JPH06134305A - Heat resistant catalyst and method for using the same - Google Patents

Heat resistant catalyst and method for using the same

Info

Publication number
JPH06134305A
JPH06134305A JP3211854A JP21185491A JPH06134305A JP H06134305 A JPH06134305 A JP H06134305A JP 3211854 A JP3211854 A JP 3211854A JP 21185491 A JP21185491 A JP 21185491A JP H06134305 A JPH06134305 A JP H06134305A
Authority
JP
Japan
Prior art keywords
catalyst
active component
catalytically active
heat
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3211854A
Other languages
Japanese (ja)
Other versions
JP2533703B2 (en
Inventor
Hisao Yamashita
寿生 山下
Akira Kato
加藤  明
Shigeo Uno
茂男 宇野
Mamoru Mizumoto
守 水本
Shinpei Matsuda
臣平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58118207A external-priority patent/JPH0824843B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3211854A priority Critical patent/JP2533703B2/en
Publication of JPH06134305A publication Critical patent/JPH06134305A/en
Application granted granted Critical
Publication of JP2533703B2 publication Critical patent/JP2533703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prevent the flocculation of a catalytically active component and the reduction of the specific surface area during a reaction at a high temp. by carrying the catalytically active component on a carrier based on a prescribed multiple oxide consisting of lanthanum and beta-alumina. CONSTITUTION:A catalytically active component is carried on a carrier based on a multiple oxide consisting of lanthanum and beta-alumina represented by 11-14Al2O3.La2O3. In this case, the carrier is preferably made of only aluminum- lanthanum multiple oxide. Even when the resulting catalyst is used at a high temp. of >=1,000 deg.C, the flocculation of the catalytically active component by heat is inhibited and the catalytic performance is stabilized. The surface of the multiple oxide may be coated with ceramic. In the case where the catalytically active component is one or more kinds of group VIII elements of the periodic table, the resulting catalyst can be used as a heat resistant catalyst for steam reforming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は、1500℃以下の温度域
において安定して使用できる耐熱性触媒およびその使用
方法に関する。
FIELD OF THE INVENTION The present invention relates to a heat-resistant catalyst which can be stably used in a temperature range of 1500 ° C. or lower, and a method of using the same.

【0002】本発明の触媒は、特に800℃以上の温度
で使用するのに適する。
The catalysts of the invention are particularly suitable for use at temperatures above 800 ° C.

【0003】[0003]

【発明の背景】触媒を用い高温下で反応を行わせる方法
としては、有機溶剤或は無臭の酸化処理,自動車排ガス
処理,高温水蒸気改質,高温脱硝などが知られている。
最近になって大容量のボイラーやガスタービン,航空機
用のガスタービンなどへ上記の特徴を生かした触媒燃焼
技術を応用する動きが起っている。
BACKGROUND OF THE INVENTION Organic solvent or odorless oxidation treatment, automobile exhaust gas treatment, high temperature steam reforming, high temperature denitration and the like are known as methods for carrying out a reaction at a high temperature using a catalyst.
Recently, there has been a movement to apply the catalytic combustion technology that makes use of the above features to large-capacity boilers, gas turbines, gas turbines for aircraft, and the like.

【0004】これらの処理法は、反応温度がおよそ60
0℃以上であり、条件によっては1400〜1500℃
にまで達する。従って、このような高温域においても触
媒活性の低下が少なく且つ熱的安定性の高い触媒が要求
される。
In these treatment methods, the reaction temperature is about 60.
0 ° C or higher, depending on conditions 1400 to 1500 ° C
Reach up to. Therefore, even in such a high temperature range, a catalyst having a small decrease in catalytic activity and high thermal stability is required.

【0005】従来、高温用触媒として使用されてきた触
媒は、アルミナ,シリカ,シリカ−アルミナ等を担体と
してこれに貴金属、或は卑金属成分を担持したもの、あ
るいはジルコニア,チタン酸アルミニウム,窒化硅素な
どのセラミック材料を担体としてその表面に活性アルミ
ナなどをコーティングし貴金属成分を担持させたものな
どが使用されてきた。
Conventionally, the catalysts used as high temperature catalysts include alumina, silica, silica-alumina, etc. as a carrier on which a noble metal or a base metal component is supported, or zirconia, aluminum titanate, silicon nitride, etc. The ceramic material of (1) and the surface of which is coated with activated alumina or the like to carry a noble metal component have been used.

【0006】しかし、これらの触媒は通常800℃以上
になると、担体の相転移や結晶成長に伴う比表面積の減
少,活性成分の凝集に伴う表面積の減少などが生じ触媒
の活性が著しく劣化する欠点があった。上記したセラミ
ック材料を用いた触媒は、それ自体の耐熱性は高いがコ
ーティング材の耐熱性が低いために触媒成分が有効に活
用されないという欠点もある。
[0006] However, these catalysts have a drawback that the activity of the catalyst is remarkably deteriorated at a temperature of 800 ° C or higher because of a phase transition of the carrier, a decrease in specific surface area due to crystal growth, and a decrease in surface area due to aggregation of active components. was there. The catalyst using the above-mentioned ceramic material has a high heat resistance by itself, but has a drawback that the catalyst component cannot be effectively utilized because the heat resistance of the coating material is low.

【0007】[0007]

【発明の目的】本発明の目的は、上記した従来技術の欠
点を改善し、高温度の反応条件下においても活性成分の
凝集および担体の比表面積の減少を抑えることができる
耐熱性触媒及びかかる触媒の使用方法を提供することに
ある。
OBJECT OF THE INVENTION The object of the present invention is to improve the above-mentioned drawbacks of the prior art and to suppress the aggregation of the active ingredient and the reduction of the specific surface area of the carrier even under the reaction conditions of high temperature, and such a heat-resistant catalyst. It is to provide a method of using the catalyst.

【0008】[0008]

【発明の概要】γあるいはηアルミナは高比表面積を有
し、担体やコーティング材として多く使用されている
が、700℃以上特に900℃以上においてはαアルミ
ナへの相転移及び結晶粒子径の成長などにより比表面積
が低下し、これに伴って触媒活性成分である貴金属,卑
金属などの粒子の凝集が起こり触媒活性が低下する。
SUMMARY OF THE INVENTION γ or η alumina has a high specific surface area and is often used as a carrier or a coating material. However, at 700 ° C. or higher, especially at 900 ° C. or higher, the phase transition to α alumina and the growth of crystal grain size occur. As a result, the specific surface area decreases, and along with this, the particles of the catalytically active components, such as precious metals and base metals, agglomerate and the catalytic activity decreases.

【0009】本発明者等は、アルミナの上記の様な熱的
不安定性を改善し、担持された触媒成分の粒子が凝集す
ることを防ぐために種々検討した結果、アルミニウムに
ランタンを添加して得られるランタンβアルミナ(11
〜14Al23・La23)担体に触媒活性成分である
貴金属,卑金属などを組合わせた触媒が非常に有効であ
ることを見出した。
The present inventors have conducted various studies to improve the above thermal instability of alumina and prevent the particles of the supported catalyst component from aggregating. As a result, lanthanum was added to aluminum. Lanthanum β-alumina (11
~14Al 2 O 3 · La 2 O 3) a noble metal as a catalyst active component on a carrier, the catalyst was such a combined base metal is found to be very effective.

【0010】本発明は、アルミニウムとランタンの複合
酸化物を主成分とする担体に触媒活性成分を担持してな
る耐熱性触媒である。
The present invention is a heat-resistant catalyst comprising a carrier having a composite oxide of aluminum and lanthanum as a main component and a catalytically active component supported on the carrier.

【0011】アルミニウムとランタンの複合酸化物とし
ては、ランタンβアルミナが最も望ましいが、これに限
定されるわけではない。
Although lanthanum β-alumina is most preferable as the composite oxide of aluminum and lanthanum, it is not limited thereto.

【0012】更に、担体はアルミニウムとランタンの複
合酸化物のみからなることが最も望ましいが、他の担体
成分を含んでもかまわない。
Further, the carrier is most preferably composed only of a composite oxide of aluminum and lanthanum, but other carrier components may be contained.

【0013】ランタンβアルミナは、11〜14Al2
3・La23よりなる化合物である。この複合酸化物
は、それらの水酸化物あるいは酸化物あるいは熱処理す
ることにより酸化物を与える化合物を原料として、それ
らの混合物を少なくとも800℃以上の温度で焼成する
ことによって生成する。
Lanthanum β-alumina is 11-14 Al 2
O is 3 · La consisting 2 O 3 compound. This composite oxide is produced by firing a mixture of these hydroxides or oxides or a compound that gives an oxide by heat treatment at a temperature of at least 800 ° C. or higher.

【0014】アルミニウムとランタンの複合酸化物より
なる担体に触媒活性成分を担持した触媒は、1000℃
以上の高温で使用しても触媒活性成分の熱による凝集が
起り難く安定した触媒性能を維持することができる。そ
の理由としては、アルミニウムとランタンの複合酸化物
と触媒活性成分とが強い相互作用を示すことが挙げられ
る。
A catalyst in which a catalytically active component is supported on a carrier composed of a composite oxide of aluminum and lanthanum is 1000 ° C.
Even when used at the above-mentioned high temperature, aggregation of the catalytically active component due to heat hardly occurs, and stable catalytic performance can be maintained. The reason is that the composite oxide of aluminum and lanthanum and the catalytically active component exhibit strong interaction.

【0015】ランタンβアルミナはそれ自体が耐熱性が
良く、比表面積も大きいが、そのほかにこの化合物は活
性アルミナからαアルミナへの相転移及び結晶成長を抑
制する効果があることが詳細なX線回折,電子顕微鏡観
察の結果より明らかになった。従って、ランタンβアル
ミナのみならず、この複合酸化物を主成分として含むア
ルミナ担体も高温で用いる触媒用担体として優れてい
る。
Although lanthanum β-alumina itself has good heat resistance and a large specific surface area, other than that, this compound has an effect of suppressing the phase transition from activated alumina to α-alumina and crystal growth, which is detailed in detail. It became clear from the results of diffraction and electron microscopy. Therefore, not only lanthanum β-alumina but also an alumina carrier containing this composite oxide as a main component is excellent as a catalyst carrier used at high temperature.

【0016】アルミニウムとランタンの複合酸化物より
なる担体は、高温条件下での比表面積の低下も少ないこ
とがN2 吸着実験により明らかとなった。更に上記複合
酸化物に担持された触媒成分であるパラジウムの分散状
態を電子顕微鏡及び一酸化炭素の化学吸着法で調べたと
ころ、1200℃で焼成しても高分散状態にあることが
わかった。
It was revealed from the N 2 adsorption experiment that the carrier made of a composite oxide of aluminum and lanthanum showed a small decrease in the specific surface area under high temperature conditions. Further, the dispersion state of palladium, which is the catalyst component supported on the above composite oxide, was examined by an electron microscope and a carbon monoxide chemisorption method, and it was found that the dispersion state was high even after firing at 1200 ° C.

【0017】アルミニウムとランタンの複合酸化物を他
のセラミックスにコーティング或は複合してもよい。例
えばαアルミナ,チタニア,ジルコニア,マグネシア,
コージェライト,ムライト,アルミニウムチタネートな
どの耐熱性酸化物に加えて使用することもできる。また
シリコンカーバイドや窒化硅素のような酸化物以外のも
のにコーティングあるいは混合しても良い。複合する場
合、アルミニウムとランタンの複合酸化物の量は、担体
全重量の50%以上を有するようにすることが望まし
い。
The composite oxide of aluminum and lanthanum may be coated or composited with other ceramics. For example, α-alumina, titania, zirconia, magnesia,
It can also be used in addition to heat-resistant oxides such as cordierite, mullite and aluminum titanate. It may be coated or mixed with a material other than oxides such as silicon carbide and silicon nitride. When complexed, the amount of the complex oxide of aluminum and lanthanum is preferably 50% or more of the total weight of the carrier.

【0018】アルミニウムとランタンの複合酸化物を形
成するための焼成温度は800℃以上、好ましくは90
0℃以上1500℃以下である。焼成温度が800℃以
下ではランタンβアルミナが生成せず、1500℃を超
えると焼結が進行するため好ましくない。
The firing temperature for forming the composite oxide of aluminum and lanthanum is 800 ° C. or higher, preferably 90.
It is 0 ° C or higher and 1500 ° C or lower. When the firing temperature is 800 ° C. or lower, lanthanum β-alumina is not formed, and when it exceeds 1500 ° C., sintering proceeds, which is not preferable.

【0019】上記複合酸化物を含む粉体は種々の形状、
例えば球状,円柱状,リング状,ハニカム状などに成形
して使用することができる。また、種々の形状に成形さ
れた無機質耐熱性担体、例えばムライト,コージライ
ト,αアルミナ,ジルコン,チタン酸アルミニウム,シ
リコンカーバイド,窒化硅素等のセラミックスに上記複
合酸化物を含む粉体のスラリーをコーティングして使用
することもできる。無機質耐熱性担体に担持する上記複
合酸化物の量は担体全重量の5%以上、好ましくは5〜
30重量%である。
Powders containing the above complex oxide have various shapes,
For example, it can be used after being formed into a spherical shape, a cylindrical shape, a ring shape, a honeycomb shape, or the like. Further, inorganic heat-resistant carriers formed into various shapes, for example, ceramics such as mullite, cordierite, α-alumina, zircon, aluminum titanate, silicon carbide and silicon nitride are coated with a slurry of powder containing the above complex oxide. It can also be used. The amount of the above composite oxide supported on the inorganic heat resistant carrier is 5% or more, preferably 5 to 5% of the total weight of the carrier.
It is 30% by weight.

【0020】上記のアルミニウムとランタンの複合酸化
物を製造する方法としては、通常の沈殿法,沈着法,混
練法,含浸法などを適用することができ、特に限定され
ない。一例としてアルミニウム塩とランタン塩の混合水
溶液にアルカリを添加して緊密な共沈物を生成させ、こ
れを加熱焼成する方法、アルミナおよび/またはアルミ
ナゾルと酸化ランタンおよび/または水酸化ランタンを
緊密に混合し、これを加熱焼成する方法、アルミナにラ
ンタン塩の溶液を含浸し、これを加熱焼成する方法など
が挙げられる。
As a method for producing the above-mentioned aluminum-lanthanum composite oxide, a usual precipitation method, a deposition method, a kneading method, an impregnation method or the like can be applied and is not particularly limited. As an example, a method of adding an alkali to a mixed aqueous solution of an aluminum salt and a lanthanum salt to form a dense coprecipitate, and heating and calcining this, intimately mixing alumina and / or alumina sol with lanthanum oxide and / or lanthanum hydroxide. Then, a method of heating and baking this, a method of impregnating alumina with a solution of a lanthanum salt, and heating and baking this are mentioned.

【0021】なお、アルミナとランタンを含む水溶液に
アルカリを加えて両者の緊密な混合物を共沈させてから
焼成すると、比較的低い焼成温度でもアルミニウムとラ
ンタンの複合酸化物が得られるので好ましい方法であ
る。
If an alkali is added to an aqueous solution containing alumina and lanthanum to coprecipitate an intimate mixture of both, and then calcination is carried out, a composite oxide of aluminum and lanthanum can be obtained even at a relatively low calcination temperature. is there.

【0022】アルミニウム原料としては、硝酸塩,硫酸
塩,塩化物などの可溶性塩,アルコキシドなどの有機
塩,水酸化物,酸化物などが使用できる。一方、ランタ
ン原料としては、硝酸塩,塩化物,シュウ酸塩などの可
溶性塩,水酸化物,酸化物などが使用できる。ランタン
を含有している混合希土も使用できる。
As the aluminum raw material, soluble salts such as nitrates, sulfates and chlorides, organic salts such as alkoxides, hydroxides and oxides can be used. On the other hand, as the lanthanum raw material, soluble salts such as nitrates, chlorides and oxalates, hydroxides and oxides can be used. Mixed rare earths containing lanthanum can also be used.

【0023】触媒活性成分は、最終的に金属又は酸化物
の形で担持される。
The catalytically active components are finally supported in the form of metals or oxides.

【0024】触媒活性成分の担持方法としては、含浸法
或は混練法などの通常行われている方法を適用すること
ができる。触媒活性成分の原料としては、無機塩や錯塩
などを使用できる。
As a method for supporting the catalytically active component, a commonly used method such as an impregnation method or a kneading method can be applied. As a raw material of the catalytically active component, an inorganic salt or a complex salt can be used.

【0025】本発明の触媒は、水素或は一般化炭素或は
炭化水素類の燃焼反応,悪臭除去,脱硝反応,高温水蒸
気改質反応,自動車排気ガス浄化などに使用可能であ
る。
The catalyst of the present invention can be used for combustion reaction of hydrogen or generalized carbon or hydrocarbons, odor removal, denitration reaction, high temperature steam reforming reaction, automobile exhaust gas purification and the like.

【0026】本発明の触媒を水素と一酸化炭素と炭化水
素類の少なくとも1種を燃焼成分とするガスの燃焼反応
に使用する場合には、触媒活性成分として周期律表第VI
II族,マンガン,クロム,ジルコニウム,希土類元素,
錫,亜鉛,銅,マグネシウム,バリウム,ストロンチウ
ム及びカルシウムなどを用いることが望ましい。かかる
燃焼反応に用いられる炭化水素類としては、エタン,プ
ロパン,ブタン,ペンタンなどがある。反応温度はガス
の種類によって異なるが、室温〜1500℃の広い温度
範囲を適用することができる。燃焼反応を行うときに
は、前記ガスを酸素を含むガスの存在下で触媒に接触さ
せる。炭化水素類がメタンである場合には、反応温度は
400〜1000℃が特に望ましく、触媒活性成分には
白金属金属を使用することが望ましい。
When the catalyst of the present invention is used in a combustion reaction of a gas containing at least one of hydrogen, carbon monoxide and hydrocarbons as a combustion component, it is used as a catalyst active component in Periodic Table VI.
Group II, manganese, chromium, zirconium, rare earth elements,
It is desirable to use tin, zinc, copper, magnesium, barium, strontium and calcium. Hydrocarbons used in such combustion reaction include ethane, propane, butane, pentane and the like. The reaction temperature varies depending on the type of gas, but a wide temperature range of room temperature to 1500 ° C can be applied. When carrying out the combustion reaction, the gas is brought into contact with the catalyst in the presence of a gas containing oxygen. When the hydrocarbon is methane, the reaction temperature is particularly preferably 400 to 1000 ° C., and it is desirable to use a white metal metal as the catalytically active component.

【0027】本発明の触媒を自動車排ガスなどのように
内燃機関の排ガスの浄化に使用する場合には、触媒活性
成分として周期律表第VIII族,マンガン,クロム,ジル
コニウム,希土類元素,錫,亜鉛,銅,マグネシウム,
バリウム,ストロンチウム及びカルシウムの少なくとも
1つを用い、150〜1500℃の反応温度で前記排ガ
ス及び酸素を触媒に接触させる。触媒活性成分として
は、周期律表第VIII族から選ばれた金属を使用すること
が特に望ましい。
When the catalyst of the present invention is used to purify exhaust gas of an internal combustion engine such as automobile exhaust gas, it is used as a catalytically active component in Group VIII of the periodic table, manganese, chromium, zirconium, rare earth elements, tin and zinc. , Copper, magnesium,
At least one of barium, strontium and calcium is used to bring the exhaust gas and oxygen into contact with the catalyst at a reaction temperature of 150 to 1500 ° C. It is particularly desirable to use a metal selected from Group VIII of the Periodic Table as the catalytically active component.

【0028】このようにすることにより、排ガス中の一
酸化炭素及び炭化水素を酸化し、窒素酸化物を窒素と水
とに変換して無害化することができる。
By doing so, it is possible to oxidize carbon monoxide and hydrocarbons in the exhaust gas and convert nitrogen oxides into nitrogen and water to render them harmless.

【0029】本発明の触媒を炭化水素の水蒸気改質に使
用する場合には、触媒活性成分として周期律表第VIII
族,アルカリ金属及びアルカリ土類金属から選ばれた少
なくとも1つを用い、400〜1500℃の温度範囲で
反応を行わせて水素及び一酸化炭素からなるガスを製造
する。触媒活性成分としては、周期律表第VIII族、特に
ニッケル、或はニッケルとコバルトの混合物を用いるこ
とが望ましい。
When the catalyst of the present invention is used for steam reforming of hydrocarbons, it is used as a catalytically active component in Periodic Table No. VIII.
At least one selected from the group consisting of alkali metals and alkaline earth metals is used to carry out a reaction in the temperature range of 400 to 1500 ° C. to produce a gas composed of hydrogen and carbon monoxide. As the catalytically active component, it is desirable to use Group VIII of the Periodic Table, especially nickel, or a mixture of nickel and cobalt.

【0030】本発明の触媒をボイラ,ガスタービンなど
の排ガス中の窒素酸化物の還元反応に使用する場合に
は、還元剤としてアンモニアを使用し、500〜150
0℃の温度で反応を行う。触媒活性成分としては周期律
表第VIII族,アルカリ土類金属,チタン,ジルコニウ
ム,バナジウム,希土類元素,Va族,VIa族,マンガ
ン,亜鉛,アルミニウム,錫及び鉛から選ばれた少なく
とも1つを用いることが望ましい。
When the catalyst of the present invention is used for the reduction reaction of nitrogen oxides in the exhaust gas of boilers, gas turbines, etc., ammonia is used as a reducing agent, and the amount is 500 to 150.
The reaction is carried out at a temperature of 0 ° C. As the catalytically active component, at least one selected from Group VIII of the Periodic Table, alkaline earth metals, titanium, zirconium, vanadium, rare earth elements, Va group, VIa group, manganese, zinc, aluminum, tin and lead is used. Is desirable.

【0031】これらは最終的に酸化物の形で担持され
る。触媒活性成分の中では、特にタングステン,バナジ
ウム,チタン,錫,セリウム,鉄,ニッケル,コバルト
の少なくとも1つが好ましい。
These are finally supported in the oxide form. Among the catalytically active components, at least one of tungsten, vanadium, titanium, tin, cerium, iron, nickel and cobalt is particularly preferable.

【0032】本発明の触媒をメタン化反応に使用する場
合には、触媒活性成分として周期律表第VIII族,亜鉛,
クロム,バナジウム及びセリウムから選ばれた少なくと
も1つを用い、250〜400℃の温度で一酸化炭素含
有ガスと水素を触媒に接触させるとよい。触媒活性成分
としては周期律表第VIII族から選ばれた金属、なかでも
ニッケルを用いることが特に望ましい。
When the catalyst of the present invention is used in a methanation reaction, as a catalytically active component, Group VIII of the periodic table, zinc,
At least one selected from chromium, vanadium and cerium may be used, and the carbon monoxide-containing gas and hydrogen may be contacted with the catalyst at a temperature of 250 to 400 ° C. As the catalytically active component, it is particularly desirable to use a metal selected from Group VIII of the Periodic Table, especially nickel.

【0033】本発明の触媒を炭化水素類の脱水素反応に
使用する場合には、触媒活性成分としてクロム,亜鉛,
バナジウム,銅,錫,鉄,ニッケル及びコバルトの少な
くとも1つを用い、室温以上且つ1500℃以下の温度
で炭化水素類を触媒に接触させる。炭化水素類がメタノ
ールであるときは、触媒活性成分として銅と亜鉛の少な
くとも1つを用いることが望ましい。また、反応温度は
300〜1000℃にすることが望ましい。
When the catalyst of the present invention is used in the dehydrogenation reaction of hydrocarbons, chromium, zinc, and
At least one of vanadium, copper, tin, iron, nickel and cobalt is used, and hydrocarbons are brought into contact with the catalyst at a temperature of room temperature or higher and 1500 ° C. or lower. When the hydrocarbon is methanol, it is desirable to use at least one of copper and zinc as the catalytically active component. The reaction temperature is preferably 300 to 1000 ° C.

【0034】[0034]

【発明の実施例】以下に実施例により本発明の内容をよ
り具体的に説明するが、本発明はこれらの実施例に何等
限定されるものではない。
The contents of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0035】実施例1 硝酸アルミニウム375.1g と硝酸ランタン228g
を蒸留水1リットルに溶解する(Al/La=95/5
原子比)。この溶液を撹拌しながら3Nアンモニア水を
滴下しpH7.5 まで中和する。得られたアルミニウム
とランタンの共沈物を充分水洗し乾燥した後粉砕して1
000℃で5時間焼成する。得られた粉体をプレス成型
機で直径3mm、長さ3mmの円柱状にし担体とした。
Example 1 375.1 g of aluminum nitrate and 228 g of lanthanum nitrate
Is dissolved in 1 liter of distilled water (Al / La = 95/5
Atomic ratio). While stirring this solution, 3N aqueous ammonia was added dropwise to neutralize the solution to pH 7.5. The coprecipitate of aluminum and lanthanum obtained was thoroughly washed with water, dried, and then pulverized 1
Bake at 000 ° C. for 5 hours. The obtained powder was formed into a columnar shape having a diameter of 3 mm and a length of 3 mm by a press molding machine to obtain a carrier.

【0036】一方、前述の方法において硝酸ランタンを
添加しない以外は同様に調製し、アルミナのみから成る
比較例担体を得た。
On the other hand, a comparative carrier made of only alumina was prepared in the same manner as above except that lanthanum nitrate was not added.

【0037】以上の方法で得た2通りの担体のそれぞれ
に硝酸パラジウム溶液をバラジウムとして1重量%とな
るように含浸したのち、120℃で約5時間乾燥し、そ
の後1200℃で3時間焼成し、実施例1触媒及び比較
例1触媒を調製しメタン燃焼反応について性能評価を行
った。下記組成のガスを空間速度25,000h-1で流通し、
30時間の連続試験を行なった。
Each of the two types of carriers obtained by the above method was impregnated with a palladium nitrate solution as vanadium in an amount of 1% by weight, dried at 120 ° C. for about 5 hours, and then calcined at 1200 ° C. for 3 hours. The catalyst of Example 1 and the catalyst of Comparative Example 1 were prepared and the performance of the methane combustion reaction was evaluated. A gas having the following composition is circulated at a space velocity of 25,000 h -1 ,
A 30-hour continuous test was performed.

【0038】ガス組成 メタン:3% 空 気:残部 本実験においては反応ガスを550℃に予熱して行なっ
た。メタンの反応率が90%以上に達すると触媒層の温
度が1200℃程度に達するので、触媒の高温での耐久
性を評価することができる。実験結果を表1に示す。
Gas composition Methane: 3% Air: Balance The reaction gas was preheated to 550 ° C. in this experiment. When the reaction rate of methane reaches 90% or more, the temperature of the catalyst layer reaches about 1200 ° C., so that the durability of the catalyst at high temperature can be evaluated. The experimental results are shown in Table 1.

【0039】表1から本実施例による触媒は、高温下に
おける触媒燃焼反応用として好適であることが良くわか
る。
It can be seen from Table 1 that the catalyst according to this example is suitable for catalytic combustion reaction at high temperature.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例1触媒及び比較例2触媒の30h活
性測定後の比表面積を測定したところ、前者では約55
2/g、後者では4m2/gであった。また担体上に分
散しているパラジウムの表面積を測定した結果、実施例
1触媒では78m2 /g−Pdに対し、比較例1触媒で
は20m2 /g−Pdであった。このように比較例1触
媒に比べ、実施例1触媒は比表面積及びPdの分散状態
が良好であり、耐熱性触媒として優れていることがわか
る。
The specific surface area of the catalyst of Example 1 and the catalyst of Comparative Example 2 were measured after the activity was measured for 30 hours.
m 2 / g, and the latter was 4 m 2 / g. In addition, the surface area of palladium dispersed on the carrier was measured. As a result, the catalyst of Example 1 was 78 m 2 / g-Pd, while the catalyst of Comparative Example 1 was 20 m 2 / g-Pd. Thus, it can be seen that the catalyst of Example 1 has a better specific surface area and a dispersed state of Pd than the catalyst of Comparative Example 1, and is excellent as a heat resistant catalyst.

【0042】実施例2 硝酸アルミニウム3750gと硝酸ランタン480gを
蒸留水10リットルに溶解する。以下実施例1と同様に
して得られた800℃焼成粉体1Kgの蒸留水25リット
ルを加え振動ミルで粉体の平均粒子径が約1μmになる
まで粉砕し、スラリー状の浸漬液を調製する。この浸漬
液に市販のコージェライト基材から成るハニカム構造体
(直径90mm,長さ75mm)を浸漬した後、浸漬液から
取り出し、圧縮空気を吹き付けて過剰に付着した液を除
き、120℃で乾燥後500℃で1時間熱処理した。こ
の操作を繰返し、最終的に1000℃で2時間焼成し
た。かくして得られたハニカム構造体は18.7 重量%
の複合酸化物の層を有していた。次いで得られたハニカ
ム構造体を塩化白金酸と塩化ロジウムを混合した水溶液
に浸漬し、120℃で乾燥後、600℃水素気流中で還
元した。触媒は1.5重量%の白金と0.4 重量%のロジ
ウムを有していた。
Example 2 3750 g of aluminum nitrate and 480 g of lanthanum nitrate were dissolved in 10 liters of distilled water. Thereafter, 25 liters of distilled water of 1 kg of 800 ° C. powder obtained in the same manner as in Example 1 was added, and the mixture was pulverized by a vibration mill until the average particle size of the powder became about 1 μm to prepare a slurry-like immersion liquid. . A honeycomb structure made of a commercially available cordierite base material (diameter 90 mm, length 75 mm) was immersed in this immersion liquid, then taken out of the immersion liquid, blown with compressed air to remove excess liquid, and dried at 120 ° C. After that, heat treatment was performed at 500 ° C. for 1 hour. This operation was repeated, and finally firing was performed at 1000 ° C. for 2 hours. The honeycomb structure thus obtained has a weight of 18.7% by weight.
Had a layer of complex oxide. Next, the obtained honeycomb structure was immersed in an aqueous solution of chloroplatinic acid and rhodium chloride, dried at 120 ° C, and reduced in a hydrogen stream at 600 ° C. The catalyst had 1.5% by weight platinum and 0.4% by weight rhodium.

【0043】この触媒を、自動車の排ガス酸化用として
用いた。普通自動車用エンジン(1800cc クラス)
に触媒コンバーターとして使用し、1万Km走行試験を行
なった結果、10モードでCO1.0g/km、HC0.
19g/Kmであった。この結果から本発明になる耐熱性
触媒では内燃機関の排気ガス処理にも使用でき、高温反
応に安定した性能を維持することがわかる。
This catalyst was used for oxidation of automobile exhaust gas. Ordinary car engine (1800cc class)
It was used as a catalytic converter in a vehicle and the running test was conducted for 10,000 km. As a result, CO mode was 1.0 g / km and HC was 0.10 in 10 mode.
It was 19 g / Km. From this result, it is understood that the heat-resistant catalyst according to the present invention can be used for exhaust gas treatment of an internal combustion engine and maintains stable performance in high temperature reaction.

【0044】実施例3 本実施例では本発明になる耐熱触媒を炭化水素の高温水
蒸気改質反応用に用いた例について述べる。
Example 3 In this example, an example in which the heat resistant catalyst according to the present invention is used for a high temperature steam reforming reaction of hydrocarbon will be described.

【0045】実施例1に示した本発明に係る担体100
gに硝酸ニッケル水溶液を含浸し、120℃で乾燥後、
900℃で2時間焼成した。このようにして得た触媒は
ニッケルをNiOに換算して15重量%含有していた。
The carrier 100 according to the present invention shown in Example 1
impregnated with nickel nitrate aqueous solution and dried at 120 ° C.
It was baked at 900 ° C. for 2 hours. The catalyst thus obtained contained 15% by weight of nickel in terms of NiO.

【0046】上記方法で調製した触媒を反応管に充填
し、H2 気流中、600℃で2時間還元した。反応は触
媒層入口温度を580〜600℃、触媒層出口温度を8
50〜900℃に保ち、圧力15Kg/cm2 でn−ブタン
の水蒸気改質反応を行なった。水蒸気/カーボン(モル
比)=30、空間速度3000h-1で行なった。100
時間の連続試験の結果、n−ブタンの反応率は99.9
% 以上を維持し、反応後、触媒層での炭素析出もほと
んど認められなかった。反応生成ガスはH2 ,CO,C
2 及びCH4 であり、これらの生成は触媒層出口の温
度条件下における平衡組成にほぼ等しい割合で存在して
いた。
The catalyst prepared by the above method was filled in a reaction tube and reduced in an H 2 stream at 600 ° C. for 2 hours. In the reaction, the catalyst layer inlet temperature is 580 to 600 ° C., and the catalyst layer outlet temperature is 8
The steam reforming reaction of n-butane was carried out at a pressure of 15 kg / cm 2 while maintaining the temperature at 50 to 900 ° C. Water vapor / carbon (molar ratio) = 30 and space velocity 3000 h −1 . 100
As a result of a continuous test of time, the reaction rate of n-butane was 99.9.
% Or more was maintained, and after the reaction, almost no carbon deposition was observed in the catalyst layer. The reaction product gas is H 2 , CO, C
O 2 and CH 4 , and the production of these was present in a proportion almost equal to the equilibrium composition under the temperature conditions at the catalyst layer outlet.

【0047】本実施例の結果からも明らかなように本発
明になる耐熱性触媒によれば、高温水蒸気改質反応に対
しても優れた性能を示す。
As is clear from the results of this example, the heat-resistant catalyst of the present invention exhibits excellent performance even in high temperature steam reforming reaction.

【0048】実施例4 本実施例では本発明になる耐熱性触媒を高温脱硝反応用
に用いた例について述べる。
Example 4 In this example, an example of using the heat-resistant catalyst according to the present invention for high temperature denitration reaction will be described.

【0049】実施例1と同様の方法で調製した成型前の
複合酸化物より成る粉末50gにメタチタン酸スラリー
500g(TiO2 として150g)を混練機により充
分混練する。その後150℃で乾燥し、粉砕して400
℃で4時間焼成する。得られた粉末をプレス成型機を用
いて直径3mm、厚さ3mmの円柱状に成型後、タングステ
ン酸アンモニウムの過酸化水素水溶液に浸漬する。その
後600℃で2時間焼成して触媒を得る。かくして得ら
れた触媒は酸化タングステンを5重量%含んでいる。
50 g of powder of the complex oxide before molding prepared by the same method as in Example 1 was sufficiently kneaded with 500 g of metatitanic acid slurry (150 g as TiO 2 ) by a kneader. After that, it is dried at 150 ℃, crushed to 400
Bake at 4 ° C for 4 hours. The obtained powder is molded into a cylindrical shape having a diameter of 3 mm and a thickness of 3 mm using a press molding machine, and then immersed in an aqueous solution of ammonium tungstate in hydrogen peroxide. Then, it is calcined at 600 ° C. for 2 hours to obtain a catalyst. The catalyst thus obtained contains 5% by weight of tungsten oxide.

【0050】反応は下記組成のガスを用い、空間速度5
000h-1、反応温度600℃の条件下で100時間行
なった。
The reaction uses a gas having the following composition and a space velocity of 5
It was carried out for 100 hours under the conditions of 000 h −1 and reaction temperature of 600 ° C.

【0051】反応ガス組成 NOx 200ppm NH3 200ppm O2 3% H2O 10% N2 残 部 NOxの除去率は初期で94.8%100時間後で94.
4%であった。以上の結果より本発明になる触媒によれ
ば高温脱硝反応に対しても優れた性能を示す。 実施例5 本実施例ではCOのメタン化反応用触媒に用いた例につ
いて述べる。
Reaction gas composition NOx 200ppm NH 3 200ppm O 2 3% H 2 O 10% N 2 balance NOx removal rate is 94.8% at the initial stage and 94.% after 100 hours.
It was 4%. From the above results, the catalyst according to the present invention exhibits excellent performance against high temperature denitration reaction. Example 5 In this example, an example used as a catalyst for a CO methanation reaction will be described.

【0052】実施例1で得た2通りの担体のそれぞれに
硝酸ニッケルを含浸し、500℃で焼成後更に塩化ルテ
ニウムを含浸し、1000℃で焼成して触媒を調製し
た。本触媒はNiO 30%,Ru 3%を含有してい
る。この触媒を反応管に充填し、CO 5%,H2
7%、N2 残のガスをSV=100,000h-1 になるよう
に導入し、反応温度350℃でメタネーション反応を行
った。その結果、COのメタン化収率は、本実施例触媒
は、比較例触媒に比べ約15倍の収量であることがわか
った。このように高温に限らず比較的低温における反応
においても本発明からなる触媒は非常に有効であること
がわかる。
Each of the two types of carriers obtained in Example 1 was impregnated with nickel nitrate, calcined at 500 ° C., further impregnated with ruthenium chloride, and calcined at 1000 ° C. to prepare a catalyst. This catalyst contains NiO 30% and Ru 3%. The reaction tube was filled with this catalyst, and CO 5%, H 2 1
A gas of 7% and N 2 residue was introduced so that SV was 100,000 h −1, and a methanation reaction was carried out at a reaction temperature of 350 ° C. As a result, it was found that the CO methanation yield of the catalyst of this example was about 15 times that of the catalyst of the comparative example. As described above, it is understood that the catalyst of the present invention is very effective not only at high temperatures but also at relatively low temperatures.

【0053】実施例6 本実施例ではメタノールの脱水素反応について調べた。Example 6 In this example, the dehydrogenation reaction of methanol was examined.

【0054】実施例1で得た2通りの担体に、硝酸銅及
び硝酸亜鉛溶液を含浸し、乾燥後1000℃で焼成す
る。Cu及びZnの含有量はそれぞれ20重量%,10
重量%である。これらの触媒を反応管に充填し、800
℃にした後、メタノールを導入し、脱水素反応を行わせ
ホルマリンを製造したところ、メタノールの転化率は9
8%以上であり、ホルマリンへの選択率も従来に比べ約
5倍であった。
The two types of carriers obtained in Example 1 are impregnated with a copper nitrate and zinc nitrate solution, dried and calcined at 1000 ° C. The contents of Cu and Zn are 20% by weight and 10%, respectively.
% By weight. The reaction tube is filled with these catalysts, and 800
After the temperature was raised to ℃, methanol was introduced and dehydrogenation reaction was carried out to produce formalin. The conversion of methanol was 9
It was 8% or more, and the selectivity for formalin was about 5 times that of the conventional one.

【0055】[0055]

【発明の効果】以上述べたように本発明によれば、15
00℃以下の高範囲の温度ですぐれた活性を有する耐熱
性触媒を得ることができる。
As described above, according to the present invention, 15
It is possible to obtain a heat-resistant catalyst having excellent activity in a high temperature range of 00 ° C. or lower.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/30 A 8017−4G 23/56 301 M 8017−4G A 8017−4G 23/76 M 8017−4G 23/80 X 8017−4G Z 8017−4G 23/89 X 8017−4G 32/00 C01B 3/40 C07C 1/04 9280−4H 1/12 9280−4H 4/06 9280−4H 9/04 9280−4H 47/052 7457−4H F23J 15/00 Z 7367−3K H 7367−3K // C07B 61/00 300 (72)発明者 水本 守 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 松田 臣平 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B01J 23/30 A 8017-4G 23/56 301 M 8017-4G A 8017-4G 23/76 M 8017 -4G 23/80 X 8017-4G Z 8017-4G 23/89 X 8017-4G 32/00 C01B 3/40 C07C 1/04 9280-4H 1/12 9280-4H 4/06 9280-4H 9/04 9280 -4H 47/052 7457-4H F23J 15/00 Z 7367-3K H 7367-3K // C07B 61/00 300 (72) Inventor Mamoru Mizumoto 3-1-1, Saiwaicho, Hitachi City, Ibaraki Stock Company Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor, Shinpei Matsuda 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd., Hitachi Research Laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】11〜14Al23・La23で表される
ランタンβアルミナからなる複合酸化物を主成分とする
担体に、触媒活性成分を担持したことを特徴とする耐熱
性還元反応触媒。
The method according to claim 1] 11~14Al 2 O 3 · La 2 O made of lanthanum β-alumina represented by 3 composite oxide support mainly, heat resistance reduction, characterized in that supporting a catalyst active component Reaction catalyst.
【請求項2】特許請求の範囲第1項において、前記担体
が実質的に前記複合酸化物のみからなることを特徴とす
る耐熱性還元反応触媒。
2. The heat-resistant reduction reaction catalyst according to claim 1, wherein the carrier is substantially composed of the composite oxide.
【請求項3】特許請求の範囲第1項において、前記複合
酸化物がセラミックスの表面にコーティングされている
ことを特徴とする耐熱性還元反応触媒。
3. A heat-resistant reduction reaction catalyst according to claim 1, wherein the surface of the composite oxide is coated with ceramics.
【請求項4】11〜14Al23・La23で表される
ランタンβアルミナからなる複合酸化物を主成分とする
担体に触媒活性成分として周期律表第VIII族,アルカリ
金属及びアルカリ土類金属から選ばれた少なくとも1つ
を担持した触媒に、炭化水素類と水蒸気を400〜15
00℃の温度で接触させて水素及び一酸化炭素からなる
ガスを製造することを特徴とする水蒸気改質用耐熱性触
媒の使用方法。
4. 11~14Al 2 O 3 · La Group VIII of the periodic table of the 2 O 3 composite oxide consisting of lanthanum β-alumina represented by a carrier a catalytically active component composed mainly alkali metal and alkaline The catalyst supporting at least one selected from the earth metals, the hydrocarbons and steam 400 ~ 15
A method of using a heat-resistant catalyst for steam reforming, which comprises contacting at a temperature of 00 ° C. to produce a gas composed of hydrogen and carbon monoxide.
【請求項5】特許請求の範囲第4項において、前記触媒
活性成分が周期律表第VIII族から選ばれた1種以上から
なることを特徴とする水蒸気改質用耐熱性触媒の使用方
法。
5. The method for using a heat-resistant catalyst for steam reforming according to claim 4, wherein the catalytically active component is at least one selected from Group VIII of the periodic table.
【請求項6】11〜14Al23・La23で表される
ランタンβアルミナからなる複合酸化物を主成分とする
担体に触媒活性成分として周期律表第VIII族,アルカリ
土類金属,チタン,ジルコニウム,バナジウム,希土類
元素,Va族,VIa族,マンガン,亜鉛,アルミニウム,
錫及び鉛から選ばれた少なくとも1つを担持した触媒
に、窒素酸化物を含有する排ガスとアンモニアを500
〜1500℃の温度で接触させて前記窒素酸化物を還
元、無害化することを特徴とする窒素酸化物還元用耐熱
性触媒の使用方法。
6. 11~14Al 2 O 3 · La Group VIII of the periodic table of the 2 O 3 composite oxide consisting of lanthanum β-alumina represented by a carrier a catalytically active component composed mainly, alkaline earth metal , Titanium, zirconium, vanadium, rare earth elements, Va group, VIa group, manganese, zinc, aluminum,
The catalyst supporting at least one selected from tin and lead is mixed with exhaust gas containing nitrogen oxides and 500 parts of ammonia.
A method for using a heat-resistant catalyst for reducing nitrogen oxides, which comprises contacting at a temperature of ˜1500 ° C. to reduce and detoxify the nitrogen oxides.
【請求項7】特許請求の範囲第6項において、前記触媒
活性成分がタングステン,バナジウム,チタン,錫,セ
リウム,鉄,ニッケル,コバルトの少なくとも1つから
なることを特徴とする窒素酸化物還元用耐熱性触媒の使
用方法。
7. The nitrogen oxide reducing agent according to claim 6, wherein the catalytically active component is at least one of tungsten, vanadium, titanium, tin, cerium, iron, nickel and cobalt. How to use heat resistant catalysts.
【請求項8】11〜14Al23・La23で表される
ランタンβアルミナからなる複合酸化物を主成分とする
担体に触媒活性成分として周期律表第VIII族,亜鉛,ク
ロム,バナジウム及びセリウムから選ばれた少なくとも
1種を担持した触媒に、一酸化炭素又は二酸化炭素含有
ガスと水素を250〜400℃の温度で接触させ前記一
酸化炭素をメタンに変換することを特徴とするメタン化
反応用耐熱性触媒の使用方法。
8. 11~14Al 2 O 3 · La Group VIII of the periodic table of the 2 O 3 composite oxide consisting of lanthanum β-alumina represented by a carrier a catalytically active component composed mainly of zinc, chromium, A carbon monoxide or carbon dioxide-containing gas and hydrogen are brought into contact with a catalyst supporting at least one selected from vanadium and cerium at a temperature of 250 to 400 ° C. to convert the carbon monoxide into methane. Method of using heat resistant catalyst for methanation reaction.
【請求項9】特許請求の範囲第8項において、前記触媒
活性成分が周期律表第VIII族から選ばれた少なくとも1
つからなることを特徴とするメタン化反応用耐熱性触媒
の使用方法。
9. The method according to claim 8, wherein the catalytically active component is at least one selected from Group VIII of the periodic table.
A method of using a heat-resistant catalyst for methanation reaction, which comprises:
【請求項10】11〜14Al23・La23で表され
るランタンβアルミナからなる複合酸化物を主成分とす
る担体に触媒活性成分としてクロム,亜鉛,バナジウ
ム,銅,銀,鉄,ニツケル及びコバルトの少なくとも1
つを担持した触媒に、アルコールを室温以上、1500
℃以下の温度で接触させて脱水素を行うことを特徴とす
る脱水素用耐熱性触媒の使用方法。
10. 11~14Al 2 O 3 · La 2 chromium O 3 made of lanthanum β-alumina represented by the composite oxide as catalytically active component on a carrier composed mainly of zinc, vanadium, copper, silver, iron , Nickel and at least one of cobalt
Alcohol over room temperature over 1,500
A method of using a heat-resistant catalyst for dehydrogenation, which comprises contacting at a temperature of ℃ or less to perform dehydrogenation.
【請求項11】特許請求の範囲第10項において、前記
アルコールがメタノールであり且つ300〜1000℃
の温度で前記触媒に接触させることを特徴とする脱水素
用耐熱性触媒の使用方法。
11. The method according to claim 10, wherein the alcohol is methanol and the temperature is 300 to 1000 ° C.
A method for using a heat resistant catalyst for dehydrogenation, which comprises contacting the catalyst at the temperature of.
【請求項12】特許請求の範囲第11項において、前記
触媒活性成分が銅と亜鉛の少なくとも1つからなること
を特徴とする脱水素用耐熱性触媒の使用方法。
12. The method for using a heat resistant catalyst for dehydrogenation according to claim 11, wherein the catalytically active component comprises at least one of copper and zinc.
JP3211854A 1983-07-01 1991-08-23 Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same Expired - Fee Related JP2533703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3211854A JP2533703B2 (en) 1983-07-01 1991-08-23 Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58118207A JPH0824843B2 (en) 1983-07-01 1983-07-01 Heat resistant catalyst and method of using the same
JP3211854A JP2533703B2 (en) 1983-07-01 1991-08-23 Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58118207A Division JPH0824843B2 (en) 1983-07-01 1983-07-01 Heat resistant catalyst and method of using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7082220A Division JP2570647B2 (en) 1995-04-07 1995-04-07 Nitrogen oxide reduction catalyst and nitrogen oxide reduction method

Publications (2)

Publication Number Publication Date
JPH06134305A true JPH06134305A (en) 1994-05-17
JP2533703B2 JP2533703B2 (en) 1996-09-11

Family

ID=26456181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3211854A Expired - Fee Related JP2533703B2 (en) 1983-07-01 1991-08-23 Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same

Country Status (1)

Country Link
JP (1) JP2533703B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPH08224469A (en) * 1994-12-19 1996-09-03 Toyota Motor Corp Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JP2005342675A (en) * 2004-06-07 2005-12-15 Kao Corp Production method of aldehyde
JP5691098B2 (en) * 2009-04-24 2015-04-01 国立大学法人山梨大学 Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same
CN113736508A (en) * 2021-08-11 2021-12-03 润和科华催化剂(上海)有限公司 Inorganic dechlorinating agent, preparation method and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPH08224469A (en) * 1994-12-19 1996-09-03 Toyota Motor Corp Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JP2005342675A (en) * 2004-06-07 2005-12-15 Kao Corp Production method of aldehyde
JP5691098B2 (en) * 2009-04-24 2015-04-01 国立大学法人山梨大学 Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
US9005552B2 (en) 2009-04-24 2015-04-14 University Of Yamanashi Selective CO methanation catalyst, method of producing the same, and apparatus using the same
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same
CN113736508A (en) * 2021-08-11 2021-12-03 润和科华催化剂(上海)有限公司 Inorganic dechlorinating agent, preparation method and application

Also Published As

Publication number Publication date
JP2533703B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
EP0130835B1 (en) High temperature stable catalyst, process for preparing same and process for conducting chemical reaction using same
US3993572A (en) Rare earth containing catalyst composition
US4904633A (en) Catalyst for purifying exhaust gas and method for production thereof
JP2002535135A (en) Catalyst composition containing oxygen storage component
JPH09500570A (en) Layered catalyst composite
JPS63162043A (en) Catalyst for cleaning exhaust gas
US4552733A (en) Polyfunctional catalysts and method of use
JPH06182201A (en) Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
AU604083B2 (en) Catalyst for purifying exhaust gas and method for production thereof
JPH0824844B2 (en) Combustion catalyst stable at high temperature, preparation method thereof, and method of carrying out chemical reaction using the catalyst
EP0604987B1 (en) Removal of nitrogen oxide from exhaust gas
JP3722990B2 (en) Method for producing oxygen storage catalyst
JPS60222145A (en) Method for using heat resistant catalyst
JPS6012132A (en) Heat resistant catalyst and use thereof
JP2006320797A (en) Catalyst and its manufacturing method
JPH06134305A (en) Heat resistant catalyst and method for using the same
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JPH0312936B2 (en)
JP4088361B2 (en) Exhaust gas purification method
JP2758616B2 (en) Heat-resistant catalyst for catalytic combustion and its carrier
JPH08229394A (en) Production of oxide-deposited catalyst carrier
EP0493803A1 (en) Catalyst for oxidizing carbon-containing compounds and method for the production of the same
JPH0582258B2 (en)
JPH0435220B2 (en)
JPH1076159A (en) Exhaust gas purification catalyst and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees