JP4019566B2 - Electric power steering motor core - Google Patents

Electric power steering motor core Download PDF

Info

Publication number
JP4019566B2
JP4019566B2 JP23781699A JP23781699A JP4019566B2 JP 4019566 B2 JP4019566 B2 JP 4019566B2 JP 23781699 A JP23781699 A JP 23781699A JP 23781699 A JP23781699 A JP 23781699A JP 4019566 B2 JP4019566 B2 JP 4019566B2
Authority
JP
Japan
Prior art keywords
less
power steering
electric power
hysteresis loss
motor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23781699A
Other languages
Japanese (ja)
Other versions
JP2001064756A (en
Inventor
善彦 尾田
昭 日裏
孝 寒川
義彦 小野
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23781699A priority Critical patent/JP4019566B2/en
Publication of JP2001064756A publication Critical patent/JP2001064756A/en
Application granted granted Critical
Publication of JP4019566B2 publication Critical patent/JP4019566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のパワーステアリングシステムにおける、電動パワーステアリングモータコに関するものである。
【0002】
【従来の技術】
自動車のパワーステアリングシステムは、自動車の消費エネルギーの3〜5%を占め、エアコンと並んでエネルギー消費の多い装置である。従来のパワーステアリングシステムは油圧により操舵を補助していたが、本システムでは油圧ポンプが常にエンジンにより駆動されているため、直進走行時にもエネルギーが消費されるという問題があった。この無駄を解消するため、モータにより操舵を補助する電動パワーステアリング(以下、EPSと略す)システムが開発されている。EPSシステムではコーナリング時等の操舵補助が必要なときのみモータに電流を流しパワーをアシストするため、油圧システムに比べ燃費が2〜3%程度向上する。
【0003】
【発明が解決しようとする課題】
ところで、このようなEPSシステムにおいては、小型、高トルクの観点から永久磁石を使用するPMモータが使用されている。しかし、PMモータでは操舵後、比較的大きなロストルクが生じることから、旋回後直進状態になるまでに時間遅れが発生し、このため操舵感が油圧方式に比べ劣るという問題があった。
【0004】
本発明はこのような問題点を解決するためになされたもので、ロストルクが小さ、電動パワーステアリングモータコを提供することを課題とする。
【0005】
【課題を解決するための手段】
前記課題は、以下に示す明によって解決される。
【0006】
発明は、永久磁石を使用する電動パワーステアリングモータコアであって、そのモータコア材として、重量%でC:0.005%以下、Si:4.0%以下、Al:1.0%以下、S:0.02%以下、Mn:0.05〜1.5%、P:0.2%以下、N:0.005%以下、Ti:0.0020%以下を含有し、残部Feおよび不可避的不純物からなり、ヒステリシス損が0.053J/kg以下である鋼板を用いた電動パワーステアリングモータコである。
【0008】
明細書において、鋼の成分を示す%はすべて重量%であり、ppmも重量ppmである。
【0009】
【発明の実施の形態】
本発明者らがEPSモータコア材として好適な材料すなわちロストルクが小さい材料について検討した結果、このロストルクは機械損とコア材料のヒステリシス損に起因することを見いだした。さらにEPSモータコア材としてヒステリシス損の低い材料について検討を進めた結果、無方向性珪素鋼板が最適であり、特にTiを低減した鋼板を用いることで良好なヒステリシス特性を有する材料が得られること、また、その鋼板を製造するに際しては、前記鋼板に仕上焼鈍を施した後、720℃〜900℃の温度で磁性焼鈍を施すことがヒステリシス特性を向上する上で非常に有効なことを見いだした。
【0010】
以下、本発明に至る経緯を実験結果に基づいて詳細に説明する。
最初に、ヒステリシス損に及ぼすTiの影響を調査するため、C:0.0025%、Si:0.25%、Mn:0.25%、P:0.01%、Al=0.25%、S=0.004%、N=0.0021%とし、Ti量を30ppm以下の範囲で変化させた鋼をラボ溶解し、熱延後、酸洗を行った。その後、板厚0.50mmまで冷間圧延し、10%H2-90%N2雰囲気で780℃×1min間の仕上焼鈍を行い、さらに750℃×2hrの磁性焼鈍を施した。図1に、このようにして得られたサンプルのTi量と1.5Tまで磁化した場合の周波数1Hz当たりのヒステリシス損の関係を示す。ここで磁気特性の測定は25cmエプスタイン法にて行い、ヒステリシス損は50、60Hzの鉄損より2周波法にて計算した。
【0011】
図1より、Tiが20ppm以下でヒステリシス損が大幅に低下することがわかる。この原因を調査するため、鋼板の組織観察を光学顕微鏡にて行ったところTiが20ppm超の材料では結晶粒径が微細となっていた。これはTi系の炭窒化物の析出により磁性焼鈍時の粒成長性が阻害されたためと考えられる。以上より、本発明ではTiを20ppm以下とする。
【0012】
次に適正磁性焼鈍温度について調査するため C:0.0020%、Si:0.24%、Mn:0.25%、P:0.01%、Al=0.25%、S=0.004%、N=0.0018%、Ti=0.001%とした鋼をラボ溶解し、熱延後、酸洗を行った。その後、板厚0.50mmまで冷間圧延し、10%H2-90%N2雰囲気で780℃×1min間の仕上焼鈍を行い、さらに650℃〜950℃×2hrの磁性焼鈍を施した。図2に、このようにして得られたサンプルの磁性焼鈍温度と1.5Tまで磁化した場合の周波数1Hz当たりのヒステリシス損の関係を示す。図2において、磁気特性の測定およびヒステリシス損の計算は図1と同様の方法で行った。
【0013】
これより、磁性焼鈍温度720℃以上でヒステリシス損が低下することがわかる。これは、磁性焼鈍により打ち抜き時の歪みが解放されるためと、結晶粒の粗大化が生じるためである。一方、磁性焼鈍温度が900℃超えとなるとヒステリシス損が増大する。これはαγ変態点に近づき、磁気特性が劣化するためである。以上より、磁性焼鈍温度は720℃以上900℃以下とする。
【0014】
次に、その他の成分の限定理由について説明する。
Cは0.005%超えでは磁束密度が低下し、EPSモータを駆動する際のトルクが低下するため0.005%以下とする。なおモータ駆動時のトルクとはモータに電流を流している際のトルクである。
【0015】
Siは鋼板の固有抵抗を上げるために有効な元素であるが、4.0%を超えると磁束密度が低下しEPSモータを駆動する際のトルクが低下するため上限を4.0%とした。
【0016】
AlはSiと同様、固有抵抗を上げるために有効な元素であるが、1.0%を超えると磁束密度が低下しEPSモータを駆動する際のトルクが低下するため上限を1.0%とした。
【0017】
Mnは熱間圧延時の赤熱脆性を防止するために、0.05%以上必要であるが、1.5%超えになると磁束密度を低下しEPSモータを駆動する際のトルクが低下するため0.05〜1.5%とした。
【0018】
Pは鋼板の打ち抜き性を改善するために必要な元素であるが、0.2%を超えて添加すると鋼板が脆化するため0.2%以下とした。
【0019】
Nは0.005%超えになると磁束密度が低下しEPSモータ駆動時のトルクが低下するため0.005%以下とする。
【0020】
次に製造方法について説明する。
転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要はなく、通常でかまわない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。次いで一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、仕上焼鈍を行い、さらに磁性焼鈍を行う。720℃〜900℃の温度で磁性焼鈍を行うことにより本発明の鋼板を得ることができる。
【0021】
【実施例】
転炉で吹練した溶鋼を脱ガス処理し表1の成分に調整後鋳造し、スラブを1150℃で1hr加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は700℃とした。その後、板厚0.50mmまで冷間圧延を行い、表1に示す仕上焼鈍条件および磁性焼鈍条件で焼鈍を行った。
【0022】
磁気特性の測定は25cmエプスタイン法にて行った。ヒステリシス損は、1.5Tまで磁化した場合の周波数1Hz当たりのヒステリシス損とし、エプスタイン法にて得られた50、60Hzの鉄損より2周波法にて計算して評価した。各鋼板の磁気特性を表1に併せて示す。
【0023】
【表1】

Figure 0004019566
【0024】
これより、成分、磁性焼鈍温度を本発明の範囲に制御したNo.1〜No.3の本発明例による鋼板においては、ヒステリシス損が低く磁束密度が高い鋼板が得られている事が分かる。
【0025】
これに対し、No.4の比較例による鋼板はTiの量が、本発明の範囲を外れているので、ヒステリシス損が高くなっている。No.5の比較例による鋼板は磁性焼鈍温度が、本発明の範囲を外れ低くなっているので、ヒステリシス損が高くなっている。No.6の比較例による鋼板は磁性焼鈍温度が、本発明の範囲を外れ高くなっているので、ヒステリシス損が高くかつ磁束密度が低くなっている。
【0026】
また、No.7の比較例による鋼板はCの量が、No.8の比較例による鋼板はSiの量が、No.9の比較例による鋼板はMnの量が、No.10の比較例による鋼板はNの量が、No.11の比較例による鋼板はAlの量が、それぞれ本発明の範囲を外れているので、磁束密度が低くなっている。
【0027】
【発明の効果】
以上述べたように、本発明によればヒステリシス損の低い鋼板を得ることができ、EPSモータのロストルク低減に効果的な電動パワーステアリングモータコを得ることができる。
【0028】
さらに、高磁束密度が得られるので、モータ駆動時に高トルクが得られ操舵性にも優れる。
【図面の簡単な説明】
【図1】 Ti量とヒステリシス損との関係を示す図である。
【図2】磁性焼鈍温度とヒステリシス損との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention, in an automotive power steering system, the present invention relates to an electric power steering motor core.
[0002]
[Prior art]
The power steering system for automobiles accounts for 3 to 5% of the energy consumption of automobiles and is a device with high energy consumption along with air conditioners. The conventional power steering system assists steering by hydraulic pressure. However, in this system, since the hydraulic pump is always driven by the engine, there is a problem in that energy is consumed even when traveling straight ahead. In order to eliminate this waste, an electric power steering (hereinafter abbreviated as EPS) system that assists steering by a motor has been developed. The EPS system assists the power by supplying current to the motor only when steering assistance is required, such as during cornering, so fuel efficiency is improved by 2-3% compared to the hydraulic system.
[0003]
[Problems to be solved by the invention]
By the way, in such an EPS system, a PM motor using a permanent magnet is used from the viewpoint of small size and high torque. However, since a relatively large loss torque occurs after steering in the PM motor, there is a problem that a time delay occurs until the vehicle goes straight after turning, and the steering feeling is inferior to that of the hydraulic system.
[0004]
The present invention has been made in order to solve these problems, the loss torque is less, and to provide an electric power steering motor core.
[0005]
[Means for Solving the Problems]
This object is achieved by the inventions described below.
[0006]
The present invention relates to an electric power steering motor core using a permanent magnet, and as the motor core material , C: 0.005% or less, Si: 4.0% or less, Al: 1.0% or less, S: 0.02% or less, Mn : 0.05-1.5%, P: 0.2% or less, N: 0.005% or less, Ti: 0.0020% or less, steel sheet consisting of remaining Fe and inevitable impurities and having a hysteresis loss of 0.053 J / kg or less it is an electric power steering motor core.
[0008]
In the present specification, all the percentages indicating the components of steel are% by weight, and ppm is also ppm by weight.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying a material suitable for the EPS motor core material, that is, a material having a small loss torque, the present inventors have found that this loss torque is caused by a mechanical loss and a hysteresis loss of the core material. Furthermore, as a result of studying a material with low hysteresis loss as an EPS motor core material, a non-oriented silicon steel sheet is optimal, and in particular, a material having good hysteresis characteristics can be obtained by using a steel sheet with reduced Ti. In the production of the steel sheet, it was found that it is very effective to improve the hysteresis characteristics by subjecting the steel sheet to finish annealing and then performing magnetic annealing at a temperature of 720 ° C. to 900 ° C.
[0010]
Hereinafter, the background to the present invention will be described in detail based on experimental results.
First, in order to investigate the effect of Ti on hysteresis loss, C: 0.0025%, Si: 0.25%, Mn: 0.25%, P: 0.01%, Al = 0.25%, S = 0.004%, N = 0.0021% The steel with the Ti content changed within the range of 30 ppm or less was melted in the laboratory, and hot pickled and then pickled. Thereafter, it was cold-rolled to a sheet thickness of 0.50 mm, subjected to finish annealing at 780 ° C. × 1 min in a 10% H 2 -90% N 2 atmosphere, and further subjected to magnetic annealing at 750 ° C. × 2 hours. FIG. 1 shows the relationship between the amount of Ti of the sample thus obtained and the hysteresis loss per 1 Hz frequency when magnetized to 1.5T. Here, the magnetic properties were measured by the 25 cm Epstein method, and the hysteresis loss was calculated by the two-frequency method from the iron loss at 50 and 60 Hz.
[0011]
From FIG. 1, it can be seen that the hysteresis loss is significantly reduced when Ti is 20 ppm or less. In order to investigate this cause, the structure of the steel sheet was observed with an optical microscope, and the crystal grain size was fine in the material with Ti over 20 ppm. This is thought to be because the grain growth during magnetic annealing was inhibited by the precipitation of Ti-based carbonitrides. From the above, in the present invention, Ti is set to 20 ppm or less.
[0012]
Next, to investigate the proper magnetic annealing temperature, C: 0.0020%, Si: 0.24%, Mn: 0.25%, P: 0.01%, Al = 0.25%, S = 0.004%, N = 0.0018%, Ti = 0.001% The obtained steel was melted in the laboratory, and pickled after hot rolling. Thereafter, it was cold-rolled to a thickness of 0.50 mm, subjected to finish annealing at 780 ° C. for 1 min in a 10% H 2 -90% N 2 atmosphere, and further subjected to magnetic annealing at 650 ° C. to 950 ° C. × 2 hr. FIG. 2 shows the relationship between the magnetic annealing temperature of the sample thus obtained and the hysteresis loss per 1 Hz frequency when magnetized to 1.5T. In FIG. 2, the measurement of magnetic characteristics and the calculation of hysteresis loss were performed in the same manner as in FIG.
[0013]
This shows that the hysteresis loss decreases at a magnetic annealing temperature of 720 ° C. or higher. This is because distortion at the time of punching is released by magnetic annealing, and coarsening of crystal grains occurs. On the other hand, when the magnetic annealing temperature exceeds 900 ° C., the hysteresis loss increases. This is because the magnetic properties deteriorate due to approaching the αγ transformation point. From the above, the magnetic annealing temperature is set to 720 ° C. or higher and 900 ° C. or lower.
[0014]
Next, the reasons for limiting other components will be described.
If C exceeds 0.005%, the magnetic flux density decreases and the torque when driving the EPS motor decreases. The torque when the motor is driven is the torque when a current is passed through the motor.
[0015]
Si is an effective element for increasing the specific resistance of the steel sheet, but if it exceeds 4.0%, the magnetic flux density decreases and the torque when driving the EPS motor decreases, so the upper limit was made 4.0%.
[0016]
Al, like Si, is an effective element for increasing the specific resistance. However, if it exceeds 1.0%, the magnetic flux density decreases and the torque when driving the EPS motor decreases, so the upper limit was set to 1.0%.
[0017]
Mn is required to be 0.05% or more to prevent red hot brittleness during hot rolling, but if it exceeds 1.5%, the magnetic flux density decreases and the torque when driving the EPS motor decreases. did.
[0018]
P is an element necessary for improving the punchability of the steel sheet, but if added over 0.2%, the steel sheet becomes brittle, so it was made 0.2% or less.
[0019]
If N exceeds 0.005%, the magnetic flux density decreases and the torque when driving the EPS motor decreases.
[0020]
Next, a manufacturing method will be described.
The molten steel blown in the converter is degassed and adjusted to a predetermined component, and then casting and hot rolling are performed. The finish annealing temperature and the coiling temperature during hot rolling need not be specified and may be normal. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, after a predetermined plate thickness is obtained by one or more cold rollings or two or more cold rollings with intermediate annealing, finish annealing is performed, and magnetic annealing is further performed. The steel sheet of the present invention can be obtained by performing magnetic annealing at a temperature of 720 ° C to 900 ° C.
[0021]
【Example】
The molten steel blown in the converter was degassed, adjusted to the components shown in Table 1 and cast, and the slab was heated at 1150 ° C. for 1 hr, and then hot rolled to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The winding temperature was 700 ° C. Thereafter, cold rolling was performed to a plate thickness of 0.50 mm, and annealing was performed under the finish annealing conditions and magnetic annealing conditions shown in Table 1.
[0022]
Magnetic properties were measured by the 25 cm Epstein method. Hysteresis loss was determined as the hysteresis loss per frequency of 1 Hz when magnetized to 1.5 T, and was calculated and evaluated by the 2-frequency method from the 50 and 60 Hz iron loss obtained by the Epstein method. Table 1 shows the magnetic properties of each steel sheet.
[0023]
[Table 1]
Figure 0004019566
[0024]
From this, it can be seen that in the steel sheets according to the inventive examples No. 1 to No. 3 in which the components and the magnetic annealing temperature are controlled within the range of the present invention, a steel sheet having a low hysteresis loss and a high magnetic flux density is obtained.
[0025]
In contrast, the steel sheet according to the comparative example No. 4 has high hysteresis loss because the amount of Ti is outside the scope of the present invention. The steel sheet according to the comparative example No. 5 has a high hysteresis loss because the magnetic annealing temperature is low outside the range of the present invention. Since the steel plate according to the comparative example No. 6 has a high magnetic annealing temperature outside the range of the present invention, the hysteresis loss is high and the magnetic flux density is low.
[0026]
Further, the steel plate according to the No. 7 comparative example has a C amount, the steel plate according to the No. 8 comparative example has an Si amount, the steel plate according to the No. 9 comparative example has an Mn amount, and the No. 10 comparative example. In the steel plate according to No. 11, the amount of N and the amount of Al in the steel plate according to the comparative example No. 11 are out of the scope of the present invention, respectively, so that the magnetic flux density is low.
[0027]
【The invention's effect】
As described above, according to the present invention it is possible to obtain a low steel hysteresis loss, you can obtain an effective electric power steering motor core to loss torque reduction of the EPS motor.
[0028]
Furthermore, since a high magnetic flux density is obtained, a high torque is obtained when the motor is driven, and the steering performance is excellent.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Ti amount and hysteresis loss.
FIG. 2 is a diagram showing the relationship between magnetic annealing temperature and hysteresis loss.

Claims (1)

永久磁石を使用する電動パワーステアリングモータコアであって、そのモータコア材として、重量%でElectric power steering motor core that uses permanent magnets. CC : 0.0050.005 %以下、%Less than, SiSi : 4.04.0 %以下、%Less than, AlAl : 1.01.0 %以下、%Less than, SS : 0.020.02 %以下、%Less than, MnMn : 0.050.05 ~ 1.51.5 %、%, PP : 0.20.2 %以下、%Less than, NN : 0.0050.005 %以下、%Less than, TiTi : 0.00200.0020 %以下を含有し、残部% Or less, the balance FeFe および不可避的不純物からなり、ヒステリシス損がAnd inevitable impurities, hysteresis loss 0.053J/kg0.053J / kg 以下である鋼板を用いた電動パワーステアリングモータコア。Electric power steering motor core using the following steel plate.
JP23781699A 1999-08-25 1999-08-25 Electric power steering motor core Expired - Lifetime JP4019566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23781699A JP4019566B2 (en) 1999-08-25 1999-08-25 Electric power steering motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23781699A JP4019566B2 (en) 1999-08-25 1999-08-25 Electric power steering motor core

Publications (2)

Publication Number Publication Date
JP2001064756A JP2001064756A (en) 2001-03-13
JP4019566B2 true JP4019566B2 (en) 2007-12-12

Family

ID=17020837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23781699A Expired - Lifetime JP4019566B2 (en) 1999-08-25 1999-08-25 Electric power steering motor core

Country Status (1)

Country Link
JP (1) JP4019566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240170190A1 (en) * 2021-04-14 2024-05-23 Nippon Steel Corporation Hot rolled steel sheet for non oriented electrical steel sheet and producing method thereof

Also Published As

Publication number Publication date
JP2001064756A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP2005200756A (en) Method for producing non-oriented silicon steel sheet
KR101585307B1 (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
KR20170026552A (en) Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
JP4019577B2 (en) Electric power steering motor core
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
WO2007063581A1 (en) Nonoriented electromagnetic steel sheet and process for producing the same
JP2011080140A (en) Thin cast slab for non-oriented silicon steel sheet excellent in magnetic characteristic, and method for manufacturing non-oriented silicon steel sheet
JP3870893B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP4019566B2 (en) Electric power steering motor core
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JPH0849044A (en) Monoriented silicon steel sheet for electric automobile and its production
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
JP4019559B2 (en) Electric power steering motor core
JP3997656B2 (en) Manufacturing method of steel plate for electric power steering motor core
JP3997667B2 (en) Manufacturing method of steel plate for electric power steering motor core
JP3956596B2 (en) Non-oriented electrical steel sheet
JP4165848B2 (en) Electric power steering motor core
JP2001316779A (en) Material for electric power steering motor core
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP5972540B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4019566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term