JP4016803B2 - 測角方法及びその装置 - Google Patents

測角方法及びその装置 Download PDF

Info

Publication number
JP4016803B2
JP4016803B2 JP2002313631A JP2002313631A JP4016803B2 JP 4016803 B2 JP4016803 B2 JP 4016803B2 JP 2002313631 A JP2002313631 A JP 2002313631A JP 2002313631 A JP2002313631 A JP 2002313631A JP 4016803 B2 JP4016803 B2 JP 4016803B2
Authority
JP
Japan
Prior art keywords
angle
incident angle
vespa
corrected
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002313631A
Other languages
English (en)
Other versions
JP2004150842A (ja
Inventor
敦 岡村
義夫 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002313631A priority Critical patent/JP4016803B2/ja
Publication of JP2004150842A publication Critical patent/JP2004150842A/ja
Application granted granted Critical
Publication of JP4016803B2 publication Critical patent/JP4016803B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,アレーアンテナ(または受波器アレー)を構成する素子アンテナの受信信号を用いて,アレーアンテナに入射する複数の電波(または音波等)の入射角度をそれぞれ推定する測角信号処理に関するものである。
【0002】
【従来の技術】
移動体通信やレーダ、ソナー等では、同一周波数帯に混信する複数の電波の到来方向をそれぞれ分離して高精度に測角することが重要である。以下に説明する従来技術は、非特許文献1などに開示されているVESPA(Virtual ESPRIT Algorithm)と呼ばれる測角方法である。この測角方法によれば、MUSIC(MULtiple SIgnal Classification)方式よりも演算負荷を低減させることができる一方で、従来のESPRIT(Estimation of Signal Parametersvia Rotational Invariance Techniques)方式に課せられるアレーアンテナの配列の制約が緩和される利点を有する。
【0003】
まず、従来のVESPA方式による測角信号処理装置の基本構成について、図2を用いて説明する。図において、1-1〜1-Mはアレーアンテナを構成する素子アンテナ、2-1〜2-Mは各素子アンテナの受信信号をディジタル信号xに変換するA/D変換器、3はM個のディジタル受信信号xを記憶するメモリ、4はVESPA処理手段、9は入射角算出手段である.Mは素子アンテナの個数である。また、受信信号xは第m素子アンテナ受信信号を検波した複素ベースバンドディジタル信号を意味する。
【0004】
図2の素子アンテナ1-1〜1-Mからなるアレーアンテナに、非ガウス分布であり、互いに無相関なK波の入射波s(i),…,s(i)がそれぞれθ,…,θの角度から到来する場合を考える。iは時間を示すディジタル信号のサンプル番号である。入射波s(i),…,s(i)の波源は十分遠方にあり、それらの比帯域は十分小さいものとする。第m素子アンテナの複素ベースバンド信号を要素とする受信信号ベクトルX(i)=[x(i),x(i),…,x(i)]は次式のように表される。
【数1】
Figure 0004016803
ここで、A、s(i)、n(i)は次のとおりである。
【数2】
Figure 0004016803
【数3】
Figure 0004016803
【数4】
Figure 0004016803
【数5】
Figure 0004016803
【0005】
a(θ)はアレーの応答を意味するステアリングベクトル(steeringvector)、AはM×Kのステアリング行列、s(i)は入射信号ベクトル、n(i)は第m受信信号に加わるガウス性ノイズで、n(i)はこれらを並べたノイズベクトルである。g(θ)は第m素子アンテナの振幅パターンと位相パターン及び受信機透過位相により決定される複素ゲインであって、pは既知である第m素子アンテナの位置ベクトルである。η(θ)は第k波の入射方向ベクトルξ(θ)と波長λを用いて次式のように求められる。
【数6】
Figure 0004016803
なお、*は行列やベクトルの転置を表すものである。
【0006】
このアレーの第u素子アンテナと第v素子アンテナは、その複素ゲインパターンが等しい、すなわち、次式が成立するものとする。
【数7】
Figure 0004016803
【0007】
また、これらの素子アンテナ位置pとpは既知であるものとする。以上のような条件を満足する第u素子と第v素子のアンテナ対はガイディングセンサと呼ばれる。
【0008】
一般に、平均値0のランダム変数z(i),z(i),z(i),z(i)の4次キュムラントcum[z,z,z,z]は次式のように定義される。
【数8】
Figure 0004016803
E[・]は平均操作を表す。第u,v,m,n素子の受信信号x,x ,x,x のキュムラントは次式のように展開される。
【数9】
Figure 0004016803
ここに、*は複素共役を意味する。またγskは次式による。
【数10】
Figure 0004016803
(θ)は数式3のa(θ)の第u要素であり、第u素子アンテナの第k波入射方向の応答を意味する複素数である。
【0009】
VESPA処理4は、メモリ3から受信信号x(i),x(i),…,x(i)(i=1,…、N)を入力し、第(m,n)要素がそれぞれcum[x,x ,x,x ]、cum[x,x ,x,x ]である(M×M)行列Ru,u=cum[x,x ,X,X],Ru,v=cum[x,x ,X,X]を算出する。Ru,u、Ru,vは式1と式9を用いて次式のように表される。
【数11】
Figure 0004016803
【数12】
Figure 0004016803
ただしΓとΦu,vは次の通りである。
【数13】
Figure 0004016803
【数14】
Figure 0004016803
【0010】
ここに、Hは行列、ベクトルの複素共役転置を、diag{}はその要素を対角成分に並べた対角行列を意味する。式11、式12の右辺の間に見られる回転不変の関係からESPRIT方式が成立する。VESPA処理4は。このESPRIT方式に則って、行列Ru,u、Ru,vの固有ベクトルを求め、それらの関係から(K×K)のパラメータ行列Φu,vを推定するものである。
【0011】
この後、入射角算出手段5は、VESPA処理4が推定した対角行列Φu,vの対角要素である変位量φ,…,φ,…,φから、第1波から第K波の入射角推定値θ,…,θ,…,θをそれぞれ次式によって算出する。
【数15】
Figure 0004016803
arg{・}は、複素数の位相値を意味する。上式は、式3、式6、式14の関係から導かれる。すなわち
【数16】
Figure 0004016803
であるから、
【数17】
Figure 0004016803
となり、式15が得られる。数式15による入射角θの具体的な求め方を例示する。たとえば、(p−p)=[d,0,0]で、入射方向ベクトルがξ(θ)=[sinθ,cosθ,0]で与えられる場合、式15は、arg{φ}=(2πd/λ)sinθとなるので、入射角θ
【数18】
Figure 0004016803
と算出される。
【0012】
上記VESPAの名前の由来は式11、式12の関係が実アレーと同型の仮想アレーが存在した場合のESPRIT処理と等価であることにある。その結果、ガイディングセンサの素子1−uと素子1−vを除くすべての素子アンテナの応答情報、すなわち素子位置、複素ゲインパターンの事前情報が不要である。また、任意の配列のアレーアンテナで測角できる。
【0013】
【非特許文献1】
M Dogan and J. Mendel、”Application of Cumulants to Array Processing − Part I:Aperture Extension and Array Calibartion、”IEEE Trans. Signal Processing、vol.43、no.5、pp.1200−1216、May.1995
【0014】
【発明が解決しようとする課題】
従来の測角装置では、アレーアンテナの一部であるガイディングセンサを構成する素子アンテナの放射パターンが、式6に表されるように互いに等しいことを前提としている。ところが実際には、製造ばらつきや素子間の結合等のため、完全に上記条件を満足するようなアンテナを製作することは難しいことが多い。なお、ガイディングセンサを構成する素子アンテナの放射パターンが既知である場合でも、素子アンテナの放射パターンが互いに等しくない場合には測角できなかった。
【0015】
この発明は、上記のような課題を解決するためになされたもので、ガイディングセンサを構成する素子の放射パターンが互いに等しくない場合でも、ガイディングセンサを除く素子の素子位置や複素ゲインパターンの事前情報を必要としないで、任意の配列のアレーアンテナにより入射角を推定できる測角装置を得ることを目的とする。
【0016】
【課題を解決するための手段】
本発明は、複素ゲインパターンが互いに異なる素子アンテナの組から出力される受信信号に、上記素子アンテナの組をガイディングセンサとするVESPA処理を施し、電波の入射角を算出するVESPA処理ステップと、上記入射角を、上記素子アンテナの複素ゲインパターンから算出した応答値を用いて補正し補正入射角を算出する補正ステップとを有するものである。
【0017】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1の構成を示すブロック図である。図において、素子アンテナ1−1〜1−Mはアレーアンテナを構成する。A/D変換器2−1〜2−Mは各素子アンテナの受信信号をディジタル信号に変換し、メモリ3はA/D変換器2−1〜2−Mから出力されるディジタル信号x〜xを記憶するものである。またVESPA処理手段4は、第u素子アンテナ1−uと第v素子アンテナ1−vをガイディングセンサとする。入射角算出手段5は、VESPA処理手段4の出力に基づいて入射角の算出を行う。変換テーブル6は、入射角算出手段5がVESPA処理手段4の出力から入射角の算出を行う上で参照するデータを記憶するテーブルである。位相パターンメモリ7は、ガイディングセンサの第u素子アンテナ1−uの複素ゲインの位相パターンarg[g(θ)]を記憶し、位相パターンメモリ8は、ガイディングセンサの第v素子アンテナ1−vの複素ゲインの位相パターンarg[g(θ)]を記憶する。
【0018】
まず、実施の形態1における入射角算出手段5における処理について説明する。VESPAにおいては、式14に基づいてパラメータ行列Φu,vの対角成分である複素変位量φと入射角θの関係は次式を満たす。
【数19】
Figure 0004016803
【0019】
ここに、a(θ)、a(θ)はそれぞれガイディングセンサである2素子から得られる応答であって、g(θ)、g(θ)はこの2素子の複素ゲインパターンである。式19を変形すると次式が得られる。
【数20】
Figure 0004016803
【0020】
上式において、arg[*]は複素数の位相値を表している。このことから、
【数21】
Figure 0004016803
なる関数を求め、さらに式20と式21を用いてθについて解いて、
【数22】
Figure 0004016803
とすることにより、入射角θを求めることができる。
【0021】
このθを求めるためには、例えばまず素子アンテナ1−uと素子アンテナ1−vの複素ゲインパターンg(θ)、g(θ)のみを計測または解析しておく。次に事前に取得したg(θ)、g(θ)から、各θについて式20によってarg[φ]を求める。このθとarg[φ]の関係は例えば図3のようになるが、この関係を事前にテーブル化しておく。こうすることにより、計測時に式22によって、入射角θを推定する。例えば、(p−p)=[d,0,0]で、入射方向ベクトルがξ(θ)=[sinθ,cosθ,0]の例では、
【数23】
Figure 0004016803
の逆関数を求め、式22から入射角を推定する。
【0022】
次に実施の形態1による測角装置の動作について説明する。初めに、位置と位相パターンが事前測定又は解析等により既知である素子アンテナ1−uと素子アンテナ1−vをガイディングセンサとして、各々の位相パターンarg[g(θ)]、arg[g(θ)]をそれぞれ第u素子位相パターンメモリ7と第v素子位相パターンメモリ8に記憶させておく。
【0023】
続いて、第u素子位相パターンメモリ7,第v素子位相パターンメモリ8を参照し、入射波が入射し得る角度範囲すべての角度値θに対して、数式21のF(θ)をそれぞれ求め、各θとそれに対するF(θ)の値を変換テーブル6に記憶させる。次にVESPA処理手段4は、従来と同様にメモリ3から受信信号x(i),x(i),…,x(i) (i=1,…,N)を入力し、Ru,u=cum[x,x ,X,X]、Ru,v=cum[x,x ,X,X]を算出し、数式14の対角行列Φu,vを求めて、この対角成分φ,…,φ,…,φを出力する。入射角算出手段5は、この対角成分φ,…,φ,…,φを入力し、それぞれの位相値arg[φ],…,arg[φ],…,arg[φ]を求めて、変換テーブル6を参照し、式22からそれぞれ入射角θ,…,θ,…,θを推定する。
【0024】
なお実施の形態1では、式22の関係を変換テーブル6に記憶させて、入射角を求めることとしたが、式22の逆関数F−1[arg(φ)]が解析的に関数式として表現しうる場合には、変換テーブル6を用いずに測角処理の都度この関数式を用いて計算するようにしてもよい。
【0025】
また実施の形態1では、ガイディングセンサを構成する第u素子、第v素子のそれぞれの位相パターンを独立に記憶させておく構成としたが、2つの素子の間の相対位相パターンを記憶する構成をとっても同様の効果を奏する。
【0026】
また実施の形態1では、ガイディングセンサを構成する第u素子、第v素子の位相パターンが、ともに角度依存性を有する場合について説明したが、いずれか一方、または両方ともに角度依存性を有しないフラットな位相パターンを有する場合であっても、同様の構成によって角度を求めることができる。
【0027】
また実施の形態1では、簡単のため、一次元の入射角θのみの推定について説明したが、仰角と水平角のような2次元の入射角パラメータを有する場合であっても、同様の構成によって角度を求めることができる。
【0028】
また実施の形態1では、測角装置の構成のみについて説明したが、かかる測角装置は、自動車走行中に障害物が存在する方向を検知する車載用センサとして用いることができ、また競走馬の一頭一頭の位置を識別する競走馬計測システム、航行する船舶や航空機が存在する方向を検知する海洋レーダシステムや航空管制レーダシステムなどに搭載することができる。
【0029】
以上、実施の形態1によれば、VESPA方式による測角信号処理装置の前提となる数式7の関係が、製造ばらつきや素子間の結合等のために満たされない場合であっても、VESPA方式による測角信号処理装置を構成することが可能となるので、設計製造時に採用しうる素子の選択幅を広げ、安価でかつ設計自由度の高い測角信号処理装置を得ることができる。
【0030】
実施の形態2.
図4は、実施の形態2の構成を示すブロック図である。図において、第一のVESPA処理手段4−1は、第u素子アンテナと第v素子アンテナをガイディングセンサとし、また第一の入射角算出手段5−1は、第一のVESPA処理手段4−1の出力に基づいて入射角の算出を行う。第一の変換テーブル6−1は、入射角算出手段5−1が第一のVESPA処理手段4−1の出力から入射角算出を行う上で参照するデータを記憶するテーブルである。位相パターンメモリ7−1は第u素子アンテナの位相パターンarg[g(θ)]を記憶し、位相パターンメモリ8−1は第v素子アンテナの位相パターンarg[g(θ)]を記憶する。第二のVESPA処理手段4−2は、第p素子アンテナと第q素子アンテナをガイディングセンサとする。第二の入射角算出手段5−2は、第二のVESPA処理手段4−2の出力に基づいて入射角の算出を行う。第二の変換テーブル6−2は、入射角算出手段5−2が第二のVESPA処理手段4−2の出力から入射角の算出を行う上で参照するデータを記憶するテーブルである。位相パターンメモリ7−2は第p素子アンテナの位相パターンarg[g(θ)]を記憶し、位相パターンメモリ8−2は第q素子アンテナの位相パターンarg[g(θ)]を記憶する。入射角推定値算出手段10は、入射角算出手段5−1と入射角算出手段5−2が算出する入射角から、精度の高いものを選択して全体の入射角として出力する。なお図4において、図1と同じ符号を付した構成要素については、実施の形態1と同じであるから説明を省略する。
【0031】
実際のアレーアンテナでは、ガイディングセンサとして選択する素子アンテナの位相パターンをすべての角度に対して高精度に計測又は解析できるとは限らない。実施の形態2では、ある角度範囲(これを角度範囲1という)では、第u素子と第v素子の位相パターンの計測精度が高く、別の角度範囲(これを角度範囲2という)では第p素子と第q素子の位相パターンの計測精度が高いと仮定する。例えば、一般に素子アンテナの振幅ゲインが高い角度域では、その素子アンテナのパターン計測精度が高くなることが期待できる。このことから、振幅ゲインの高い角度域を求めることで、素子アンテナの位相パターンについて高い計測精度が得られる角度範囲を推定できることが多く、このような場合には上記角度範囲1と角度範囲2を事前に決めることが可能である。このような状況は、例えば円形状に配列されたアレーアンテナではよく起こる。
【0032】
式21より明らかなように、角度範囲1では第u素子と第v素子の位相パターンの計測精度が高いため、第u素子と第v素子とをガイディングセンサとして用いた第一の入射角算出手段5−1が出力する推定入射角の方が精度が高い。その一方で、角度範囲2では、第p素子と第q素子とをガイディングセンサとして用いた第二の入射角算出手段5−2が出力する推定入射角の方が精度が高いことが期待できる。入射角推定値選択手段10は、2組の入射角推定値から角度範囲に応じて精度の高い方を選択して最終的な入射角推定値として出力する。
【0033】
例えば、上記構成において、角度範囲1が0〜160度で、角度範囲2が160〜360度であるとし、ある3つの波A,B,Cの入射角を本構成によって求める場合を説明する。入射角算出手段5は波Aについては53度、波Bについては92度、波Cについては257度を推定入射角として算出し、一方、入射角算出手段5−2は波Aについては49度、波Bについては96度、波Cについては260度を推定入射角として算出した場合、入射角推定値選択手段9は、波Aと波Bについては角度範囲1に属することから、第一の入射角算出手段5−1が算出した推定入射角である53度と92度をそれぞれ選択する。また一方で、波Cについては、角度範囲2については第二の入射角算出手段5−2が算出した推定入射角である260度を選択する。その結果、入射角推定値選択手段10は最終的な入射角推定値として53度、92度、260度を出力する。
【0034】
なお、実施の形態2では、2組のガイディングセンサとして、第u素子アンテナと第v素子アンテナの組及び第p素子アンテナと第q素子アンテナの組を用いる構成としたが、素子アンテナがガイディングセンサ間で共通しても構わない。例えば、v素子の位相パターンの精度が全角度範囲にわたって満足できるほど高いものであれば、それぞれの組で第v素子アンテナを用いる構成、すなわち、第u素子アンテナと第v素子アンテナとの組及び第p素子アンテナと第v素子アンテナとの組をガイディングセンサとする構成も可能である。
【0035】
また、実施の形態2では、2組のガイディングセンサそれぞれについて個別のVESPA処理を行う構成としたが,さらに多数組のガイディングセンサを用いてそれぞれ個別のVESPA処理を用いる構成としてもよい。
【0036】
また、実施の形態2では、複数組のガイディングセンサそれぞれについての別個のVESPA処理を並行して処理するを構成としたが、ガイディングセンサ間でVESPA処理を共用する構成とし、一組のガイディングセンサの位相パターンについて高い計測精度が得られる角度範囲に推定値が存在しない場合、順次別のガイディングセンサに切り替えて処理する構成にしてもよい。
【0037】
また、複数組のガイディングセンサそれぞれについてのVESPA処理は、必ずしも共通してすべての受信信号を用いなくてもよい。
【0038】
なお、実施の形態2では、簡単のため、一次元の入射角θのみの推定について説明したが、仰角と水平角のように2次元の入射角パラメータを有する場合であっても、角度範囲を仰角と水平角のそれぞれについて規定することで、同様な効果を奏することができる。
【0039】
また、実施の形態2では、測角装置の構成のみについて説明したが、かかる測角装置は、自動車走行中に障害物が存在する方向を検知する車載用センサとして用いることができ、また競走馬の一頭一頭の位置を識別する競走馬計測システム、航行する船舶や航空機が存在する方向を検知する海洋レーダシステムや航空管制レーダシステムなどに搭載することができる。
【0040】
以上、実施の形態2によれば、位相パターンを事前計測する素子アンテナの数は増すものの、角度範囲に応じて位相パターンの計測精度が高い素子アンテナをガイディングセンサとして選択して入射角を推定するので、パターン計測精度にムラがあっても推定誤差が大きくなりにくい。
【0041】
【発明の効果】
本発明は、素子アンテナの組から出力される受信信号に、この素子アンテナの組をガイディングセンサとするVESPA処理を行うことによって入射角を算出し、さらに上記素子アンテナの複素ゲインパターンから算出した応答値を用いてこの入射角を算出することとしたので、複素ゲインパターンが互いに異なる素子アンテナについても、これらをガイディングセンサとするVESPA処理を可能とするものであり、製造ばらつきや素子アンテナ間の結合には依存しない測角手段を提供するものである。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による測角装置の構成図である。
【図2】 従来の技術による測角装置の構成図である。
【図3】 ガイディングセンサの応答値と入射角の関係を示すグラフである。
【図4】 本発明の実施の形態2による測角装置の構成図である。
【符号の説明】
1−1〜1−M:素子アンテナ 2−1〜2−M:A/D変換器
3:メモリ 4:VESPA処理手段 4−2:VESPA処理手段
5:入射角算出手段 5−2:入射角算出手段
6:変換テーブル 6−2 変換テーブル
7:位相パターンメモリ 8:位相パターンメモリ
9:入射角算出手段 10:入射角推定値算出手段

Claims (8)

  1. 複素ゲインパターンが互いに異なる素子アンテナの組から出力される受信信号に、上記素子アンテナの組をガイディングセンサとするVESPA処理を施し、電波の入射角を算出するVESPA処理ステップと、
    上記入射角を、上記素子アンテナの複素ゲインパターンから算出した応答値を用いて補正し補正入射角を算出する補正ステップとを有することを特徴とする測角方法。
  2. 前記VESPA処理ステップは、前記素子アンテナの複数の組から出力される受信信号について、上記組のそれぞれをガイディングセンサとするVESPA処理を施して、上記組ごとに電波の入射角を算出し、
    前記補正ステップは、上記入射角ごとに上記組の素子アンテナの複素ゲインパターンから算出した応答値を用いて補正して複数の補正入射角を算出し、
    さらに上記複数の補正入射角から、推定精度の高い補正入射角を選択して出力する入力角推定値選択ステップを有することを特徴とする請求項1に記載された測角方法。
  3. 複素ゲインパターンが互いに異なる素子アンテナの組から出力される受信信号に、上記素子アンテナの組をガイディングセンサとするVESPA処理を施し、電波の入射角を算出するVESPA処理手段と、
    上記入射角を上記素子アンテナの複素ゲインパターンから算出した応答値を用いて補正し補正入射角を算出する補正手段とを備えることを特徴とする測角装置。
  4. 前記補正手段は、前記素子アンテナの位相パターン値を前記応答値として用いる構成とされたことを特徴とする請求項3に記載された測角装置。
  5. 前記補正手段は、前記素子アンテナ間の相対位相パターン値を前記応答値として用いることを特徴とする請求項3に記載された測角装置。
  6. 前記VESPA処理手段は、前記素子アンテナの複数の組から出力される受信信号について、上記組のそれぞれをガイディングセンサとするVESPA処理を施して、上記組ごとに電波の入射角を算出し、
    前記補正手段は、上記入射角ごとに上記組の素子アンテナの複素ゲインパターンから算出した応答値を用いて補正して複数の補正入射角を算出する構成とされ、さらに上記複数の補正入射角から、推定精度の高い補正入射角を選択して出力する入力角推定値選択手段を備えたことを特徴とする請求項3乃至請求項5のいずれか一に記載された測角装置。
  7. 前記VESPA処理手段は、互いに異なる角度範囲において所定の推定精度を得る上記組ごとに電波の入射角を算出し、
    前記入力角推定値選択手段は、上記組についての前記補正入射角から、前記補正入射角が属する角度範囲において上記所定の推定精度を得る上記組についての補正入射角を選択して出力する構成とされたことを特徴とする請求項6に記載された測角装置。
  8. 前記入力角推定値選択手段は、前記組についての前記補正入射角から、前記受信信号の振幅ゲインが所定値以上である上記組についての前記補正入射角を選択して出力する構成とされたことを特徴とする請求項6に記載された測角装置。
JP2002313631A 2002-10-29 2002-10-29 測角方法及びその装置 Expired - Lifetime JP4016803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313631A JP4016803B2 (ja) 2002-10-29 2002-10-29 測角方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313631A JP4016803B2 (ja) 2002-10-29 2002-10-29 測角方法及びその装置

Publications (2)

Publication Number Publication Date
JP2004150842A JP2004150842A (ja) 2004-05-27
JP4016803B2 true JP4016803B2 (ja) 2007-12-05

Family

ID=32458171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313631A Expired - Lifetime JP4016803B2 (ja) 2002-10-29 2002-10-29 測角方法及びその装置

Country Status (1)

Country Link
JP (1) JP4016803B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042619B2 (ja) * 2006-12-28 2012-10-03 三菱電機株式会社 測角装置
JP5116402B2 (ja) * 2007-08-20 2013-01-09 三菱電機株式会社 測角装置
JP5063416B2 (ja) * 2008-02-29 2012-10-31 三菱電機株式会社 測角装置
JP4794613B2 (ja) * 2008-10-15 2011-10-19 三菱電機株式会社 信号波到来角度測定装置
JP6331841B2 (ja) * 2014-07-30 2018-05-30 三菱電機株式会社 到来方向推定装置
CN111505590A (zh) * 2020-04-07 2020-08-07 武汉大学 一种高频地波雷达通道校准方法及系统

Also Published As

Publication number Publication date
JP2004150842A (ja) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4339801B2 (ja) 固有値分解を利用しない信号到来方向推定手法および受信ビーム形成装置
JP4794613B2 (ja) 信号波到来角度測定装置
JP2988463B2 (ja) 方向探知装置及びそのための測定結果処理装置
JP2005197772A (ja) アダプティブアレイアンテナ装置
WO2006067869A1 (ja) 到来方向推定装置及びプログラム
CN110515038B (zh) 一种基于无人机-阵列的自适应无源定位装置及实现方法
KR102001394B1 (ko) 로그-영역 안테나 어레이 보간에 기반한 수신신호의 도래각 추정 방법과 이를 위한 장치
JP2017036990A (ja) 到来方向推定装置
CN110749858A (zh) 一种基于多项式求根的展开互质阵测向估计方法
CN112630784B (zh) 基于凸优化和神经网络的平面阵列幅相误差校正方法
CN109946643B (zh) 基于music求解的非圆信号波达方向角估计方法
CN111352063A (zh) 一种均匀面阵中基于多项式求根的二维测向估计方法
JP4016803B2 (ja) 測角方法及びその装置
CN111880198A (zh) 基于交替极化敏感阵列的空时极化抗干扰方法
JP4187985B2 (ja) 測角装置、測角方法及びプログラム
JP2009204526A (ja) 方向測定装置
WO2015173861A1 (ja) キャリブレーション装置
JP3946101B2 (ja) 空間特性を用いた多重波の到来方向推定方法及びこれを用いた受信ビーム形成装置
Hamici Elements failure robust compensation in 2D phased arrays for DOA estimation with M-ary PSK signals
JP2003222666A (ja) 測角装置、測角方法及びプログラム
Mills et al. Fast iterative interpolated beamforming for interference DOA estimation in GNSS receivers using fully augmentable arrays
JP5025170B2 (ja) 到来波数検出装置
JP3944141B2 (ja) アレーマニフォルドデータ補間方法、到来方位推定方法およびアレーマニフォルドデータ補間装置
JP5063416B2 (ja) 測角装置
CN113419209A (zh) 一种锥面共形阵列盲极化波达方向估计方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R151 Written notification of patent or utility model registration

Ref document number: 4016803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term