル分同時に書き込み、複数の読み出しアドレスが入力されることで同時に複数の送信データを読み出すデータ記憶回路と、
    データ記憶回路から読み出された各送信データを、並列に符号化し、複素データ化して出力するマッピング回路と、
    符号化および複素データ化された各送信データを、高速逆フーリエ変換(IFFT)してOFDM変調するIFFT回路と
    を備えることを特徴とするOFDM送信装置。
  2. 請求項1に記載したOFDM送信装置において、
    前記データ記憶回路に対して、送信レートにより異なる送信データのパターンに従い、複数の送信データをインターリーブ方式で読み出すための複数の読み出しアドレスを出力する読出制御回路
    をさらに備えることを特徴とするOFDM送信装置。
  3. 請求項2に記載したOFDM送信装置において、
    送信データの送信パラメータを格納するパラメータ設定レジスタを有し、
    送信要求および送信パラメータを外部回路から受信し、前記スクランブル回路で入力した送信データに対する処理の準備が終了する毎に、外部回路に1データシンボル分の送信データの入力を要求し、
    送信パラメータをmビット単位で前記畳み込み符号化回路に出力すると共に、送信レートを前記畳み込み符号化回路、前記マッピング回路、および、前記読出制御回路に出力する送信受付回路
    をさらに備えることを特徴とするOFDM送信装置。
  4. 請求項2または3に記載したOFDM送信装置において、
    前記データ記憶回路は、前記2mビット単位で受信した送信データを、送信レートにより送信データの所定のビット位置のデータを削減し、n(n≦2m)ビット単位で書き込む
    ことを特徴とするOFDM送信装置。
  5. 請求項2〜4の何れかに記載したOFDM送信装置において、
    前記畳み込み符号化回路は、1データシンボル分の畳み込み符号化した送信データを出力した場合、前記読出制御回路に書き込み終了を通知し、
    前記読出制御回路は、該書き込み終了通知の受信により、前記読み出しアドレスを出力する
    ことを特徴とするOFDM送信装置。
  6. 請求項2〜5の何れかに記載したOFDM送信装置において、
    前記読出制御回路は、前記データ記憶回路から送信データを読み出す際に、読み出しアドレスを制御して前記所定のビット位置のデータを読み出さない
    ことを特徴とするOFDM送信装置。
  7. 請求項1に記載したOFDM送信装置において、
    前記IFFT回路でOFDM変調された各送信データに対し、各シンボルの間隔および各データシンボル波形を補正し、所定の順に出力することでOFDMフレームを生成するフレーミング回路をさらに備え、
    該フレーミング回路は、
    OFDMフレームを生成する際に付加される固定パターンを格納するフレーミング用固定パターン記憶回路と、
    該固定パターン記憶回路の格納内容と、前記IFFT回路の出力内容とを選択して出力する出力セレクタと
    を有することを特徴とするOFDM送信装置。
  8. 請求項7に記載したOFDM送信装置において、
    前記フレーミング用固定パターン記憶回路は、ショートプリアンブル用記憶回路およびロングプリアンブル用記憶回路
    を有することを特徴とするOFDM送信装置。
  9. 請求項1に記載したOFDM送信装置において、
    第2の畳み込み符号化回路、第2のデータ記憶回路、および、第2の読出制御回路からなる第2符号化回路と、
    前記データ記憶回路の出力と、前記第2のデータ記憶回路の出力から一方の出力を選択する出力セレクタをさらに備え、
    前記送信受付回路は、前記送信パラメータを、前記畳み込み符号化回路に代えて、第2符号化回路内の第2の畳み込み符号化回路に送出し、
    前記第2のデータ記憶回路は、前記データ記憶回路から同時に読み出される複数の送信データと同数の送信データを同時に読み出す
    ことを特徴とするOFDM送信装置。
  10. 請求項1に記載したOFDM送信装置において、
    前記IFFT回路は、
    前記各送信データに対する多段階のIFFT演算の何れか段階の演算結果を格納する第1記憶回路および第2記憶回路と、
    前記第1記憶回路および第2記憶回路を選択して、前記何れかの段階の演算結果または演算前の送信データを入力する記憶回路選択回路と、
    前記第1記憶回路および第2記憶回路の出力に対して、次段階のIFFT演算を実施するか、あるいは、フレーミング回路に出力するかを選択する出力選択回路
    を有することを特徴とするOFDM送信装置。
  11. 請求項1〜10の何れかに記載したOFDM送信装置において、
    少なくとも前記スクランブル回路、前記畳み込み符号化回路、前記データ記憶回路、前記マッピング回路、および、前記IFFT回路の各クロック入力部に配置されるクロック入力切り替え回路と、
    前記各クロック入力切り替え回路に入力切り替え指示を出力するクロック制御回路
    を備えることを特徴とするOFDM送信装置。
  12. 請求項10に記載したOFDM送信装置において、
    前記IFFT回路は、
    送信データに加算される固定パターンをIFFT演算した演算結果を格納するIFFT用固定パターン記憶回路と、
    前記出力選択回路からフレーミング回路に出力される演算結果に対して正規化係数を乗算する乗算回路と、
    前記乗算回路の出力とIFFT用固定パターン記憶回路の格納内容を加算する加算回路
    を有することを特徴とするOFDM送信装置。
  13. 請求項4に記載したOFDM送信装置において、
    前記データ記憶回路に受信した送信データを書き込ませるための制御信号を出力し、畳み込み符号化回路が1データシンボル分の畳み込み符号化した送信データを出力した場合、前記読出制御回路に書き込み終了を通知する書込制御回路を設け、
    該書込制御回路は、
    前記畳み込み符号化回路から前記データ記憶回路に出力される送信データのビット数に対応する数のインターリーブ方式の書き込みアドレスを、前記データ記憶回路に出力する書き込みアドレス生成回路と、
    前記畳み込み符号化回路から前記データ記憶回路に出力される送信データのビット数を削減するための制御信号を出力するパンクチャ制御回路
    を有し、
    前記読出制御回路は、前記書き込み終了通知の受信により、前記畳み込み符号化回路から前記データ記憶回路に出力される送信データのビット数に対応する数のインターリーブ方式の前記読み出しアドレスを出力する
    ことを特徴とするOFDM送信装置。
  14. 請求項13に記載したOFDM送信装置において、
    前記畳み込み符号化回路とデータ記憶回路の間の接続と並列に、1個のデータシンボルのビット数が畳み込み符号化回路の符号化ビット数で割り切れない場合に、データシンボルのビット数よりも大きい符号化ビット数の倍数からデータシンボルのビット数を減算した残りのビット数の送信データを格納するビット保持回路を設け、
    前記パンクチャ制御回路は、前記ビット保持回路から前記データ記憶回路に出力される送信データについて、所定のビット位置のデータを削減するための制御信号を出力する
    ことを特徴とするOFDM送信装置。
  15. 請求項1〜14の何れかに記載したOFDM送信装置において、
    前記マッピング回路は、各送信データの符号化を、送信レートにより異なる変調方式を用いて行う
    ことを特徴とするOFDM送信装置。
JP2002220691A 2002-07-30 2002-07-30 Ofdm送信装置 Expired - Fee Related JP4024102B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220691A JP4024102B2 (ja) 2002-07-30 2002-07-30 Ofdm送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220691A JP4024102B2 (ja) 2002-07-30 2002-07-30 Ofdm送信装置

Publications (2)

Publication Number Publication Date
JP2004064466A JP2004064466A (ja) 2004-02-26
JP4024102B2 true JP4024102B2 (ja) 2007-12-19

Family

ID=31941213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220691A Expired - Fee Related JP4024102B2 (ja) 2002-07-30 2002-07-30 Ofdm送信装置

Country Status (1)

Country Link
JP (1) JP4024102B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508884B2 (en) * 2005-03-24 2009-03-24 Harris Corporation System and method for communicating data using constant amplitude equalized waveform
US8543629B2 (en) * 2006-04-04 2013-09-24 Qualcomm Incorporated IFFT processing in wireless communications
US8612504B2 (en) 2006-04-04 2013-12-17 Qualcomm Incorporated IFFT processing in wireless communications
JP4930006B2 (ja) * 2006-11-22 2012-05-09 日本電気株式会社 移動通信装置、移動通信システム及びそれに用いる消費電力削減方法
JP5041851B2 (ja) * 2007-04-02 2012-10-03 三菱電機株式会社 データ送信装置、データ受信装置及びofdm通信システム
JP6132331B2 (ja) * 2013-01-23 2017-05-24 Necプラットフォームズ株式会社 マッピング装置及び方法

Also Published As

Publication number Publication date
JP2004064466A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3612023B2 (ja) 通信システムのインターリビング/ディインターリビング装置及び方法
JP5253094B2 (ja) データ処理装置及び方法
JP3415693B2 (ja) インターリーブプロセス
JP4391703B2 (ja) 直交送信ダイバーシチおよびマルチキャリアcdma通信システム用のインタリーブ方法および装置
USRE44232E1 (en) OFDM transmission apparatus and method having minimal transmission delay
US8132076B1 (en) Method and apparatus for interleaving portions of a data block in a communication system
CN111327400B (zh) 基于ofdm的高速无线通信物理层发射信号产生方法及系统
US7594160B2 (en) Apparatus and method for receiving signal in a communication system
JP4024102B2 (ja) Ofdm送信装置
US7069398B2 (en) Apparatus and method for de-interleaving the interleaved data in a coded orthogonal frequency division multiplexing receiver
US20090013136A1 (en) De-Interleaving and Interleaving for Data Processing
US6035434A (en) System and method for bit interleaving of half-rate speech data
EP1805959A1 (en) Successive method for selected mapping in multi-carrier system
Iqbal et al. Efficient interleaver design for MIMO-OFDM based communication systems on FPGA
US6101465A (en) System and method for bit interleaving of full-rate speech data
US8880846B2 (en) Semiconductor device
JP2007329592A (ja) インタリーブ装置及び通信装置
US6067330A (en) Demodulation method and demodulation apparatus
Liang Combining block-coded modulation codes and improved constellation extended schemes to reduce peak-to-average power ratio in orthogonal frequency-division multiplexing systems
CN116707702A (zh) 基于fpga的lte-v收端cch信道解速率匹配的系统及方法
JP2001136497A (ja) デジタル放送送信機及び受信機
CN110383785B (zh) 在dvb-t2接收机中执行二进制数据流的时域去交织的装置
JPH11298436A (ja) 変調方法、変調装置、復調方法及び復調装置
KR100739197B1 (ko) 디지털 오디오 방송에서의 주파수 디인터리빙 장치
JP2002026859A (ja) Ofdm信号復調装置およびofdm信号変調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees