KR102027964B1 - Catalyst for Hydrocarbon Reforming - Google Patents

Catalyst for Hydrocarbon Reforming Download PDF

Info

Publication number
KR102027964B1
KR102027964B1 KR1020170090371A KR20170090371A KR102027964B1 KR 102027964 B1 KR102027964 B1 KR 102027964B1 KR 1020170090371 A KR1020170090371 A KR 1020170090371A KR 20170090371 A KR20170090371 A KR 20170090371A KR 102027964 B1 KR102027964 B1 KR 102027964B1
Authority
KR
South Korea
Prior art keywords
catalyst
hydrocarbon reforming
ruthenium
cgo
active material
Prior art date
Application number
KR1020170090371A
Other languages
Korean (ko)
Other versions
KR20190008689A (en
Inventor
배중면
오지우
이재명
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020170090371A priority Critical patent/KR102027964B1/en
Publication of KR20190008689A publication Critical patent/KR20190008689A/en
Application granted granted Critical
Publication of KR102027964B1 publication Critical patent/KR102027964B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/0006
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • C01B2203/067Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 탄화수소 개질용 촉매에 관한 것으로, 루테늄(Ru)을 기존의 촉매활물질인 백금(Pt)에 함유시켜 코킹에 의한 촉매 열화 문제를 해결한다. The present invention relates to a catalyst for hydrocarbon reforming, in which ruthenium (Ru) is contained in platinum (Pt), which is an existing catalyst active material, to solve the problem of catalyst deterioration due to caulking.

Description

탄화수소 개질용 촉매{Catalyst for Hydrocarbon Reforming}Catalyst for Hydrocarbon Reforming

본 발명은 탄화수소 개질용 촉매에 관한 것으로, 보다 상세하게는 코킹에 의한 촉매 열화 문제를 해결할 수 있는 탄화수소 개질용 촉매에 관한 것이다.The present invention relates to a hydrocarbon reforming catalyst, and more particularly, to a hydrocarbon reforming catalyst capable of solving the problem of catalyst deterioration due to caulking.

연료전지(fuel cell)는 연료와 산화제의 분자 내 화학에너지를 전기에너지로 변환하는 에너지 변환장치이다. A fuel cell is an energy converter that converts chemical energy in a molecule of fuel and oxidant into electrical energy.

전기화학적 메커니즘을 사용하기 때문에 열역학적 메커니즘을 따르는 전통적인 열기관보다 높은 에너지 변환효율을 가지는 것이 대표적인 장점이다. 연료의 화학에너지를 전기에너지로 직접 변환하는 발전장치로서, 연료전지 스택(Stack), 발전장치, BOP(Balance Of Plant) 및 제반 제어장치 모두를 포함하는 시스템을 일컫는 용어이다. 특히, 수소를 연료로 이용하는 연료전지 기술은 지구온난화나 후쿠시마 원전사태와 같은 에너지 발전 및 변환에 의한 환경오염 문제를 대비하는 무공해 청정 대체 에너지 변환 방식으로 각광받고 있다.Since the electrochemical mechanism is used, it is a representative advantage to have a higher energy conversion efficiency than the conventional heat engine following the thermodynamic mechanism. As a power generation device for directly converting chemical energy of a fuel into electrical energy, the term refers to a system including a fuel cell stack, a power generation device, a balance of plant (BOP), and a general control device. In particular, fuel cell technology using hydrogen as a fuel has been spotlighted as a pollution-free clean alternative energy conversion method to prepare for environmental pollution problems caused by energy generation and conversion such as global warming and the Fukushima nuclear power plant.

이러한 연료전지는 수소를 원료가스로 필요로 하는데, 디젤 등과 같은 화석연료로부터 수소를 생성하는 공정을 연료개질 공정이라 부른다.Such a fuel cell requires hydrogen as a source gas, and a process of generating hydrogen from fossil fuel such as diesel is called a fuel reforming process.

현재 사용되고 있는 금속 촉매는 가돌리늄을 함유한 세리아 지지체(CGO)에, 상기 지지체 상에 담지된 백금(Pt)으로 이루어진 금속 촉매(Pt/CGO)이다.Currently used metal catalysts are metal catalysts (Pt / CGO) made of platinum (Pt) supported on a ceria support (CGO) containing gadolinium.

Pt/CGO는 사용에 따라 촉매 성능이 열화되는 문제가 있는데, 이는 탄소가 촉매활금속에 침적되는, 소위 코킹에 의한 열화에 의한 것이다. 따라서, 이를 개선하기 위한 새로운 금속 촉매의 개발이 필요한 상황이다.Pt / CGO has a problem in that the catalytic performance deteriorates with use, which is due to deterioration by so-called coking, in which carbon is deposited on the catalyst active metal. Therefore, there is a need for the development of a new metal catalyst to improve this.

한국등록특허 제10-0780910호Korean Patent Registration No. 10-0780910 한국등록특허 제10-0916210호Korea Patent Registration No. 10-0916210

따라서 본 발명이 해결하고자 하는 과제는, 코킹 등에 의한 열화 문제가 개선된 새로운 금속 촉매를 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to provide a new metal catalyst in which the deterioration problem due to caulking or the like is improved.

본 발명은 탄화수소 개질용 촉매로서, 상기 촉매의 촉매활물질로 루테늄(Ru)을 포함하는 것을 특징으로 하는 탄화수소 개질용 촉매를 제공한다.The present invention provides a catalyst for hydrocarbon reforming, the catalyst for reforming hydrocarbon comprising ruthenium (Ru) as a catalyst active material of the catalyst.

상기 탄화수소 개질용 촉매는, 가돌리늄을 함유한 세리아 지지체(CGO); 및 상기 세리아 지지체에 함유된 촉매활물질;을 포함하며, 상기 촉매활물질은 백금(Pt) 및 루테늄(Ru)을 포함하는 것일 수 있다.The hydrocarbon reforming catalyst may include a ceria support (CGO) containing gadolinium; And a catalyst active material contained in the ceria support. The catalyst active material may include platinum (Pt) and ruthenium (Ru).

상기 루테늄(Ru)은 상기 가돌리늄을 함유한 세리아 지지체(CGO) 대비 0.25 내지 0.5 중량%인 것일 수 있다.The ruthenium (Ru) may be 0.25 to 0.5% by weight relative to the ceria support (CGO) containing the gadolinium.

상기 탄화수소 개질용 촉매는, 상기 가돌리늄을 함유한 세리아 지지체(CGO)와 상기 촉매활물질이 동시에 합성된 것일 수 있다.The hydrocarbon reforming catalyst may be one obtained by simultaneously synthesizing the ceria support (CGO) containing the gadolinium and the catalyst active material.

상기 탄화수소 개질용 촉매는, 침적된 탄소를 산화시켜 제거하는 것일 수 있다.The hydrocarbon reforming catalyst may be to oxidize and remove the deposited carbon.

상기 탄화수소 개질용 촉매는, 200시간 이상 연속으로 개질 반응 시 효율이 50% 이상인 것일 수 있다.The hydrocarbon reforming catalyst may have a efficiency of 50% or more in a reforming reaction for at least 200 hours.

상기 촉매활물질은 운전 후 상기 지지체 표면으로 확산되는 것일 수 있다.The catalytically active material may be to be diffused to the support surface after operation.

본 발명은 본 발명에 따른 탄화수소 개질용 촉매를 포함하는 연료 개질기를 제공한다.The present invention provides a fuel reformer comprising a catalyst for hydrocarbon reforming according to the present invention.

본 발명에 따르면, 루테늄(Ru)을 기존의 촉매활물질인 백금(Pt)에 함유시켜 코킹에 의한 촉매 열화 문제를 해결한다. 본 발명에서 사용된 루테늄(Ru)은 백금(Pt)과 전자적 상호작용을 통해 합금을 이루거나 또는 루테늄(Ru)이 프로모터(promoter)로 작용하여, 탄소의 침적을 방지할 뿐만 아니라 침적된 탄소가 상대적으로 저온에서 산화되어 증발됨으로써 제거될 수 있게 한다.According to the present invention, ruthenium (Ru) is contained in platinum (Pt), which is an existing catalyst active material, to solve the problem of catalyst deterioration due to caulking. Ruthenium (Ru) used in the present invention is alloyed through the electronic interaction with platinum (Pt) or ruthenium (Ru) acts as a promoter (promoter), not only to prevent the deposition of carbon, but also deposited carbon It can be removed by oxidizing and evaporating at a relatively low temperature.

도 1은 열화성능 테스트를 위한 리액터 설계에 대한 모식도이다.
도 2 및 3은 비교예에 따른 촉매로서 Pt가 CGO 대비 0.5 wt% 그리고 1.0 wt%인 촉매의 시간에 따른 개질성능(Reforming Efficiency) 결과이고, 도 4는 Pt가 0.5 wt%일 때 탄소 성분의 분석결과이다.
도 5는 Pt가 1.0 wt%일 때의 탄소 성분의 분석결과이다.
도 6은 Pt와 Ru를 각각 CGO 대비 0.5 wt%씩 사용한 경우의 개질성능 결과이고, 도 7은 Pt와 Ru이 각각 0.25 wt%씩 사용한 경우의 개질성능 결과이다.
도 8 및 9는 각각 Pt와 Ru를 각각 CGO 대비 0.5 wt%씩 사용한 경우와, Pt와 Ru이 각각 0.25 wt%씩 사용한 경우의 탄소 성분의 분석결과이다.
도 10은 Pt(0.5 wt%)/CGO (상), Pt(1.0 wt%)/CGO (하)의 TPO 분석결과이고, 도 11은 Pt(0.25 wt%)Ru(0.25 wt%)/CGO의 TPO 분석결과이다.
도 12는 종래 기술에 따라 Pt를 활물질로 사용하는 촉매의 TEM 사진이다.
도 13은 본 발명에 따라 제조된 촉매의 TEM 사진으로 운전을 거친 상태이다.
도 14는 본 발명에 따라 제조된 촉매의 운전 전 Fresh 상태, 200시간 운전 후 사용된(Used) 상태이다.
1 is a schematic diagram of a reactor design for degradation performance testing.
2 and 3 show the results of the reforming efficiency of the catalyst having Pt of 0.5 wt% and 1.0 wt% of the CGO as the catalyst according to the comparative example, and FIG. 4 shows the carbon component of Pt of 0.5 wt%. The result of the analysis.
5 is an analysis result of the carbon component when Pt is 1.0 wt%.
FIG. 6 shows the results of reforming when Pt and Ru were used by 0.5 wt% relative to CGO, and FIG. 7 shows the results of reforming when Pt and Ru were used by 0.25 wt%.
8 and 9 show the results of analysis of carbon components when 0.5 wt% of Pt and Ru were used, respectively, and 0.25 wt% of Pt and Ru, respectively.
10 shows the results of TPO analysis of Pt (0.5 wt%) / CGO (top), Pt (1.0 wt%) / CGO (bottom), and FIG. 11 shows Pt (0.25 wt%) Ru (0.25 wt%) / CGO. This is the result of TPO analysis.
12 is a TEM photograph of a catalyst using Pt as an active material according to the prior art.
13 is a state in which the operation of the TEM photograph of the catalyst prepared according to the present invention.
14 is a fresh state before the operation of the catalyst prepared according to the present invention, a used state after 200 hours of operation (Used).

이하, 본 발명의 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 본 명세서 전반에 걸쳐 표시되는 약어는 본 명세서 내에서 별도의 다른 지칭이 없다면 당업계에서 통용되어, 이해되는 수준으로 해석되어야 한다. Hereinafter, with reference to the drawings of the present invention will be described in detail. The following embodiments are provided as examples to ensure that the spirit of the present invention can be fully conveyed to those skilled in the art. Therefore, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout. In addition, the abbreviations shown throughout this specification should be interpreted to the level understood in the art, unless otherwise indicated herein.

본 발명은 상술한 문제를 해결하기 위하여, 연료의 구성물질인 탄화수소 개질용 촉매로서, 상기 촉매의 촉매활물질로 루테늄(Ru)을 포함하는 것을 특징으로 하는 탄화수소 개질용 촉매를 제공한다. The present invention provides a hydrocarbon reforming catalyst comprising ruthenium (Ru) as a catalyst active material of the catalyst, in order to solve the above problems, a catalyst for hydrocarbon reforming which is a constituent of a fuel.

탄화수소를 이용하여 수소를 생성하는 과정을 나타낸 화학식은 하기와 같다.Chemical formula showing the process of generating hydrogen using a hydrocarbon is as follows.

C n H m+aO 2+bH 2 O → cH 2+eCO+fCO 2+gH 2 O C n H m + a O 2 + b H 2 O → c H 2 + e CO + f CO 2 + g H 2 O

탄화수소를 이용하여 수소를 생성하는 과정에 있어서, 본 발명은 탄화수소로부터 수소를 생성하기 위한 탄화수소 개질용 촉매에 관한 것으로, 루테늄(Ru)를 기존의 촉매활물질인 백금(Pt)에 함유시켜 코킹에 의한 촉매 열화 문제를 해결한다. In the process of generating hydrogen by using a hydrocarbon, the present invention relates to a catalyst for reforming a hydrocarbon for generating hydrogen from a hydrocarbon, wherein ruthenium (Ru) is contained in platinum (Pt), which is an existing catalytic active material, by coking. It solves the problem of catalyst degradation.

본 발명에서 사용된 루테늄(Ru)은 백금(Pt)과 전자적 상호작용을 통해 합금을 이루거나 또는 루테늄(Ru)이 프로모터(promoter)로 작용하여, 탄소의 침적을 방지할 뿐만 아니라 침적된 탄소가 상대적으로 저온에서 산화되어 증발됨으로써 제거될 수 있게 한다.Ruthenium (Ru) used in the present invention is alloyed through the electronic interaction with platinum (Pt) or ruthenium (Ru) acts as a promoter (promoter), not only to prevent the deposition of carbon, but also deposited carbon It can be removed by oxidizing and evaporating at a relatively low temperature.

구체적으로, 본 발명의 일 실시예에서와 같이 상기 루테늄 및 백금이라는 촉매활물질이 지지체인 세리아와 함께 고온에서 혼합되어 합성된 경우, Temperature Programmed Oxidation(TPO) 분석 결과 Pt만 사용한 촉매에 비하여 침적된 탄소가 상대적으로 저온에 의해 증발한 것을 확인하였는데, 이것은 상기 루테늄 및 백금이라는 촉매활물질이 지지체인 세리아와 함께 고온에서 혼합되어 합성된 효과로 판단된다. Specifically, when the catalyst active materials such as ruthenium and platinum are mixed at high temperature with ceria as a support, as in an embodiment of the present invention, carbon deposited as compared to a catalyst using only Pt as a result of Temperature Programmed Oxidation (TPO) analysis It was confirmed that evaporated at a relatively low temperature, which is considered to be an effect synthesized by mixing the catalyst active materials such as ruthenium and platinum at high temperature with ceria as a support.

구체적으로, 본 발명의 일 실시예에 따른 촉매는 연소 합성(Combustion Synthesis)의 한 종류인 GNP(Glycine Nitrate Process) 방법으로 제조되어 모든 활물질들이 세리아 격자(Ceria lattice) 내부로 침투한 상태로 합성됨에 따라, 상온에서는 표면에서 촉매활물질들을 확인할 수 없으나, 200시간 운전 후에는 표면에 촉매활물질들이 발현되어 있는 것을 확인할 수 있다. Specifically, the catalyst according to an embodiment of the present invention is manufactured by the GNP (Glycine Nitrate Process) method of combustion synthesis (Combustion Synthesis) is synthesized in the state in which all active materials penetrated into the ceria lattice (Ceria lattice) Therefore, at room temperature, the catalyst active materials cannot be identified on the surface, but after 200 hours of operation, the catalyst active materials can be confirmed.

이는 촉매 작동 조건에서 활물질들이 세리아(Ceria) 바깥으로 석출되어 표면촉매반응을 일으키는 것을 시사한다. 따라서, 본 발명에 따른 탄화수소 개질용 촉매의 우수한 성능저감 억제 효과는 촉매가 GNP(Glycine Nitrate Process) 방법과 같이 세리아와 루테늄, 백금이 하나의 공정으로 합성됨에 따라 달성되는 것으로 추정된다.This suggests that active materials precipitate out of Ceria under catalytic operating conditions to cause surface catalyst reactions. Therefore, the excellent performance reduction inhibitory effect of the catalyst for hydrocarbon reforming according to the present invention is estimated to be achieved as the catalyst is synthesized in one process such as ceria, ruthenium and platinum as in the GNP (Glycine Nitrate Process) method.

또한, 본 발명의 일 실시예에서 루테늄은 백금보다 높은 분산도로 확산되어 백금의 응집을 방지하여 백금의 국소적인 탄화 문제를 효과적으로 방지하는데, 이하 이를 보다 상세히 설명한다. In addition, ruthenium in one embodiment of the present invention is diffused to a higher dispersion than platinum to prevent the aggregation of platinum to effectively prevent the local carbonization problem of platinum, which will be described in more detail below.

실시예Example 1  One

본 실시예에서는 Glycine이라는 연소물질을 이용해 고온, 고열의 환경에서 촉매물질을 합성하는 Combustion Synthesis의 한 종류인 GNP(Glycine Nitrate Process) 방법으로 촉매를 제조하였다. 즉, 본 발명에 따른 촉매는 별도로 루테늄을 코팅 또는 주입하여 제조된 것이 아니라, CGO와 함께 루테늄이 함께 혼합되어 고온에서 동시에 합성된 것이다.In this embodiment, a catalyst was prepared by a GNP (Glycine Nitrate Process) method, which is a kind of Combustion Synthesis that synthesizes a catalyst material in a high temperature and high temperature environment using a combustion material called Glycine. In other words, the catalyst according to the present invention is not manufactured by coating or injecting ruthenium separately, but by combining ruthenium together with CGO and simultaneously synthesizing at high temperature.

본 발명의 일 실시예에 따른 촉매 제조의 상세 공정은 다음과 같다.Detailed process of preparing the catalyst according to an embodiment of the present invention is as follows.

Cerium(III) nitrate hexahydrate 및 Gadolinium(III) nitrate hexahydrate을 원자비 Ce:Gd= 0.9:0.1 에 맞게 DI water에 녹인 후, Tetraamineplatinum(II) Nitrate 및 Ruthenium (III) nitrosylnitrate를 혼합하고 가열하여 연소반응 이후에 파우더 형태가 되면, 4시간 동안 800℃까지 승온, 4시간 동안 800℃로 유지, 4시간 강온을 셋팅하여 상기 혼합물을 한꺼번에 하소하여 촉매를 제조하였다.After dissolving Cerium (III) nitrate hexahydrate and Gadolinium (III) nitrate hexahydrate in DI water according to the atomic ratio Ce: Gd = 0.9: 0.1, Tetraamineplatinum (II) Nitrate and Ruthenium (III) nitrosylnitrate were mixed and heated to burn after When in the form of a powder, the temperature was raised to 800 ° C. for 4 hours, maintained at 800 ° C. for 4 hours, and the temperature was set for 4 hours to calcinate the mixture at once to prepare a catalyst.

제조된 촉매의 CGO, Pt 및 Ru 중량과 원소분율을 하기 표 1과 같았다. 실험에 사용된 촉매의 양은 3g이며, 표 1에 명시한 양은 촉매 3g 기준의 양이다.CGO, Pt and Ru weight and the element fraction of the prepared catalyst were as shown in Table 1 below. The amount of catalyst used in the experiment was 3 g, and the amount specified in Table 1 is based on 3 g of catalyst.

촉매 3g 기준3g catalyst Pt(1.0 wt%)Pt (1.0 wt%) Pt(0.5 wt%)Pt (0.5 wt%) Pt(0.5 wt%)+
Ru(0.5 wt%)
Pt (0.5 wt%) +
Ru (0.5 wt%)
Pt(0.25 wt%)+ Ru(0.25 wt%)Pt (0.25 wt%) + Ru (0.25 wt%)
CGO 중량CGO weight 2.97 g2.97 g 2.985 g2.985 g 2.97 g2.97 g 2.985 g2.985 g Pt 중량Pt weight 0.03 g 0.03 g 0.015 g 0.015 g 0.015 g0.015 g 0.0075 g0.0075 g Ru 중량Ru weight -- -- 0.015 g 0.015 g 0.0075 g 0.0075 g

실험예Experimental Example 1 One

열화성능Degradation performance 테스트  Test

도 1과 같이 리액터를 설계하고, 실시예 1에서 제조된 촉매를 1/2 in SUS tube에 loading하였다. MFC를 통해 질소를 미리 흘려보내주어 촉매의 산화를 방지하였다. 열이 빠져나가지 않게 유리섬유로 단열시키고 전기 퍼니스를 승온시켰다. 이때, 온도는 촉매가 탑재된 곳에서의 온도이며, 미리 삽입된 TC를 통해 확인하여 퍼니스 컨트롤러를 통해 800℃(4시간 동안 승온)로 맞추었다. 온도가 800℃에 도달한 후 산화제(물, 공기)를 공급하였다. 산화제가 충분히 리액터 내에 포화되었을 때, Ultrasonic Injector와 연료 펌프를 켜서 연료를 공급하였다. 개질가스가 생성되면 포집용 주사기를 통해 기체를 포집한 후, 가스크로마토그래피에 기체를 주입하여 조성을 분석하였다.The reactor was designed as shown in FIG. 1, and the catalyst prepared in Example 1 was loaded in a 1/2 in SUS tube. Nitrogen was pre-flowed through the MFC to prevent oxidation of the catalyst. Insulated with glass fibers to prevent heat from escaping and the electric furnace was heated up. At this time, the temperature is the temperature where the catalyst is mounted, it was checked through a pre-inserted TC was set to 800 ℃ (temperature rising for 4 hours) through the furnace controller. After the temperature reached 800 ° C., an oxidant (water, air) was supplied. When the oxidant was sufficiently saturated in the reactor, fuel was supplied by turning on the Ultrasonic Injector and the fuel pump. When the reformed gas was generated, the gas was collected through a collecting syringe, and then gas was injected into the gas chromatography to analyze the composition.

도 2 및 3은 비교예에 따른 촉매로서 Pt가 CGO 대비 0.5 wt% 그리고 1.0 wt%인 촉매의 시간에 따른 성능테스트 결과이고, 도 4는 Pt가 0.5 wt%일 때 탄소 성분의 분석결과이다.2 and 3 are results of a performance test of a catalyst having Pt of 0.5 wt% and 1.0 wt% of a CGO as a catalyst according to a comparative example, and FIG. 4 is an analysis result of a carbon component when Pt is 0.5 wt%.

도 2 및 3을 참조하면, 촉매활물질로 Pt를 사용한 경우, 사용 시간 경과에 따라 촉매가 열화되는 것을 알 수 있다. 2 and 3, when Pt is used as the catalyst active material, it can be seen that the catalyst deteriorates with the use time.

도 4를 참조하면, 사용시간 경과에 따라 원하지 않는 에틸렌(C2H4)이 증가하는 것을 알 수 있다. Referring to FIG. 4, it can be seen that unwanted ethylene (C 2 H 4) increases with time of use.

도 5는 Pt가 1.0 wt%일 때의 탄소 성분의 분석결과이다.5 is an analysis result of the carbon component when Pt is 1.0 wt%.

에틸렌이 탄소 침적의 전구체 역할을 한다는 이전 논문 결과에 따라(Effects of ethylene on carbon formation in diesel autothermal reforming, Sangho Yoom, Inyong Kang, Joongmyeon Bae, International Journal of Hydrogen Energy, 33, 18, 2008, 4780-4788), 에틸렌의 조성을 통해 탄소(카본) 침적의 정도를 확인할 수 있다. 본 실험예에서, Pt 0.5 wt%의 경우 에틸렌이 증가한 것을 보아 탄소 침적이 발생하여 촉매의 열화가 일어났다는 것을 확인할 수 있다. Pt 1.0 wt%의 경우, 활성금속(Pt)의 양이 상대적으로 많아 Pt 0.5 wt%의 경우에 비해 촉매의 열화에 의한 성능 감소가 적었고, 200시간 동안 에틸렌이 거의 감지되지 않았다. 그럼에도 불구하고, 촉매의 열화가 일어난 이유는 Pt 입자가 소결되는 현상(TEM 결과)과 탄소 침적(TPO 결과)으로 인한 것으로 보여진다.(Effects of ethylene on carbon formation in diesel autothermal reforming, Sangho Yoom, Inyong Kang, Joongmyeon Bae, International Journal of Hydrogen Energy, 33, 18, 2008, 4780-4788) ), The composition of ethylene can determine the degree of carbon (carbon) deposition. In the present experimental example, it can be seen that in the case of Pt 0.5 wt%, ethylene increased, resulting in carbon deposition and deterioration of the catalyst. In the case of 1.0 wt% of Pt, the amount of active metal (Pt) was relatively high, resulting in less decrease in performance due to deterioration of the catalyst than in the case of Pt 0.5 wt%, and almost no ethylene was detected for 200 hours. Nevertheless, the reason for the deterioration of the catalyst appears to be due to the sintering of Pt particles (TEM result) and carbon deposition (TPO result).

도 6은 Pt와 Ru를 각각 CGO 대비 0.5 wt%씩 사용한 경우의 개질성능 결과이고, 도 7은 Pt와 Ru이 각각 0.25 wt%씩 사용한 경우의 개질성능 결과이다. FIG. 6 shows the results of reforming when Pt and Ru are used by 0.5 wt%, respectively, compared to CGO. FIG. 7 shows the results of reforming performance when Pt and Ru are used by 0.25 wt%.

도 6 및 7을 참조하면, 개질시간이 200시간 이상 경과함에도 열화 없이 일정하거나 향상된 개질 성능을 보이는 것을 알 수 있다. 6 and 7, it can be seen that even if the reforming time elapses for more than 200 hours, a constant or improved reforming performance is exhibited without deterioration.

도 8 및 9는 각각 Pt와 Ru를 각각 CGO 대비 0.5 wt%씩 사용한 경우와, Pt와 Ru이 각각 0.25 wt%씩 사용한 경우의 탄소 성분의 분석결과이다.8 and 9 show the results of analysis of carbon components when 0.5 wt% of Pt and Ru were used, respectively, and 0.25 wt% of Pt and Ru, respectively.

Pt와 Ru 비율을 1:1로 하여 각각 1.0 wt%, 0.5 wt% 양의 활성금속을 담지한 경우, Pt의 양이 적음에도 불구하고, 모두 200시간 동안 성능의 저하나 에틸렌이 발견되지 않았다. In the case where the Pt and Ru ratios were 1: 1 to support 1.0 wt% and 0.5 wt% of the active metal, despite the small amount of Pt, there was no decrease in performance or ethylene for 200 hours.

또한 Ru을 첨가하지 않은 경우와 비교해보면, 탄소 침적(TPO 결과)의 형태가 우수하며, 단일 Pt만 1.0 wt%, 0.5 wt%를 첨가한 경우와 비교해 보았을 때, 소결에 의해 활성금속(Pt)이 뭉치는 정도가 작았다(TEM 결과).Also, compared with the case without adding Ru, the form of carbon deposition (TPO result) is excellent, and compared with the case of adding 1.0 wt% and 0.5 wt% of only single Pt, active metal (Pt) by sintering This cluster was small (TEM results).

실험예 2Experimental Example 2

TPO(Temperature Programmed Oxidation) 분석결과 Results of Temporary Programmed Oxidation (TPO)

본 실험예에서는 촉매에 코킹된 탄소의 열적 특성을 분석하기 위한 실험을 진행하였다.In this Experimental Example, an experiment was conducted to analyze the thermal properties of carbon caulked on the catalyst.

도 10은 Pt(0.5 wt%)/CGO (상), Pt(1.0 wt%)/CGO (하) 의 TPO 분석결과이고, 도 11은 Pt(0.25 wt%)Ru(0.25 wt%)/CGO의 TPO 분석결과이다.10 shows the results of TPO analysis of Pt (0.5 wt%) / CGO (top), Pt (1.0 wt%) / CGO (bottom), and FIG. 11 shows Pt (0.25 wt%) Ru (0.25 wt%) / CGO. This is the result of TPO analysis.

도 10 및 11을 참조하면, Pt만 들어있는 샘플에서 나타난 310℃ 부근의 peak는 Ru을 첨가한 TPO에는 나오지 않았음을 알 수 있다. 이는 본 발명에 따른 촉매에 코킹된 탄소는 상대적으로 저온에서 증발, 제거되는 것을 시사한다. Referring to Figures 10 and 11, it can be seen that the peak near 310 ℃ appeared in the sample containing only Pt did not appear in the TPO added Ru. This suggests that carbon caulked in the catalyst according to the invention is evaporated and removed at a relatively low temperature.

상기 세 가지 샘플 모두 동일한 조건에서 200시간 개질 반응 후를 분석했는데 다른 TPO 결과가 나온 것은 표면에 서로 다른 성질의 탄소가 침적되어 있는 것으로 유추되며, 본 발명에 따른 촉매활물질로 사용된 루테늄이 탄소 침적의 억제효과가 있는 것으로 판단된다.All three samples were analyzed after 200 hours of reforming under the same conditions, and different TPO results were derived from the deposition of carbon having different properties on the surface, and ruthenium used as a catalyst active material according to the present invention was deposited with carbon. It seems to have an inhibitory effect.

실험예 3Experimental Example 3

TEMTEM 측정 Measure

도 12는 종래 기술에 따라 Pt를 활물질로 사용하는 촉매의 TEM 사진이다. 12 is a TEM photograph of a catalyst using Pt as an active material according to the prior art.

도 12를 참조하면, 촉매활물질인 Pt(적색점)가 지지체 표면에 적색으로 노출되어 있는 것을 알 수 있다. Referring to FIG. 12, it can be seen that Pt (red dot), which is a catalyst active material, is exposed to the surface of the support in red.

도 13은 본 발명에 따라 제조된 촉매의 TEM 사진으로 운전을 거친 상태이다.13 is a state in which the operation of the TEM photograph of the catalyst prepared according to the present invention.

도 13을 참조하면, 본 발명의 일 실시예에 따른 촉매는 운전 온도 이상에서 촉매활물질이 지지체 표면으로 확산되는데, 도 12와는 달리 Pt가 상대적으로 넓게 분산되는 것을 알 수 있으며, Ru는 Pt보다 훨씬 균일하게 넓게 분산되어 있는 것을 알 수 있다.Referring to FIG. 13, in the catalyst according to an embodiment of the present invention, the catalyst active material diffuses to the support surface at an operating temperature or higher. Unlike FIG. 12, Pt is relatively widely dispersed, and Ru is much more than Pt. It can be seen that it is uniformly and widely dispersed.

이것은 고온에서 지지체 내부로부터 외부 표면으로 동시에 확산되는 Pt와 동시에 확산되는 Ru에 의한 효과로 판단된다. This is judged to be an effect by Ru, which simultaneously diffuses with Pt, which simultaneously diffuses from the inside of the support to the outer surface at high temperatures.

도 14는 본 발명에 따라 제조된 촉매의 운전 전 Fresh 상태, 200시간 운전 후 사용된(Used) 상태이다. 14 is a fresh state before the operation of the catalyst prepared according to the present invention, a used state after 200 hours of operation (Used).

도 14를 참조하면, 본 발명의 일 실시예에 따라 GNP로 제조한 촉매가(Fresh) 활성금속이 표면이 드러나지 않다가, 운전 온도(800℃)에서 200시간 운전을 거친 상태의 촉매에서는(Used) 표면에 다소 Pt 입자가 뭉친 것을 확인할 수 있다. 동일한 wt%라도 Pt와 Ru을 함께 첨가한 촉매에서 뭉침 현상이 덜하였으며, 분산의 정도가 양호하였다. Referring to FIG. 14, a catalyst prepared with GNP according to an embodiment of the present invention (Fresh) does not have a surface of the active metal, and is used in a catalyst which has been operated at an operating temperature (800 ° C.) for 200 hours. ) Pt particles are agglomerated to the surface. In the same wt%, the catalyst was added with the Pt and Ru together and the aggregation was less, and the degree of dispersion was good.

Claims (8)

탄화수소 개질용 촉매로서, 가돌리늄을 함유한 세리아 지지체(CGO); 및
상기 세리아 지지체에 함유된 촉매활물질;을 포함하며,
상기 촉매활물질은 백금(Pt) 및 루테늄(Ru)을 포함하며,
상기 백금(Pt) 및 루테늄(Ru)은 상기 가돌리늄을 함유한 세리아 지지체(CGO) 대비 0.25 내지 0.5 중량%이며,
상기 가돌리늄을 함유한 세리아 지지체는 세리아와 가돌리늄의 원자비가 0.9:0.1이며;
연소 합성(Combustion Synthesis)의 한 종류인 GNP(Glycine Nitrate Process) 방법으로 제조되어 상기 모든 촉매활물질이 세리아 지지체 내부로 침투한 상태로 동시에 합성된 것을 특징으로 하는, 탄화수소 개질용 촉매.
As a catalyst for hydrocarbon reforming, a ceria support containing gadolinium (CGO); And
It includes; catalytic active material contained in the ceria support;
The catalytically active material includes platinum (Pt) and ruthenium (Ru),
The platinum (Pt) and ruthenium (Ru) is 0.25 to 0.5% by weight relative to the ceria support (CGO) containing the gadolinium,
The ceria support containing gadolinium has an atomic ratio of ceria to gadolinium of 0.9: 0.1;
A catalyst for hydrocarbon reforming, which is prepared by the GNP (Glycine Nitrate Process) method, which is a kind of combustion synthesis, and synthesized simultaneously with all the catalyst active materials penetrating into the ceria support.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 탄화수소 개질용 촉매는, 침적된 탄소를 산화시켜 제거하는 것을 특징으로 하는, 탄화수소 개질용 촉매.
The method of claim 1,
The hydrocarbon reforming catalyst is a hydrocarbon reforming catalyst, characterized in that by oxidizing and removing the deposited carbon.
제 1항에 있어서,
상기 탄화수소 개질용 촉매는, 200시간 이상 연속으로 개질 반응 시 효율이 50% 이상인 것을 특징으로 하는, 탄화수소 개질용 촉매.
The method of claim 1,
The hydrocarbon reforming catalyst is a hydrocarbon reforming catalyst, characterized in that the efficiency of the reforming reaction for more than 200 hours or more 50% or more.
제 1항에 있어서,
상기 촉매활물질은 운전 후 상기 지지체 표면으로 확산되는 것을 특징으로 하는, 탄화수소 개질용 촉매.
The method of claim 1,
The catalyst active material is characterized in that the diffusion to the surface of the support after operation, hydrocarbon reforming catalyst.
제 1항, 제 5항 내지 제 7항 중 어느 한 항에 따른 탄화수소 개질용 촉매를 포함하는 연료 개질기. A fuel reformer comprising the catalyst for hydrocarbon reforming according to any one of claims 1 to 5.
KR1020170090371A 2017-07-17 2017-07-17 Catalyst for Hydrocarbon Reforming KR102027964B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170090371A KR102027964B1 (en) 2017-07-17 2017-07-17 Catalyst for Hydrocarbon Reforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170090371A KR102027964B1 (en) 2017-07-17 2017-07-17 Catalyst for Hydrocarbon Reforming

Publications (2)

Publication Number Publication Date
KR20190008689A KR20190008689A (en) 2019-01-25
KR102027964B1 true KR102027964B1 (en) 2019-10-04

Family

ID=65280389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170090371A KR102027964B1 (en) 2017-07-17 2017-07-17 Catalyst for Hydrocarbon Reforming

Country Status (1)

Country Link
KR (1) KR102027964B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238816B1 (en) 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
JP2003080070A (en) 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Hydrocarbon reforming catalyst and method for producing the same
US7067453B1 (en) 2001-07-13 2006-06-27 Innovatek, Inc. Hydrocarbon fuel reforming catalyst and use thereof
JP2016165712A (en) 2015-03-03 2016-09-15 株式会社豊田中央研究所 Steam modification catalyst, steam modification method using the same and steam modification reaction device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683787B2 (en) * 1990-06-19 1994-10-26 財団法人石油産業活性化センター Catalyst for steam reforming
US6303098B1 (en) * 1997-06-02 2001-10-16 University Of Chicago Steam reforming catalyst
KR101280200B1 (en) * 2004-02-19 2013-06-28 이데미쓰 고산 가부시키가이샤 Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP4824332B2 (en) * 2005-03-29 2011-11-30 エヌ・イーケムキャット株式会社 Carbon monoxide removal catalyst
KR100780910B1 (en) 2007-01-24 2007-11-30 한국에너지기술연구원 Producing method of ni/activated carbon catalysts and hydrogen-producing system through supercritical water gasification of organic compounds using ni/activated carbon catalysts and driving method thereof
KR100916210B1 (en) 2008-01-28 2009-09-08 한국에너지기술연구원 Producing Method of Y-Ni/Activated Carbon Catalysts and Hydrogen-Producing System and Method through Supercritical Water Gasification of Organic Compounds using Y-Ni/Activated Carbon Catalysts
US9181148B2 (en) * 2013-05-22 2015-11-10 Saudi Arabian Oil Company Ni/CGO and Ni-Ru/CGO based pre-reforming catalysts formulation for methane rich gas production from diesel processing for fuel cell applications
US20160228855A1 (en) * 2015-02-09 2016-08-11 Korea Advanced Institute Of Science And Technology Catalyst for preferential oxidation and manufacturing method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238816B1 (en) 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
US7067453B1 (en) 2001-07-13 2006-06-27 Innovatek, Inc. Hydrocarbon fuel reforming catalyst and use thereof
JP2003080070A (en) 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Hydrocarbon reforming catalyst and method for producing the same
JP2016165712A (en) 2015-03-03 2016-09-15 株式会社豊田中央研究所 Steam modification catalyst, steam modification method using the same and steam modification reaction device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applied catalysis B: Environmental, 70, pp.498-508(2007) 1부.*
Fuel chemistry division preprints, 47(2), pp.542-544(2002) 1부.*
논문1: Fuel Chemistry Division Preprints

Also Published As

Publication number Publication date
KR20190008689A (en) 2019-01-25

Similar Documents

Publication Publication Date Title
Wang et al. Nickel‐based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells
Faro et al. Fuel flexibility: A key challenge for SOFC technology
Xie et al. Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser
Qiu et al. A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells
Prasad et al. Effect of steam content on nickel nano-particle sintering and methane reforming activity of Ni–CZO anode cermets for internal reforming SOFCs
Lo Faro et al. Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol
Wan et al. Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst
Vecino‐Mantilla et al. Nickel exsolution‐driven phase transformation from an n= 2 to an n= 1 Ruddlesden‐Popper manganite for methane steam reforming reaction in SOFC conditions
Bkour et al. Enhancing the partial oxidation of gasoline with Mo-doped Ni catalysts for SOFC applications: An integrated experimental and DFT study
Liu et al. Activity and Structure of Perovskites as Diesel‐Reforming Catalysts for Solid Oxide Fuel Cell
Lee et al. Highly active and stable catalyst with exsolved PtRu alloy nanoparticles for hydrogen production via commercial diesel reforming
Elharati et al. Internal reforming solid oxide fuel cell system operating under direct ethanol feed condition
Zamudio-Garcia et al. Relationship between the Structure and Transport Properties in the Ce1–x La x O2–x/2 System
Lo Faro et al. Nickel–Iron/Gadolinium‐Doped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solid‐Oxide Fuel Cell Anode Fed with Biofuels
Shen et al. Improved performance of bimetallic oxides CuO–Y2O3 synthesized by sol–gel for methanol steam reforming
Dunst et al. Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming
Ahmed et al. Highly efficient composite electrolyte for natural gas fed fuel cell
Papavasiliou et al. Redox Behavior of a Copper‐Based Methanol Reformer for Fuel Cell Applications
KR102027964B1 (en) Catalyst for Hydrocarbon Reforming
He et al. A stable chromite anode for SOFC with Ce/Ni exsolution for simultaneous electricity generation and CH4 reforming
Di Bartolomeo et al. Ni and Ni-Co La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ infiltrated cells in H2and CH4/CO2 mixture
Yan et al. Improvement of solid oxide fuel cell performance by a core‐shell structured catalyst using low concentration coal bed methane fuel
Tian et al. Siloxane deposition on the Ni-YSZ solid oxide fuel cell anode exposed to bio-syngas
Zhang et al. Cu-Ce0. 8Sm0. 2O2-δ anode for electrochemical oxidation of methanol in solid oxide fuel cell: Improved activity by La and Nd doping
Graça et al. A novel niobium (oxy) nitride-BaCe0. 7Zr0. 1Y0. 2O3-δ composite electrode for proton ceramic membrane reactors (PCMRs)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right