JP4015390B2 - Hydrocarbon reforming catalyst and method for producing the same - Google Patents

Hydrocarbon reforming catalyst and method for producing the same Download PDF

Info

Publication number
JP4015390B2
JP4015390B2 JP2001272238A JP2001272238A JP4015390B2 JP 4015390 B2 JP4015390 B2 JP 4015390B2 JP 2001272238 A JP2001272238 A JP 2001272238A JP 2001272238 A JP2001272238 A JP 2001272238A JP 4015390 B2 JP4015390 B2 JP 4015390B2
Authority
JP
Japan
Prior art keywords
catalyst
producing
reforming catalyst
active species
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001272238A
Other languages
Japanese (ja)
Other versions
JP2003080070A (en
Inventor
一雅 笠木
聡 大村
野島  繁
聡信 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001272238A priority Critical patent/JP4015390B2/en
Publication of JP2003080070A publication Critical patent/JP2003080070A/en
Application granted granted Critical
Publication of JP4015390B2 publication Critical patent/JP4015390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガソリン、ナフサ、灯油、軽油等の炭化水素化合物を改質して水素を製造する際に使用される炭化水素改質触媒及びその製造方法に関する。
【0002】
【従来の技術】
周知の如く、炭化水素を水蒸気によって改質する反応は、合成ガスあるいは水素を製造するための反応として知られている。従来、この反応には、一般に、Ni/Al系触媒が用いられているが、炭素の析出(コーキング)が起こるという問題があった。
【0003】
そこで、このコーキングを回避するために、上記反応にはRu系触媒が提案されている(特開平7−88376等)。しかし、Ru系触媒は還元状態で高性能を発揮するため、還元処理が必要とされる、また、Ru系触媒は容易に酸化されるため、大気暴露ができない等の使用制約がある。更に、従来のRu系触媒は反応選択性向上のため、CaO、MgO等の塩基性物質を混合するが、水蒸気改質時に徐々に溶出するため性能低下の一因と考えられている。更には、家庭用固体高分子型燃料電池(PEFC)用のプラント等での使用を目的とした場合、反応温度が650〜850℃と高温なため安全性面で不安があるとともに、起動時間がかかるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は上記事情を考慮してなされたもので、耐酸化性を向上し使用制限を軽減できるとともに、担体塩基性付与効果により固体酸量を制御して反応選択性を維持し、耐久性向上を実現しうる炭化水素改質触媒を提供することを目的とする。
【0005】
また、本発明は、400〜650℃程度で炭化水素化合物を改質することができ、従来と比べ短時間起動を実現できると共に安全性の点で優れた炭化水素改質触媒の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本願第1の発明は、液系炭化水素化合物の改質により水素を製造する際に使用される炭化水素改質触媒において、二酸化ジルコニウムに酸化亜鉛あるいはアルミナ,シリカ,チタニア,セリアのいずれかを複合化して得られる塩基性担体に、アルコール還元法によってルテニウムを白金、パラジウム、ロジウムのいずれか一つ以上と合金化することにより得られる合金を活性種として含有させたことを特徴とする炭化水素改質触媒である。
【0007】
本願第2の発明は、液化系炭化水素化合物の改質により水素を製造する際に使用される炭化水素改質触媒を製造する方法において、塩基性担体の前駆体となるハイドロタルサイト構造体を調製する工程と、前記ハイドロタルサイト構造体にアルコール還元法により得られるルテニウムと白金、パラジウム、ロジウムのいずれか一つ以上と合金化された合金活性種を担持させる工程と、前記ハイドロタルサイト構造体にルテニウム合金活性種が担持したものを焼成する工程とを具備し、塩基性担体にルテニウム合金活性種が担持された触媒を得ることを特徴とする炭化水素改質触媒の製造方法である。
【0008】
【発明の実施の形態】
以下、本発明の炭化水素改質触媒及びその製造方法について更に詳しく説明する。本発明の炭化水素改質触媒において、担体としては二酸化ジルコニウム(ZrO)に酸化亜鉛(ZnO)あるいはアルミナ(Al),シリカ(SiO),チタニア(TiO),セリア(CeO)等の酸化物を複合化した塩基性担体を用いる。これにより、担体固体酸量を制御し、高反応選択性触媒として長時間耐久性のある担体にすることができる。また、活性種としては、ルテニウム(Ru)にPd,Pt等の貴金属をアルコール還元法により合金化して得られた合金を用いる。これにより、常にRu金属状態を保ち、従来のようなRu系触媒のように使用制限を軽減できるとともに、長時間耐久性のある活性種にすることができる。従って、本発明に係る炭化水素改質触媒によれば、耐酸化性が向上し、使用制限が軽減されると共に、固体酸量を制御することで反応選択性を維持しコーキングを抑制することで、耐久性向上を実現することができる。
【0009】
本発明方法において、前記塩基性担体はハイドロタルサイト構造体を前駆体として調製した担体を用いることが好ましい。ここで、前駆体のハイドロタルサイト構造体とは、例えばジルコニアと亜鉛の組み合わせでは、Zr(CO)x(OH)y・Zn(CO)z(OH)sのような示性式を持つ物質を意味する。これらを焼成することで、ZrZnOの酸化物がアモルファス状に高表面積酸化物状態を維持する。例えば、ZrO(NOとZn(NOを混合して焼成しただけでは焼成後の酸化物の表面積はもちろんジルコニアと亜鉛の混合状態も低い。
【0010】
本発明方法によれば、400〜650℃程度で炭化水素化合物を改質できるので、家庭用PEFC用のプラント等での使用を目的とした場合、従来と比べ短時間での起動を実現できるとともに、安全性にも優れた触媒を得ることができる。
【0011】
また、ハイドロタルサイト構造体を前駆体として調製し、前記ハイドロタルサイト構造体を焼成することにより、二酸化ジルコニウムに酸化亜鉛あるいはアルミナ,シリカ,チタニア,セリア等の酸化物を塩基性の複合酸化物にでき、更に高表面積化が可能である。
【0012】
【実施例】
以下、本発明の実施例について説明する。なお、下記実施例で述べる材料や数値等は一例を示すもので、本発明の権利範囲はこれにより限定されるものではない。
【0013】
(実施例)
(1)まず、硝酸Ru溶液からRu3g相当量の溶液と硝酸Pd溶液からRuに対し同モル量のPd3.15gを秤量し、(1N)NaOHaqで中和した。なお、Ruは0.1〜10wt%の範囲であればよく、Pdの量はRu量に対して0.1〜10倍のモル量であればよい。また、Pd以外にも、Pt(塩化白金酸溶液を用いる)やRh(硝酸ロジウム溶液)を用いてもよい。
【0014】
(2)次に、(0.5N)NaCOaqを3.5L(リットル)上記(1)の溶液に加えた。なお、NaCOaqの濃度は0.01〜20Nの範囲でもよい。
(3)次に、硝酸亜鉛6水和物(Zn(NO・6HO)136.45gとオキシ硝酸ジルコニル(ZrO(NO・2HO)122.58gを蒸留水に溶解し、500mlに調製した硝酸塩溶液を上記(2)の溶液に滴下した。なお、硝酸亜鉛6水和物とオキシ硝酸ジルコニルは1:1のモル比で加えているが、0.1〜10:0.1〜10のモル比で加えても良い。
【0015】
(4)次に、滴下終了後、液温を60℃に昇温し、上記(3)の溶液にアルコール800gを徐々に加え、24時間保温及び攪拌すると、徐々に還元が進み微粒子のRu−Pd合金が生成した。なお、液温は40〜80℃の範囲であればよい。その後、沈殿物を濾過し濾液がpH=7になるまで蒸留水で洗浄した。
【0016】
(5)洗浄後、110℃で12時間乾燥し、粉砕後、500℃で3時間焼成した。なお、焼成温度は400〜800℃の範囲で、焼成時間1〜10hの範囲でればよい。
【0017】
以上の操作により、Ru−Pd/ZnO−ZrO触媒が100g調製できる。調製された触媒の固体酸量の評価は、特に本触媒の場合、塩基性を示す為、COを用いた昇温脱離法により評価する。また、ハイドロタルサイト構造を前駆体とした担体調製法を用い、更にアルコール還元法を用いることにより、担体の高表面積を維持したまま、活性種であるRu−Pd合金を坦持できるため、高表面積が生成し触媒活性が高い。
【0018】
(比較例1)
(1)まず、(0.5N)NaCOaqを3.5L丸底フラスコに加えた。なお、濃度は0.01〜20の範囲でもよい。
(2)次に、硝酸亜鉛6水和物(Zn(NO・6HO)136.45gとオキシ硝酸ジルコニル(ZrO(NO・2HO)122.58gを蒸留水に溶解し、500mlに調製した硝酸塩溶液を上記(1)の溶液に滴下した。なお、硝酸亜鉛6水和物とオキシ硝酸ジルコニルは1:1のモル比で加えているが、0.1〜10:0.1〜10のモル比で加えても良い。
【0019】
(3)滴下終了後、液温を40℃で12時間保温及び攪拌により沈殿物を熟成させた。その後、沈殿物を濾過し、濾液がpH=7になるまで蒸留水で洗浄した。
(4)洗浄後、110℃で12時間乾燥し、粉砕後、500℃で3時間焼成した。なお、焼成温度は400〜800℃の範囲で、焼成時間1〜10時間の範囲であればよい。
【0020】
(5)次に、硝酸Ru溶液(Ru3g相当量の溶液)と硝酸Pd溶液(Ruに対し同モル量の3.15g相当量の溶液を混合し、その溶液を(1N)NaOHaqで中和した。なお、Ruは0.1〜10wt%の範囲であればよく、Pdの量はRu量に対して0.1〜10倍のモル量であればよい。また、Pd以外にも、Pt(塩化白金酸溶液を用いる)やRh(硝酸ロジウム溶液)を用いてもよい。
【0021】
(6)次に、上記(5)の溶液を上記(4)で得られた粉体に混ぜ、スラリー状の液体を160℃のホットプレート上で蒸発乾固させた。なお、蒸発乾固の温度は100〜250℃の範囲でもよい。
(7)次に、上記(6)で得られた粉体を蒸留水で濾過洗浄し、Naイオンが1ppm以下で濾液がpH=7になるまで洗浄した後、110℃で12時間乾燥し、粉砕後500℃で3時間焼成した。ここで、焼成温度は400〜800℃の範囲、焼成時間は1〜10時間の範囲であればよい。
以上の操作により、Ru−Pd/ZnO−ZrO触媒が100g調製できた。
【0022】
(比較例2)
(1)まず、(0.5N)NaCOaqを3.5L丸底フラスコに加えた。なお、濃度は0.01〜20の範囲でもよい。
(2)次に、硝酸亜鉛6水和物(Zn(NO・6HO)136.45gとオキシ硝酸ジルコニル(ZrO(NO・2HO)122.58gを蒸留水に溶解し、500mlに調製した硝酸塩溶液を上記(1)の溶液に滴下した。なお、硝酸亜鉛6水和物とオキシ硝酸ジルコニルは1:1のモル比で加えているが、0.1〜10:0.1〜10のモル比で加えてもよい。
【0023】
(3)滴下終了後、液温を40℃で12時間保温及び攪拌により沈殿物を熟成させた。その後、沈殿物を濾過し、濾液がpH=7になるまで蒸留水で洗浄した。
(4)洗浄後、110℃で12時間乾燥し、粉砕後、500℃で3時間焼成した。なお、焼成温度は400〜800℃の範囲で、焼成時間1〜10時間の範囲であればよい。
【0024】
(5)次に、硝酸Ru溶液(Ru3g相当量の溶液)と硝酸Pd溶液(Ruに対し同モル量の3.15g相当量の溶液を混合し、上記(4)で得られた粉体に混ぜ、スラリー状の液体を160℃のホットプレートで蒸発乾固させた。なお、Ruは0.1〜10wt%の範囲であればよく、Pdの量はRu量に対して0.1〜10倍のモル量であればよい。また、Pd以外にも、Pt(塩化白金酸溶液を用いる)やRh(硝酸ロジウム溶液)を用いてもよく、ホットプレートの温度は100〜250℃の範囲で蒸発乾固させてもよい。
【0025】
(6)次に、上記(5)で得られた粉体を蒸留水で濾過洗浄し、濾液がpH=7になるまで洗浄した後、110℃で12時間乾燥後、粉砕し500℃で3時間焼成した。ここで、焼成温度は400〜800℃の範囲、焼成時間は1〜10時間の範囲であればよい。
以上の操作により、Ru−Pd/ZnO−ZrO触媒が100g調製できた。
【0026】
上記各実施例と比較例1,2により得られた触媒の物性(比表面積、塩基性度)は、下記表1のとおりである。
【0027】
【表1】

Figure 0004015390
【0028】
また、上記実施例1により得られた触媒及び従来触媒の温度(℃)と転化率(%)との関係を調べたところ、図1に示す結果が得られた。また、同様にして、温度を一定(750℃)にして時間(h)と転化率(%)との関係を調べたところ、図2に示す結果が得られた。図1より本発明の触媒が従来の触媒に比べて温度変化に対する(炭化水素から水素への)転化率が高いことが明らかである。また、図2より、従来の場合、時間の経過と共に転化率が低下するのに対し、本発明の時間が経過しても転化率がほとんど低下しないことが明らかである。以上より、本発明が従来と比べ優れていることが明らかである。
【0029】
【発明の効果】
以上詳述したように本発明によれば、二酸化ジルコニウムに酸化亜鉛あるいはアルミナ,シリカ,チタニア,セリアのいずれかを複合化して得られる塩基性担体に、アルコール還元法によってルテニウムを白金、パラジウム、ロジウムのいずれか一つ以上と合金化することにより得られる合金を活性種として含有させたことにより、耐酸化性を向上し、使用制限を軽減できるとともに、固体酸素量を制御して反応選択性を維持しコーキング抑制することで、耐久性向上を実現しうる炭化水素改質触媒を提供できる。
【0030】
また、本発明によれば、液化系炭化水素化合物の改質により水素を製造する際に使用される炭化水素改質触媒を製造する方法において、塩基性担体の前駆体となるハイドロタルサイト構造体を調製する工程と、前記ハイドロタルサイト構造体にアルコール還元法により得られるルテニウムと白金、パラジウム、ロジウムのいずれか一つ以上と合金化された合金活性種を担持させる工程と、前記ハイドロタルサイト構造体にルテニウム合金活性種が担持したものを焼成する工程とを具備し、塩基性担体にルテニウム合金活性種が担持された触媒を得ることにより、400〜650℃程度で炭化水素化合物を改質することができ、従来と比べ短時間起動を実現できると共に安全性の点で優れ、特に家庭用PEFC用のプラント等での使用を目的とした場合に有用な炭化水素改質触媒の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明及び従来の触媒による温度と転化率との関係を示す特性図。
【図2】温度が一定の場合における本発明及び従来の触媒による時間と転化率との関係を示す特性図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrocarbon reforming catalyst used when hydrogen is produced by reforming a hydrocarbon compound such as gasoline, naphtha, kerosene, and light oil, and a method for producing the same.
[0002]
[Prior art]
As is well known, the reaction of reforming hydrocarbons with steam is known as a reaction for producing synthesis gas or hydrogen. Conventionally, Ni / Al 2 O 3 -based catalysts are generally used for this reaction, but there is a problem that carbon deposition (coking) occurs.
[0003]
In order to avoid this coking, a Ru-based catalyst has been proposed for the above reaction (Japanese Patent Laid-Open No. 7-88376, etc.). However, since the Ru-based catalyst exhibits high performance in a reduced state, a reduction treatment is required, and since the Ru-based catalyst is easily oxidized, there are restrictions on use such that exposure to the atmosphere is not possible. Further, conventional Ru-based catalysts are mixed with basic substances such as CaO and MgO to improve reaction selectivity, but are gradually eluted during steam reforming, which is considered to be a cause of performance degradation. Furthermore, when intended for use in household polymer electrolyte fuel cell (PEFC) plants, etc., the reaction temperature is as high as 650 to 850 ° C., so there are concerns about safety and startup time. There was a problem that it took.
[0004]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above circumstances, and can reduce the use restriction to improve the oxidation resistance, by controlling the amount of solid acid by the support base-imparting effect maintaining the reaction selectivity, durability It aims at providing the hydrocarbon reforming catalyst which can implement | achieve.
[0005]
In addition, the present invention is a method for producing a hydrocarbon reforming catalyst that can reform a hydrocarbon compound at about 400 to 650 ° C., can achieve a shorter start-up time than conventional methods, and is excellent in safety. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The first invention of the present application is a hydrocarbon reforming catalyst used when hydrogen is produced by reforming a liquid hydrocarbon compound. Zirconium dioxide is combined with zinc oxide or any of alumina, silica, titania, and ceria. basic carrier obtained turned into a platinum ruthenium by alcohol reduction method, palladium, hydrocarbons, characterized in that contained as the active species obtained alloy by one or more alloyed either rhodium It is a reforming catalyst.
[0007]
A second invention of the present application relates to a method for producing a hydrocarbon reforming catalyst used when producing hydrogen by reforming a liquefied hydrocarbon compound, wherein a hydrotalcite structure serving as a precursor of a basic support is provided. a step of preparing the hydrotalcite structure ruthenium and platinum obtained by an alcohol reduction method, palladium, a step of carrying any one or more alloyed with the alloy active species rhodium, the hydrotalcite A method for producing a hydrocarbon reforming catalyst, comprising: a step of firing a ruthenium alloy active species supported on a structure, and obtaining a catalyst having a ruthenium alloy active species supported on a basic support. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the hydrocarbon reforming catalyst of the present invention and the production method thereof will be described in more detail. In the hydrocarbon reforming catalyst of the present invention, the support is zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), ceria (CeO 2 ). ) Or the like is used. As a result, the amount of the carrier solid acid can be controlled, and a carrier having a long-term durability as a high reaction selective catalyst can be obtained. As the active species, an alloy obtained by alloying ruthenium (Ru) with a noble metal such as Pd or Pt by an alcohol reduction method is used. As a result, the Ru metal state can always be maintained, the use restriction can be reduced as in the case of a conventional Ru-based catalyst, and the active species can be made durable for a long time. Therefore, according to the hydrocarbon reforming catalyst according to the present invention, the oxidation resistance is improved, the use limitation is reduced, and the reaction selectivity is maintained by controlling the amount of solid acid, thereby suppressing coking. Durability improvement can be realized.
[0009]
In the method of the present invention, the basic carrier is preferably a carrier prepared using a hydrotalcite structure as a precursor. Here, the hydrotalcite structure of the precursor, for example, in the combination of zirconia and zinc, has a formula such as Zr (CO 3 ) x (OH) y · Zn (CO 3 ) z (OH) s. It means the substance you have. By baking these, the oxide of ZrZnO 3 maintains a high surface area oxide state in an amorphous state. For example, if only ZrO (NO 3 ) 2 and Zn (NO 3 ) 2 are mixed and fired, not only the surface area of the oxide after firing but also the mixed state of zirconia and zinc is low.
[0010]
According to the method of the present invention, the hydrocarbon compound can be reformed at about 400 to 650 ° C. Therefore, when it is intended for use in a plant for home PEFC, it can be started in a shorter time than conventional. Thus, a catalyst excellent in safety can be obtained.
[0011]
In addition, by preparing a hydrotalcite structure as a precursor and calcining the hydrotalcite structure, zinc oxide or oxides such as alumina, silica, titania and ceria are converted into basic composite oxides on zirconium dioxide. The surface area can be further increased.
[0012]
【Example】
Examples of the present invention will be described below. In addition, the material, numerical value, etc. which are described in the following Example show an example, and the right range of this invention is not limited by this.
[0013]
(Example)
(1) First, a solution corresponding to 3 g of Ru from a Ru nitrate solution and 3.15 g of Pd of the same molar amount relative to Ru from a Pd nitrate solution were weighed and neutralized with (1N) NaOHaq. In addition, Ru should just be the range of 0.1-10 wt%, and the quantity of Pd should just be a 0.1-10 times molar quantity with respect to Ru quantity. In addition to Pd, Pt (a chloroplatinic acid solution is used) or Rh (rhodium nitrate solution) may be used.
[0014]
(2) Next, (0.5 N) Na 2 CO 3 aq was added to the solution of (1) above in 3.5 L (liter). The concentration of Na 2 CO 3 aq may be in the range of 0.01 to 20N.
(3) Next, 136.45 g of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) and 122.58 g of zirconyl oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) in distilled water A nitrate solution dissolved to 500 ml was added dropwise to the solution of (2) above. In addition, although zinc nitrate hexahydrate and zirconyl oxynitrate are added at a molar ratio of 1: 1, they may be added at a molar ratio of 0.1 to 10: 0.1 to 10.
[0015]
(4) Next, after completion of the dropwise addition, the liquid temperature was raised to 60 ° C., and 800 g of alcohol was gradually added to the solution of (3) above, and the mixture was kept warm and stirred for 24 hours. A Pd alloy was formed. In addition, liquid temperature should just be the range of 40-80 degreeC. Thereafter, the precipitate was filtered and washed with distilled water until the filtrate reached pH = 7.
[0016]
(5) After washing, dried at 110 ° C. for 12 hours, pulverized, and fired at 500 ° C. for 3 hours. The firing temperature may be in the range of 400 to 800 ° C. and the firing time may be in the range of 1 to 10 hours.
[0017]
By the above operation, 100 g of Ru—Pd / ZnO—ZrO 2 catalyst can be prepared. The solid acid amount of the prepared catalyst is evaluated by a temperature programmed desorption method using CO 2 in order to show basicity particularly in the case of this catalyst. In addition, by using a carrier preparation method using a hydrotalcite structure as a precursor and further using an alcohol reduction method, the Ru—Pd alloy which is an active species can be supported while maintaining a high surface area of the carrier. Surface area is generated and catalytic activity is high.
[0018]
(Comparative Example 1)
(1) First, (0.5N) Na 2 CO 3 aq was added to a 3.5 L round bottom flask. The concentration may be in the range of 0.01-20.
(2) Next, 136.45 g of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) and 122.58 g of zirconyl oxynitrate (ZrO (NO 3 ) 2 · 2H 2 O) in distilled water A nitrate solution dissolved to 500 ml was added dropwise to the solution of (1) above. In addition, although zinc nitrate hexahydrate and zirconyl oxynitrate are added at a molar ratio of 1: 1, they may be added at a molar ratio of 0.1 to 10: 0.1 to 10.
[0019]
(3) After completion of the dropwise addition, the precipitate was aged by keeping the liquid temperature at 40 ° C. for 12 hours and stirring. Thereafter, the precipitate was filtered and washed with distilled water until the filtrate reached pH = 7.
(4) After washing, dried at 110 ° C. for 12 hours, pulverized, and calcined at 500 ° C. for 3 hours. The firing temperature may be in the range of 400 to 800 ° C. and the firing time may be in the range of 1 to 10 hours.
[0020]
(5) Next, a Ru nitrate solution (a solution corresponding to 3 g of Ru) and a Pd nitrate solution (a solution corresponding to 3.15 g of the same molar amount with respect to Ru) were mixed, and the solution was neutralized with (1N) NaOHaq. In addition, Ru should just be the range of 0.1-10 wt%, and the quantity of Pd should just be 0.1-10 times the molar quantity with respect to Ru quantity. A chloroplatinic acid solution) or Rh (rhodium nitrate solution) may be used.
[0021]
(6) Next, the solution of the above (5) was mixed with the powder obtained in the above (4), and the slurry liquid was evaporated to dryness on a 160 ° C. hot plate. In addition, the range of 100-250 degreeC may be sufficient as the temperature of evaporation to dryness.
(7) Next, the powder obtained in (6) above is filtered and washed with distilled water, washed until Na ion is 1 ppm or less and the filtrate is pH = 7, and then dried at 110 ° C. for 12 hours, After pulverization, it was calcined at 500 ° C. for 3 hours. Here, the firing temperature may be in the range of 400 to 800 ° C., and the firing time may be in the range of 1 to 10 hours.
By the above operation, 100 g of Ru—Pd / ZnO—ZrO 2 catalyst was prepared.
[0022]
(Comparative Example 2)
(1) First, (0.5N) Na 2 CO 3 aq was added to a 3.5 L round bottom flask. The concentration may be in the range of 0.01-20.
(2) Next, 136.45 g of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) and 122.58 g of zirconyl oxynitrate (ZrO (NO 3 ) 2 · 2H 2 O) in distilled water A nitrate solution dissolved to 500 ml was added dropwise to the solution of (1) above. In addition, although zinc nitrate hexahydrate and zirconyl oxynitrate are added at a molar ratio of 1: 1, they may be added at a molar ratio of 0.1 to 10: 0.1 to 10.
[0023]
(3) After completion of the dropwise addition, the precipitate was aged by keeping the liquid temperature at 40 ° C. for 12 hours and stirring. Thereafter, the precipitate was filtered and washed with distilled water until the filtrate reached pH = 7.
(4) After washing, dried at 110 ° C. for 12 hours, pulverized, and calcined at 500 ° C. for 3 hours. The firing temperature may be in the range of 400 to 800 ° C. and the firing time may be in the range of 1 to 10 hours.
[0024]
(5) Next, a Ru nitrate solution (solution equivalent to 3 g of Ru) and a Pd nitrate solution (a solution equivalent to 3.15 g of the same molar amount with respect to Ru) are mixed, and the powder obtained in (4) above is mixed. The slurry liquid was evaporated to dryness on a hot plate at 160 ° C. Ru should be in the range of 0.1 to 10 wt%, and the amount of Pd was 0.1 to 10 relative to the Ru amount. In addition to Pd, Pt (using a chloroplatinic acid solution) or Rh (rhodium nitrate solution) may be used, and the temperature of the hot plate is in the range of 100 to 250 ° C. It may be evaporated to dryness.
[0025]
(6) Next, the powder obtained in the above (5) is filtered and washed with distilled water, washed until the filtrate reaches pH = 7, dried at 110 ° C. for 12 hours, pulverized, and pulverized at 500 ° C. for 3 hours. Baked for hours. Here, the firing temperature may be in the range of 400 to 800 ° C., and the firing time may be in the range of 1 to 10 hours.
By the above operation, 100 g of Ru—Pd / ZnO—ZrO 2 catalyst was prepared.
[0026]
The physical properties (specific surface area and basicity) of the catalysts obtained in the above Examples and Comparative Examples 1 and 2 are as shown in Table 1 below.
[0027]
[Table 1]
Figure 0004015390
[0028]
Further, when the relationship between the temperature (° C.) and the conversion rate (%) of the catalyst obtained in Example 1 and the conventional catalyst was examined, the result shown in FIG. 1 was obtained. Similarly, when the temperature was kept constant (750 ° C.) and the relationship between time (h) and conversion (%) was examined, the result shown in FIG. 2 was obtained. FIG. 1 clearly shows that the catalyst of the present invention has a higher conversion rate (from hydrocarbon to hydrogen) with respect to temperature change than the conventional catalyst. In addition, it is clear from FIG. 2 that in the conventional case, the conversion rate decreases with time, whereas the conversion rate hardly decreases even when the time of the present invention elapses. From the above, it is clear that the present invention is superior to the conventional one.
[0029]
【The invention's effect】
As described above in detail, according to the present invention, ruthenium is converted to platinum, palladium, rhodium by an alcohol reduction method on a basic support obtained by combining zirconium dioxide with zinc oxide or any of alumina, silica, titania, and ceria. by which contains an alloy obtained by one or more alloyed either beam as the active species, improving the oxidation resistance, it is possible to reduce use restrictions, reaction selectivity by controlling the solids oxygen content By maintaining coke and suppressing coking, a hydrocarbon reforming catalyst capable of realizing improved durability can be provided.
[0030]
Further, according to the present invention, in the method for producing a hydrocarbon reforming catalyst used when producing hydrogen by reforming a liquefied hydrocarbon compound, the hydrotalcite structure which is a precursor of a basic carrier a step of loading a step, ruthenium and platinum obtained by an alcohol reduction method in the hydrotalcite structure, palladium, any one or more alloyed with the alloy active species rhodium for preparing the hydrotalcite And a step of firing a ruthenium alloy active species supported on the site structure and obtaining a catalyst in which the ruthenium alloy active species is supported on a basic support, thereby improving the hydrocarbon compound at about 400 to 650 ° C. Compared to the conventional system, it can be started up in a shorter period of time and is safer, with the aim of being used in a home PEFC plant. Ru can provide a method for producing a useful hydrocarbon reforming catalyst when the.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the relationship between temperature and conversion rate according to the present invention and a conventional catalyst.
FIG. 2 is a characteristic diagram showing the relationship between time and conversion rate according to the present invention and the conventional catalyst when the temperature is constant.

Claims (2)

液系炭化水素化合物の改質により水素を製造する際に使用される炭化水素改質触媒において、二酸化ジルコニウムに酸化亜鉛あるいはアルミナ,シリカ,チタニア,セリアのいずれかを複合化して得られる塩基性担体に、アルコール還元法によってルテニウムを白金、パラジウム、ロジウムのいずれか一つ以上と合金化することにより得られる合金を活性種として含有させたことを特徴とする炭化水素改質触媒。In a hydrocarbon reforming catalyst used when hydrogen is produced by reforming a liquid hydrocarbon compound, a basic carrier obtained by combining zirconium dioxide with any of zinc oxide, alumina, silica, titania, and ceria the platinum ruthenium by alcohol reduction method, palladium, hydrocarbon reforming catalyst, characterized in that contained as the active species obtained alloy by one or more alloyed either rhodium. 液化系炭化水素化合物の改質により水素を製造する際に使用される炭化水素改質触媒を製造する方法において、塩基性担体の前駆体となるハイドロタルサイト構造体を調製する工程と、前記ハイドロタルサイト構造体にアルコール還元法により得られるルテニウムと白金、パラジウム、ロジウムのいずれか一つ以上と合金化された合金活性種を担持させる工程と、前記ハイドロタルサイト構造体にルテニウム合金活性種が担持したものを焼成する工程とを具備し、塩基性担体にルテニウム合金活性種が担持された触媒を得ることを特徴とする炭化水素改質触媒の製造方法。In a method for producing a hydrocarbon reforming catalyst used for producing hydrogen by reforming a liquefied hydrocarbon compound, a step of preparing a hydrotalcite structure that is a precursor of a basic carrier; ruthenium and platinum obtained by alcohol reduction method hydrotalcite structure, palladium, a step of carrying any one or more alloyed with the alloy active species rhodium, ruthenium alloy active species to the hydrotalcite structure A method for producing a hydrocarbon reforming catalyst, comprising the step of calcining a catalyst supported on the catalyst, and obtaining a catalyst in which a ruthenium alloy active species is supported on a basic support.
JP2001272238A 2001-09-07 2001-09-07 Hydrocarbon reforming catalyst and method for producing the same Expired - Fee Related JP4015390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272238A JP4015390B2 (en) 2001-09-07 2001-09-07 Hydrocarbon reforming catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272238A JP4015390B2 (en) 2001-09-07 2001-09-07 Hydrocarbon reforming catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003080070A JP2003080070A (en) 2003-03-18
JP4015390B2 true JP4015390B2 (en) 2007-11-28

Family

ID=19097640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272238A Expired - Fee Related JP4015390B2 (en) 2001-09-07 2001-09-07 Hydrocarbon reforming catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4015390B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137651A (en) * 2004-11-15 2006-06-01 Toyota Central Res & Dev Lab Inc Composite oxide and catalyst for purifying exhaust gas
ES2342814B1 (en) * 2009-01-13 2011-05-23 Hynergreen Technologies, S.A CATALYST FOR A PROCESS FOR THE OBTAINING OF HYDROGEN BY REFORMED HYDROCARBONS WITH WATER VAPOR, PROCESS OF PREPARATION OF THE CATALYST AND USE OF THE SAME IN THE PROCESS.
EP2898945B1 (en) 2012-09-18 2020-09-02 Japan Science And Technology Agency Catalyst using pd-ru solid-solution-type alloy particles
JP6481998B2 (en) * 2015-02-28 2019-03-13 株式会社フルヤ金属 Supported catalyst
KR102027964B1 (en) * 2017-07-17 2019-10-04 한국과학기술원 Catalyst for Hydrocarbon Reforming
JP6709557B2 (en) * 2018-11-29 2020-06-17 株式会社フルヤ金属 Supported catalyst

Also Published As

Publication number Publication date
JP2003080070A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
EP2039425B1 (en) Process for production of an exhaust gas clean-up catalyst
CN107405602B (en) Methane oxidation catalyst, method of making and method of using the same
US7375051B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
US10888846B2 (en) Manganese-doped nickel-methanation catalysts
US20070249496A1 (en) Catalyst for Production of Hydrogen
JPH06182201A (en) Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JP2010017649A (en) Highly active catalyst and its preparing method
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP4015390B2 (en) Hydrocarbon reforming catalyst and method for producing the same
JP5105544B2 (en) Steam reforming catalyst
KR20100072712A (en) Hydrocarbon reforming catalyst, preparation method thereof and fuel cell employing the catalyst
JP2003080072A (en) Co shift catalyst and method for producing the same
KR20040051953A (en) Co-precipitated Ni-Ce-ZrO2 catalyst for reforming natural gas
JP2000342968A (en) Catalyst and producing method
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JP4269560B2 (en) Hydrogen production catalyst
WO2015151477A1 (en) Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
JP3590654B2 (en) Hydrocarbon steam reforming method
JPH0822378B2 (en) Hydrocarbon steam reforming catalyst
JP2005013946A (en) Catalyst for water gas reaction, method for reducing carbon monoxide and fuel cell power generation system
JP3914984B2 (en) Catalyst for water gas shift reaction of fuel reformed gas
JPH06134305A (en) Heat resistant catalyst and method for using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4015390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees