JP4012705B2 - Sample holder and charged particle beam apparatus using the same - Google Patents

Sample holder and charged particle beam apparatus using the same Download PDF

Info

Publication number
JP4012705B2
JP4012705B2 JP2001223167A JP2001223167A JP4012705B2 JP 4012705 B2 JP4012705 B2 JP 4012705B2 JP 2001223167 A JP2001223167 A JP 2001223167A JP 2001223167 A JP2001223167 A JP 2001223167A JP 4012705 B2 JP4012705 B2 JP 4012705B2
Authority
JP
Japan
Prior art keywords
sample
fine
conductors
sample holder
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001223167A
Other languages
Japanese (ja)
Other versions
JP2003035682A (en
JP2003035682A5 (en
Inventor
紀恵 矢口
武夫 上野
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001223167A priority Critical patent/JP4012705B2/en
Publication of JP2003035682A publication Critical patent/JP2003035682A/en
Publication of JP2003035682A5 publication Critical patent/JP2003035682A5/ja
Application granted granted Critical
Publication of JP4012705B2 publication Critical patent/JP4012705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料分析方法に関わり、特に、半導体、電子デバイス材料等の試料を分析する方法、及びその分析のために用いられる試料ホルダに関する。
【0002】
【従来の技術】
LSIの故障箇所や動作特性を制約している故障箇所を探し出すためには、LSI内部の電位を直接測定することが必要である。また、探し出した箇所の故障原因を解明することが必要となる。まず、故障箇所を探し出すためには、従来、細い金属プローブを光学顕微鏡で観察しながら内部配線に接触させ、接続しているオシロスコープで波形を観察し、電圧測定を行っていた。この場合、操作に熟練を要するだけでなく、場合によっては、LSIを壊すこともある。また、エミッション顕微鏡法を用い、発光箇所を1μm以下の位置精度で検出し、故障箇所を決定する方法もある。更に、別の従来技術として、走査電子顕微鏡の、試料表面の電位分布を反映する電位コントラストを利用し、電子ビームを電位測定用プローブとして用い、目的の配線にビームを照射、電位波形をサンプリングし、LSIの電気特性を試験する電子ビームテスターがある。上記いずれの場合も、故障箇所及び動作特性を制約している箇所を確定するのみである。
【0003】
そこで、上記従来技術で解析箇所が決定された場合、次に集束イオンビーム(FIB:Focused Ion Beam)法や走査電子顕微鏡(SEM:Scanning Electron Microscopy)法を用いて特定解析箇所をより高倍率で観察していた。解析箇所が表面に無い場合や、その断面を観察しないと故障原因が把握できない場合、FIBを用いて、断面が表面に現れるように加工し、SEMやFIBで観察していた。SEMやFIBより、さらに高分解能で観察が必要な場合は、特開平11−135051号公報に記載のように、FIB照射と試料搬送手段によって試料基板から特定箇所の微小試料を分離して薄膜試料を作製し、透過電子顕微鏡(TEM:Transmission Electron Microscopy)法で観察を行なっていた。
【0004】
【発明が解決しようとする課題】
上記従来技術では、光学顕微鏡を用いているため、分解能が低く、LSIの設計寸法が0.1μm程度の配線への対応については配慮されていなかった。上記他の観察法もLSI内部の電位故障箇所を検出するのみで、故障箇所の動作及び構造変化を直接観察することはできなかった。また、正常箇所の動作について直接観察するという点については、考えられていない。
また、上記別の従来技術では、解析箇所を特定した後は、特定箇所を、形態観察用の装置で探し出し、観察を行なっており、断面観察が必要な場合には特定箇所を取り出し薄膜加工し観察していたが、試料微小部に電圧を印加しながら、デバイスに発生する現象を直接観察するという点については、配慮されていなかった。
【0005】
本発明の目的は、従来技術では困難であった設計寸法が0.1μm程度のLSI等の試料内部の特定箇所を摘出後し、TEM用試料とし、その試料微小部に電圧を直接印加し、デバイス内の変化、例えば配線に用いている金属の結晶構造の変化や電圧印加時の絶縁膜の耐圧の測定や電圧による変化などを観察可能とする試料分析方法を提供することにある。本発明の他の目的は、LSI等の試料内部の微小部に直接配線し、電圧を印加した際の電流を直接測定することにより、電位故障箇所の検出が可能な試料分析方法を提供することにある。本発明の更に他の目的は、LSI等の試料内部の微小部に直接配線し、電圧を印加する分析を可能にする試料ホルダを提供することにある。
【0006】
【課題を解決するための手段】
上記目的は、以下の手段により達成される。
本発明による試料ホルダは、試料を取り付けた試料台を保持する手段を備え、試料台に取り付けられた試料が荷電粒子線装置の光軸上に位置するように荷電粒子線装置内に装着される試料ホルダにおいて、試料の所定箇所に電圧を印加するための先端が自由に移動できる一対の微細導線を有することを特徴とする。
【0007】
この試料ホルダは、試料ホルダの軸部を通り外部の電源と接続される一対の導線と、一対の導線の端部に一対の微細導線をそれぞれ着脱自在に接続する手段とを備えるものとすることができる。
微細導線は、先端の移動自由度を増すため一部がコイル状になっていることが好ましい。
【0008】
本発明による試料分析方法は、試料から微小試料片を摘出する工程と、微小試料片を試料ホルダに固定する工程と、試料ホルダに固定した微小試料片の所定箇所に一対の微細導線を通電可能に取り付ける工程と、一対の微細導線に電圧を印加する工程と、一対の微細導線を介して微小試料片の所定箇所に流れる電流を測定する工程とを含むことを特徴とする。
【0009】
本発明による試料分析方法は、また、試料から微小試料片を摘出する工程と、微小試料片を試料ホルダに固定する工程と、試料ホルダに固定した微小試料片の所定箇所に一対の微細導線を通電可能に取り付ける工程と、一対の微細導線が取り付けられた微小試料片が固定された試料ホルダを荷電粒子線装置に装着する工程と、一対の微細導線を介して微小試料片の所定箇所に電圧を印加しながら、荷電粒子線装置によって、微小試料片の前記所定箇所を観察する工程とを含むことを特徴とする。
【0010】
試料から微小試料片を摘出する工程は、集束イオンビームを用いた加工により試料から微小試料片を摘出する工程であってもよいし、機械加工により試料から微小試料片を摘出する工程であってもよい。
荷電粒子線装置は透過電子顕微鏡とすることができ、その場合、微細導線を介して微小試料片の所定箇所に電圧を印加しながら所定箇所の電子線透過像を観察することができ、試料に電圧印加することによって発生する現象を実時間で観察することができる。
【0011】
微小試料片に一対の微細導線を通電可能に取り付ける工程は、微細導線の先端部あるいは微細導線に固定されたチップの先端部を集束イオンビームにより細く加工する工程と、細く加工された微細導線あるいはチップの先端部を微小試料片上の所定位置に移動させる工程と、細く加工された微細導線あるいはチップの先端部を微小試料片上の所定位置に固定する工程とを含むことができる。
【0012】
細く加工された微細導線あるいはチップの先端部を微小試料片上の所定位置に移動させる工程は、集束イオンビーム装置に備えられた3軸(X,Y,Z)駆動可能なマニュピレータ先端部をビームアシストデポジションにより微細導線あるいはチップの一部に固定し、マニュピレータを移動させることにより行うことができる。
【0013】
本発明による試料分析方法は、また、集束イオンビーム装置に備えられた3軸(X,Y,Z)駆動可能なマニュピレータ先端部をビームアシストデポジションにより第1の微細導線あるいは第1の微細導線に固定された第1のチップの一部に固定する工程と、マニュピレータを移動させることにより第1の微細導線あるいは第1のチップの先端部を試料上の所定位置に移動させる工程と、ビームアシストデポジションにより試料中の所定箇所に第1の微細導線あるいは第1のチップの先端部を取り付ける工程と、前記工程を反復して試料中の所定箇所に第2の微細導線あるいは第2の微細導線に固定された第2のチップの先端部を取り付ける工程と、第1の微細導線と第2の導線の間に電圧を印加する工程と、第1の微細導線と第2の微細導線を介して試料に流れる電流を測定する工程とを含むことを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明で用いる集束イオンビーム(FIB)装置の一例を示す概略図である。このFIB装置1は、イオン銃2、コンデンサーレンズ3、絞り4、偏向器5、対物レンズ6、試料微動機構7、試料ホルダ8、二次電子検出器9を備える。試料11は、3軸(X、Y、Z)方向に移動可能で、試料装填部が回転可能な試料ホルダ8に装填されている。試料11の移動は、微動制御部12から制御される試料微動機構7によって行われる。コンデンサーレンズ3と対物レンズ6の間には、試料11に入射する集束イオンビーム10を偏向し、走査するための偏向器5が配置されている。偏向器5は加工領域を制御する偏向信号制御部15によって制御され、偏向信号制御部15は、ビーム位置のデータを得るため、CPU16と接続されている。
【0015】
イオン銃2から放出されたイオンビーム10は、コンデンサーレンズ3及び対物レンズ6を通過し、試料ホルダ8に保持された試料11上に収束される。イオンビーム照射によって試料11から発生した二次電子は二次電子検出器9により検出される。二次電子検出器9の検出信号は増幅器13により増幅され、モニター14に入力される。モニター14の画面上のXY位置信号をイオンビーム10の偏向制御と同期させ、二次電子検出器9からの二次電子強度信号によってモニター14の輝度を変調することにより、モニター14上に試料の走査イオン(SIM:scanning ion microscopy)像が表示される。
【0016】
試料ホルダ8の試料支持部近傍には、後述するように、先端を浮かせた状態で2本の微細導線が取り付けられている。FIB装置1の試料室内には3軸(X、Y、Z)方向に移動可能なマニュピレータ20が配置され、マニュピレータ20はマニュピレータ駆動制御部22の制御のもとにマニュピレータ駆動部21によって駆動される。後述するように、微細導線の先端部の移動は、マニュピレータ20を微細導線に固定し、マニュピレータ20を移動することにより行なう。マニュピレータ20の微細導線への固定は、デポジション銃23からタングステン化合物ガスや炭素化合物ガスを吹き付け、イオンビーム10と反応させる、いわゆるイオンビームアシストデポジションにより行う。
【0017】
図2は、本発明による試料ホルダの一例の先端部の概略構成図である。
試料ホルダ8は、試料から摘出した微小試料片を装着し、FIB装置内あるいは透過電子顕微鏡等の他の荷電粒子ビーム装置に挿入して観察するために用いられる。試料ホルダ8の試料固定部周辺には、太さ5〜10μm程度のタングステン、銅等からなる微細導線30a,30bを這わせるための溝31が設けてあり、溝31の内壁は、微細導線が接地しないよう絶縁物でコーティングされている。あるいは、溝31の内壁を絶縁物でコーティングする代わりに、先端部及び末端部以外を絶縁物で被覆した微細導線30a,30bを用いてもよい。試料ホルダ8の軸内に設けられたチューブ32a,32b内には、微細導線より太い導線33a,33bが通され、微細導線30a,30bは、この導線33a,33bの先端部にネジ34a,34bで接続される。導線33a,33bの他端部は、試料ホルダ8の末端部から外部に引き出されている。チューブ32a,32bの内壁は絶縁物でコーティングされている。2本の微細導線30a,30bは先端部を自由に動かすことができ、さらに先端部の移動の自由度を上げるため一部をコイル状としている。試料ホルダ8の軸内に設けられた軸内チューブ32a,32bと導線33a,33bの間には、試料ホルダ8を荷電粒子ビーム装置に挿入した時、荷電粒子ビーム装置試料室内及び観察装置室内の真空を保つために、Oリング35a,35bが配されている。あるいは、軸内チューブ32a,32bと導線33a,33bの間は、樹脂等で封止して気密を保ってもよい。
【0018】
図3は、導線33a,33bに微細導線30a,30bの先端部を固定するための構造を示す詳細図である。図3(a)は上面図、図3(b)は側面図である。
図示するように、微細導線30a,30bは、導線33a,33bの端部に着脱自在に固定できる構造になっており、交換することができる。試料ホルダ8の軸内のチューブ32a,32bを通る導線33a,33bには、微細導線30a,30bよりも径の太いものが用いられる。導線33a,33bの端部は2分割されており、2分割された根元にネジ24を有する。微細導線30a,30bの2分割された端部の隙間に導線33a,33bの末端を挟み込み、ネジ34a,34bを締めて隙間の間隔を狭めることにより端部を固定する。
図4は試料を取り付けた試料台を試料ホルダ8に固定するための試料押さえ40の概略図であり、図4(a)は試料押さえの表面の図、図4(b)は試料ホルダ8に対面する試料押さえの裏面の図、図4(c)は試料押さえの上面図である。
【0019】
試料を取り付けた試料台(図9等参照)は、試料ホルダ8の中央開口部近傍の半円盤状に低くなっている円環状の試料台受け部36(図2参照)に橋渡しをするように載せられ、その上に試料押さえ40を載せて固定する。試料押え40の左右両端41,42及び開口部の周囲部分43はテーパー状になっている。試料押さえ40は、試料押さえバネ38(図2参照)によって試料ホルダ8に固定される。具体的には、試料押え40のテーパー部分41を図2に示した試料ホルダ8の逆テーパー部分37に差込み、試料押えばね38をセットされた試料押え40のところまで移動し、試料押え40のテーパー部分42に載せるようにして試料台を固定する。試料押さえ40が微細導線30a,30bと接する部分あるいは試料押さえ40の裏面44は、微細導線30a,30bが接地しないよう絶縁物でコーティングされている。
【0020】
FIB装置を用いた加工によって微細導線が固定された試料は、その微細導線から試料に電圧を印加して通電電流が測定され、あるいは電流を流したときの試料の状態変化が観察される。試料の測定、観察は、試料に微細導線を取り付けるのに用いたFIB装置内で引き続き行うこともできるし、測定、観察の目的によってはFIB装置によって試料に微細導線を取り付けた後、試料ホルダをFIB装置から取り外して他の荷電粒子ビーム装置、例えば透過電子顕微鏡等に装着して行うこともできる。図1に示したFIB装置1は、試料ホルダ8から引き出された導線33a,33bに電圧を印加する電圧電源18、及び電圧電源を制御する電圧電源制御部19を備えており、微細導線の取り付け加工を行った試料に対して電圧を印加して引き続き測定や観察を行うことができる。
【0021】
図5は、FIB装置あるいは透過電子顕微鏡等の荷電粒子ビーム装置の鏡筒50に装着された試料ホルダ8の微細導線を介して試料に電圧を印加する試料電圧印加部の詳細図である。試料電圧印加部は、試料ホルダ8及び電圧電源18、電圧電源制御部19で構成される。微小試料片は、試料ホルダ8に取り付けられた例えば半円盤状の試料台にタングステンデポジション膜により予め固定されている。試料台は、試料押さえにより試料ホルダ8に固定されている。微小試料片には、2本の微細導線の先端部がタングステンデポジション膜により固定されている。外部に引き出された導線33a,33bの末端部は電圧電源18に接続され、電圧電源18は電圧電源制御部19に接続されている。試料ホルダ8の軸は、荷電粒子ビーム装置内の真空を保つために、周囲にOリング51を備える。
【0022】
次に、本発明による試料分析方法の一例について、図6から図13を用いて順を追って説明する。
(a)予め、LSI試料60の中の特定箇所を光学顕微鏡等で観察し、レーザーマーカを使って、その周辺にマーキング61a〜61dを施す(図6(a))。
(b)試料60を図1に示したFIB装置に導入する。試料60に集束イオンビーム10を照射し、発生する二次電子によるSIM像を観察する。レーザーマーカで付けたマーキング61a〜61dを目印に、SIM像で、特定箇所を探す(図6(b))。
【0023】
(c)特定箇所の周囲に、集束イオンビーム10で溝62を加工する(図6(c))。
(d)FIB装置に装着されたXYZ方向に稼動可能なマニュピレータ20を、同じくFIB装置に装着されたビームアシストデポジション機能を用いて、タングステン(W)デポジション膜71で特定箇所を含む微小試料片72の端部に接着する(図7(a))。
【0024】
(e)微小試料片72を元試料60から完全に切り取り、マニュピレータ20ごと持ち上げ退避させる(図7(b))。
(f)電圧印加用の微細導線30a,30bを備えた試料ホルダ8に、微小試料片72を固定するための試料台80をセットし、試料押え40で押さえ込み固定する(図8)。試料ホルダ8をFIB装置の中に導入する。微細導線30a,30bの先端部にはタングステン等からなるチップ39a,39bを固定し、チップの先端は予めFIB10によりサブミクロン程度の径になるように加工しておく。チップ39a,39bは必ずしも用いなくともよい。試料台80の形状は、図では直方体としたが、一般には試料ホルダ8の円環状の試料台受け部36(図2参照)に収まる半円盤状の形をしている。
【0025】
(g)微小試料片72を接着したマニュピレータ20を移動させ、微小試料片72を試料台80にWデポジション膜81a,81bで固定する(図9(a))。
(h)マニュピレータ20を集束イオンビーム10で切り離す(図9(b))。
(i)薄膜化が必要なときは、集束イオンビーム10で試料微小片72を薄膜加工する(図9(c))。
【0026】
(j)試料ホルダ8に取り付けられた微細導線30aの先端に取り付けたチップ39aの根元部分にマニュピレータ20を接触させ、Wデポジション膜82により、微細導線30aにマニュピレータ20を接着する(図10(a))。
(k)チップ39aの先端部分は、FIB10により、直径0.1μm程度に加工し、尖らせておく。チップ12を用いない場合には、微細導線39a自身の先端を直径0.1μm程度に加工し尖らせておく(図10(b))。
【0027】
(l)マニュピレータ20を駆動し、微細導線30aのチップ39aの先端部を微小試料片72内の配線に接触させ、Wデポジション膜83aにより、チップ39aと微小試料片72内の配線とを接着する(図11(a))。
(m)マニュピレータ20を集束イオンビーム10で切り離す(図11(b))。
(n)同様に、試料微小片72の別の配線部分に他方の微細導線30bを、Wデポジション膜83bにより、接着する(図11(c))。その後、集束イオンビーム10を用いてマニュピレータ20を微細導線30bから切り離す。
次に、透過電子顕微鏡などの観察装置に微小試料片72を試料ホルダ8ごと搬送し、微細導線30a,30bが取り付けられた導線33a,33bを装置外に置かれた電圧電源に接続する。
【0028】
(o)その後、電圧電源を制御し、微細導線30a,30bを接触させた試料微小片72の配線部に電圧を印加し、電流を測定しながら、電圧印加により試料片72内の配線部分に発生する現象を観察する(図12)。
例えば、デバイス中の金属配線に大電流を通電すると、配線の金属原子が、電子との衝突により移動し押し流されて空洞やクラックを発生させる。この現象は、マイグレーションと呼ばれているが、上記方法により、このような現象を実時間で観察することが可能になる。
【0029】
上記方法で作製した試料72を透過電子顕微鏡に挿入し、その断面を観察する場合を例にとって説明する。図13は、本発明の方法で観察される現象の一例を説明する模式図である。図13(a)は、金属配線91を有した微小試料片90の断面観察例である。金属配線91は、マイグレーション防止用の金属窒化膜92,93などで覆われている。電圧を印加しない状態では、図13(a)に示すように、配線91には空洞やクラックは観察されず、結晶粒94が敷き詰められたように観察され、結晶粒界95には介在物は観察されない。次に、試料90の配線91に電流を流し、マイグレーションの発生現象を観察する。大電流を流すことにより、空洞96やクラックが発生する様子を直接観察し、最終的には、図13(b)に示すように金属窒化膜93を破って金属結晶粒94が溶融し突出する状態や、空洞96が発生するなどの構造変化が実時間で観察される。また、印加電圧を変化させ、マイグレーション発生の電圧依存性を測定する。得られた結果より、マイグレーション発生のメカニズムを解明することが可能となる。
【0030】
上記した観察例では、試料から光学顕微鏡で特定した部位を摘出したが、FIB装置内で、試料の故障箇所の検出を電圧を印加することによって求め、その部位を摘出しても良い。その方法を図14を用いて説明する。
(a)マニュピレータ20を駆動させ、微細導線30aに取り付けたチップ39aの先端部を試料100内の配線に接触させ、Wデポジション膜101により、チップ39aと試料100内の配線を接着する(図14(a))。
(b)チップ39aからマニュピレータ20を集束イオンビームで切り離し、(a)と同様に試料100内の別の配線に、もう一方の微細導線30bに取り付けたチップ39bを接触させ、Wデポジション膜102により接着する(図14(b))。
(c)チップ39bからマニュピレータ20を集束イオンビームで切り離し、電圧電源25を制御し、接触させた配線部に電圧を印加する。電流を測定し、試料100の状態を観察し、解析箇所を決定する。
【0031】
上記動作により、試料100はバルクの状態で、電圧印加時の平面の観察が可能である。また、決定した解析箇所を図6、図7を用いて説明した工程に従って摘出し、さらにその断面方向からの観察も可能である。
また、上記実施例では、特定箇所を摘出し、摘出した微小試料片の一部に電圧を印加したが、予め、機械加工などで薄膜化した試料を用い、図10から図12で説明した工程に従い試料配線に電圧を印加して観察してもよい。
【0032】
また、上記の例では、微細導線30a,30bを試料ホルダ8に取り付けているが、FIB装置の試料室内に配置される試料片の近傍に装着してもよい。図15は、試料に電圧を印加するための微細導線を試料室内に設けたFIB装置の試料室の概略図である。
【0033】
このFIB装置は、試料ホルダ110に装着されて試料室内にセットされた試料111の近傍に2本の中空ポート112,113を設けている。それぞれの中空ポート112,113の内部を通して試料111の近傍に微細導線130a,130bが配置されている。FIB装置の試料室120の真空を維持するために、試料室120の壁部を貫通する中空ポート112,113の周囲には、Oリング121を配してある。中空ポート112,113内には微細導線130a,130bより径の太い導線が配置され、図2、図3にて説明したのと同様の構造で微細導線130a,130bは中空ポート内の導線と着脱自在に接続されている。中空ポート112,113の内壁を絶縁物によりコーティングするか、導線を絶縁物によりコーティングすることにより、導線と中空ポートの間の短絡を防止している。各ポート112,113から出た2本の微細導線130a,130bの先端部を試料111に接着しやすいように、ポート112,113の先端部の間隔が決められている。試料111の微小配線には、2本の微細導線130a,130bの先端部が、それぞれ試料111の断面に対し両側からWデポジション銃23を用いたWデポジション膜により固定される。FIB装置の外部に引き出された導線の末端部は電圧電源118に接続され、電圧電源118は電圧電源制御部119に接続されている。
【0034】
上記実施例では、微細導線の先端部に、微細導線と同材料で、微細導線より直径が太い円錐状のチップをつけ、集束イオンビームでチップ先端を直径0.1ミクロン以下に加工して用いたが、円錐状のチップを使用せずに微細導線自体の先端部を集束イオンビームを用いて加工するようにしても良い。
【0035】
【発明の効果】
本発明によれば、荷電粒子ビーム装置を用いて、デバイスの微小配線部分に直接電圧を印加し、その変化を観察することにより、電圧印加により実デバイスに発生する現象を直接観察することが可能となり、電圧による故障発生のメカニズムを解明可能とし、故障原因の解明が容易となる。
【図面の簡単な説明】
【図1】本発明で用いる集束イオンビーム(FIB)装置の一例を示す概略図。
【図2】本発明による試料ホルダの一例の先端部の概略構成図。
【図3】導線に微細導線の先端部を固定するための接続構造を示す詳細図。
【図4】試料を取り付けた試料台を試料ホルダに固定するための試料押さえの概略図。
【図5】試料電圧印加部の詳細図。
【図6】本発明による試料分析方法の一例を説明する図。
【図7】本発明による試料分析方法の一例を説明する図。
【図8】試料台をセットした試料ホルダの概略図。
【図9】本発明による試料分析方法の一例を説明する図。
【図10】本発明による試料分析方法の一例を説明する図。
【図11】本発明による試料分析方法の一例を説明する図。
【図12】試料微小片の配線部に電圧を印加している状態の説明図。
【図13】本発明の方法で観察される現象の一例を説明する模式図。
【図14】本発明による試料分析方法の他の例を説明する図。
【図15】微細導線を試料室内に設けたFIB装置の試料室の概略図。
【符号の説明】
1…FIB装置、2…イオン銃、3…コンデンサーレンズ、4…絞り、5…偏向器、6…対物レンズ、7…試料微動機構、8…試料ホルダ、9…二次電子検出器、10…集束イオンビーム、11…試料、12…微動制御部、14…モニター、15…偏向信号制御部、16…CPU、18…電圧電源、19…電圧電源制御部、20…マニュピレータ、21…マニュピレータ駆動部、22…マニュピレータ駆動制御部、23…デポジション銃、30a,30b…微細導線、31…溝、32a,32b…チューブ、33a,33b…導線、36…試料台受け部、38…試料押さえバネ、39a,39b…チップ、40…試料押え、41,42…テーパー部分、60…LSI試料、61a〜61d…マーキング、72…微小試料片、80…試料台、90…微小試料片、91…金属配線、92,93…金属窒化膜、94…結晶粒、95…結晶粒界、96…空洞、100…試料、110…試料ホルダ、111…試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sample analysis method, and more particularly, to a method for analyzing a sample such as a semiconductor or an electronic device material, and a sample holder used for the analysis.
[0002]
[Prior art]
In order to find a fault location of an LSI or a fault location that restricts operating characteristics, it is necessary to directly measure the potential inside the LSI. In addition, it is necessary to elucidate the cause of failure at the found location. First, in order to find a faulty part, conventionally, a thin metal probe is contacted with an internal wiring while observing with an optical microscope, and a waveform is observed with a connected oscilloscope to measure a voltage. In this case, not only skill is required for operation, but the LSI may be broken in some cases. There is also a method of detecting a light emission location with a positional accuracy of 1 μm or less and determining a failure location using emission microscopy. Furthermore, as another conventional technique, the potential contrast reflecting the potential distribution on the sample surface of the scanning electron microscope is used, the electron beam is used as a probe for potential measurement, the target wiring is irradiated with the beam, and the potential waveform is sampled. There are electron beam testers that test the electrical characteristics of LSIs. In any of the above cases, only the failure location and the location that restricts the operation characteristics are determined.
[0003]
Therefore, when the analysis location is determined by the above-described conventional technique, the specific analysis location is then enlarged at a higher magnification by using a focused ion beam (FIB) method or a scanning electron microscope (SEM) method. I was observing. When the analysis location is not on the surface, or when the cause of the failure cannot be grasped without observing the cross section, the cross section is processed using FIB so that the cross section appears on the surface, and observed with SEM or FIB. When observation with higher resolution than SEM or FIB is required, a thin sample is obtained by separating a small sample at a specific location from the sample substrate by FIB irradiation and sample transporting means, as described in Japanese Patent Application Laid-Open No. 11-135051. Were observed by a transmission electron microscope (TEM) method.
[0004]
[Problems to be solved by the invention]
In the above prior art, since an optical microscope is used, the resolution is low, and no consideration is given to the correspondence to the wiring whose LSI design dimension is about 0.1 μm. The other observation methods described above only detect the potential fault location inside the LSI and cannot directly observe the operation and structural change of the fault location. Moreover, the point of observing directly the operation | movement of a normal location is not considered.
In the above-mentioned other conventional technology, after the analysis location is specified, the specific location is searched for and observed with a device for morphological observation. When cross-sectional observation is necessary, the specific location is taken out and processed into a thin film. Although it was observed, no consideration was given to the direct observation of the phenomenon occurring in the device while applying a voltage to the microscopic part of the sample.
[0005]
The object of the present invention is to extract a specific portion inside a sample such as an LSI having a design dimension of about 0.1 μm, which has been difficult with the prior art, and use it as a TEM sample. It is an object of the present invention to provide a sample analysis method capable of observing changes in a device, for example, changes in the crystal structure of a metal used for wiring, measurement of withstand voltage of an insulating film when a voltage is applied, and changes due to voltage. Another object of the present invention is to provide a sample analysis method capable of detecting a potential failure point by directly wiring a minute part inside a sample such as LSI and directly measuring a current when a voltage is applied. It is in. Still another object of the present invention is to provide a sample holder that can be directly wired to a minute portion inside a sample such as an LSI and apply a voltage.
[0006]
[Means for Solving the Problems]
The above object is achieved by the following means.
The sample holder according to the present invention includes means for holding the sample stage to which the sample is attached, and is mounted in the charged particle beam apparatus so that the sample attached to the sample stage is positioned on the optical axis of the charged particle beam apparatus. The sample holder is characterized by having a pair of fine conductors that can freely move the tip for applying a voltage to a predetermined portion of the sample.
[0007]
The sample holder includes a pair of conductors that are connected to an external power source through the shaft portion of the sample holder, and a means for detachably connecting the pair of fine conductors to the ends of the pair of conductors. Can do.
In order to increase the degree of freedom of movement of the tip, it is preferable that a part of the fine conductor is coiled.
[0008]
The sample analysis method according to the present invention is capable of energizing a pair of fine conductors to a predetermined portion of a micro sample piece fixed to the sample holder, a step of extracting the micro sample piece from the sample, a step of fixing the micro sample piece to the sample holder, And a step of applying a voltage to a pair of fine conductors, and a step of measuring a current flowing through a pair of fine conductors to a predetermined location of a micro sample piece.
[0009]
The sample analysis method according to the present invention also includes a step of extracting a micro sample piece from the sample, a step of fixing the micro sample piece to the sample holder, and a pair of fine conductors at predetermined positions of the micro sample piece fixed to the sample holder. A step of attaching the sample to the charged particle beam apparatus, a step of attaching the sample holder to which the minute sample piece to which the pair of fine conductors are attached is fixed, and a voltage to a predetermined portion of the minute sample piece via the pair of fine conductors. And a step of observing the predetermined portion of the micro sample piece with a charged particle beam device while applying a voltage.
[0010]
The step of extracting the minute sample piece from the sample may be a step of extracting the minute sample piece from the sample by processing using a focused ion beam, or a step of extracting the minute sample piece from the sample by machining. Also good.
The charged particle beam apparatus can be a transmission electron microscope. In this case, an electron beam transmission image at a predetermined location can be observed while applying a voltage to a predetermined location on a micro sample piece via a fine conducting wire. Phenomena generated by applying a voltage can be observed in real time.
[0011]
The step of attaching a pair of fine conductors to a small sample piece so as to be energized includes a step of finely processing the tip of the fine conductor or the tip of the chip fixed to the fine conductor with a focused ion beam, and a finely processed fine conductor or The step of moving the tip of the chip to a predetermined position on the micro sample piece and the step of fixing the finely processed fine conductor or the tip of the chip at a predetermined position on the micro sample piece can be included.
[0012]
The process of moving the tip of the finely processed fine wire or tip to a predetermined position on the micro sample piece is performed by beam assisting the tip of the manipulator capable of driving three axes (X, Y, Z) provided in the focused ion beam apparatus. The deposition can be performed by fixing the fine conductor or a part of the chip and moving the manipulator.
[0013]
In the sample analysis method according to the present invention, the tip of the manipulator capable of being driven in three axes (X, Y, Z) provided in the focused ion beam apparatus is used for the first fine lead or the first fine lead by beam assist deposition. Fixing to a part of the first chip fixed to the substrate, moving the manipulator to move the first fine conductor or the tip of the first chip to a predetermined position on the sample, and beam assist A step of attaching the first fine conductor or the tip of the first chip to a predetermined position in the sample by deposition, and a second fine conductor or a second fine conductor at a predetermined position in the sample by repeating the above steps. Attaching the tip of the second chip fixed to the substrate, applying a voltage between the first fine conductor and the second conductor, the first fine conductor and the second fine conductor. Wherein the via comprises a step of measuring the current flowing through the sample.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing an example of a focused ion beam (FIB) apparatus used in the present invention. The FIB apparatus 1 includes an ion gun 2, a condenser lens 3, a diaphragm 4, a deflector 5, an objective lens 6, a sample fine movement mechanism 7, a sample holder 8, and a secondary electron detector 9. A sample 11 is loaded in a sample holder 8 that is movable in three axis (X, Y, Z) directions and in which a sample loading unit can rotate. The movement of the sample 11 is performed by the sample fine movement mechanism 7 controlled by the fine movement control unit 12. A deflector 5 for deflecting and scanning the focused ion beam 10 incident on the sample 11 is disposed between the condenser lens 3 and the objective lens 6. The deflector 5 is controlled by a deflection signal control unit 15 that controls the machining area, and the deflection signal control unit 15 is connected to the CPU 16 in order to obtain beam position data.
[0015]
The ion beam 10 emitted from the ion gun 2 passes through the condenser lens 3 and the objective lens 6 and is converged on the sample 11 held by the sample holder 8. Secondary electrons generated from the sample 11 by the ion beam irradiation are detected by the secondary electron detector 9. The detection signal of the secondary electron detector 9 is amplified by the amplifier 13 and input to the monitor 14. The XY position signal on the screen of the monitor 14 is synchronized with the deflection control of the ion beam 10, and the brightness of the monitor 14 is modulated by the secondary electron intensity signal from the secondary electron detector 9. A scanning ion microscopy (SIM) image is displayed.
[0016]
As will be described later, two fine conducting wires are attached near the sample support portion of the sample holder 8 with the tip floating. A manipulator 20 that can move in three axis (X, Y, Z) directions is arranged in the sample chamber of the FIB apparatus 1, and the manipulator 20 is driven by the manipulator drive unit 21 under the control of the manipulator drive control unit 22. . As will be described later, the tip of the fine conductor is moved by fixing the manipulator 20 to the fine conductor and moving the manipulator 20. The manipulator 20 is fixed to the fine conducting wire by so-called ion beam assisted deposition in which a tungsten compound gas or a carbon compound gas is blown from the deposition gun 23 to react with the ion beam 10.
[0017]
FIG. 2 is a schematic configuration diagram of a tip portion of an example of a sample holder according to the present invention.
The sample holder 8 is used to mount a small sample piece extracted from a sample, and insert it into an FIB apparatus or another charged particle beam apparatus such as a transmission electron microscope for observation. Around the sample fixing portion of the sample holder 8, there is provided a groove 31 for placing fine conductive wires 30a and 30b made of tungsten, copper or the like having a thickness of about 5 to 10 μm. It is coated with an insulator to prevent grounding. Alternatively, instead of coating the inner wall of the groove 31 with an insulator, fine conductive wires 30a and 30b in which the tip and end portions are covered with an insulator may be used. Conductors 33a and 33b that are thicker than the fine conductors are passed through the tubes 32a and 32b provided in the shaft of the sample holder 8, and the fine conductors 30a and 30b are connected to the tips of the conductors 33a and 33b by screws 34a and 34b. Connected with. The other end portions of the conducting wires 33 a and 33 b are drawn out from the end portion of the sample holder 8. The inner walls of the tubes 32a and 32b are coated with an insulating material. The two fine conductive wires 30a and 30b can be moved freely at the tip, and a part thereof is coiled to increase the degree of freedom of movement of the tip. When the sample holder 8 is inserted into the charged particle beam device between the in-axis tubes 32a and 32b and the conducting wires 33a and 33b provided in the shaft of the sample holder 8, the charged particle beam device is in the sample chamber and the observation device chamber. In order to maintain a vacuum, O-rings 35a and 35b are arranged. Or between the tubes 32a and 32b in the shaft and the conducting wires 33a and 33b may be sealed with a resin or the like to keep airtight.
[0018]
FIG. 3 is a detailed view showing a structure for fixing the tips of the fine conductors 30a and 30b to the conductors 33a and 33b. 3A is a top view and FIG. 3B is a side view.
As shown in the drawing, the fine conductors 30a and 30b have a structure that can be detachably fixed to the ends of the conductors 33a and 33b, and can be exchanged. As the conducting wires 33a and 33b passing through the tubes 32a and 32b in the shaft of the sample holder 8, those having a diameter larger than that of the fine conducting wires 30a and 30b are used. The ends of the conducting wires 33a and 33b are divided into two parts, and have screws 24 at the bases divided into two parts. The ends of the conductors 33a and 33b are sandwiched in the gaps between the ends of the fine conductors 30a and 30b, and the ends are fixed by tightening the screws 34a and 34b to narrow the gap.
4A and 4B are schematic views of the sample holder 40 for fixing the sample stage to which the sample is attached to the sample holder 8. FIG. 4A is a diagram of the surface of the sample holder, and FIG. FIG. 4C is a top view of the sample holder, and FIG.
[0019]
The sample stage (see FIG. 9 and the like) to which the sample is attached bridges the annular sample stage receiving part 36 (see FIG. 2) which is lowered in a semi-disc shape near the central opening of the sample holder 8. The sample holder 40 is placed thereon and fixed thereon. The left and right ends 41 and 42 of the sample presser 40 and the peripheral portion 43 of the opening are tapered. The sample presser 40 is fixed to the sample holder 8 by a sample presser spring 38 (see FIG. 2). Specifically, the taper portion 41 of the sample presser 40 is inserted into the reverse taper portion 37 of the sample holder 8 shown in FIG. 2, and the sample presser spring 38 is moved to the set sample presser 40. The sample stage is fixed so as to be placed on the tapered portion 42. The portion where the sample holder 40 is in contact with the fine conductors 30a and 30b or the back surface 44 of the sample holder 40 is coated with an insulating material so that the fine conductors 30a and 30b are not grounded.
[0020]
In the sample in which the fine conducting wire is fixed by processing using the FIB apparatus, a current is measured by applying a voltage to the sample from the fine conducting wire, or a change in the state of the sample when the current is passed is observed. The measurement and observation of the sample can be continued in the FIB apparatus used to attach the fine conductor to the sample. Depending on the purpose of measurement and observation, the sample holder can be attached after the fine conductor is attached to the sample by the FIB apparatus. It can also be carried out by removing it from the FIB apparatus and mounting it on another charged particle beam apparatus such as a transmission electron microscope. The FIB apparatus 1 shown in FIG. 1 includes a voltage power supply 18 that applies a voltage to the conducting wires 33a and 33b drawn from the sample holder 8, and a voltage power supply control unit 19 that controls the voltage power supply. Measurement and observation can be continued by applying a voltage to the processed sample.
[0021]
FIG. 5 is a detailed view of a sample voltage application unit that applies a voltage to the sample via a fine conductor of a sample holder 8 mounted on a lens barrel 50 of a charged particle beam device such as an FIB device or a transmission electron microscope. The sample voltage application unit includes a sample holder 8, a voltage power source 18, and a voltage power source control unit 19. The minute sample piece is fixed in advance by a tungsten deposition film on, for example, a semi-disc-shaped sample stage attached to the sample holder 8. The sample stage is fixed to the sample holder 8 by a sample presser. The tip of two fine conductors is fixed to the minute sample piece by a tungsten deposition film. Terminal portions of the lead wires 33a and 33b drawn to the outside are connected to a voltage power source 18, and the voltage power source 18 is connected to a voltage power source control unit 19. The axis of the sample holder 8 is provided with an O-ring 51 around it in order to maintain a vacuum in the charged particle beam apparatus.
[0022]
Next, an example of the sample analysis method according to the present invention will be described step by step with reference to FIGS.
(A) A specific portion in the LSI sample 60 is observed with an optical microscope or the like in advance, and markings 61a to 61d are applied to the periphery using a laser marker (FIG. 6 (a)).
(B) The sample 60 is introduced into the FIB apparatus shown in FIG. The sample 60 is irradiated with the focused ion beam 10 and a SIM image due to the generated secondary electrons is observed. Using the markings 61a to 61d attached with the laser marker as a mark, a specific portion is searched for in the SIM image (FIG. 6B).
[0023]
(C) The groove 62 is processed with the focused ion beam 10 around a specific location (FIG. 6C).
(D) The manipulator 20 mounted in the FIB apparatus and operable in the X, Y, and Z directions is micro-sample including a specific portion with the tungsten (W) deposition film 71 using the beam assist deposition function also mounted in the FIB apparatus. Adhering to the end of the piece 72 (FIG. 7A).
[0024]
(E) The micro sample piece 72 is completely cut out from the original sample 60, and the whole manipulator 20 is lifted and retracted (FIG. 7B).
(F) A sample stage 80 for fixing the micro sample piece 72 is set on the sample holder 8 provided with the fine conducting wires 30a and 30b for voltage application, and is pressed and fixed by the sample presser 40 (FIG. 8). The sample holder 8 is introduced into the FIB apparatus. Chips 39a and 39b made of tungsten or the like are fixed to the tips of the fine conductors 30a and 30b, and the tips of the chips are processed in advance by the FIB 10 so as to have a diameter of about submicron. The chips 39a and 39b are not necessarily used. The shape of the sample stage 80 is a rectangular parallelepiped in the figure, but generally has a semi-disc shape that fits in the annular sample stage receiving part 36 (see FIG. 2) of the sample holder 8.
[0025]
(G) The manipulator 20 to which the minute sample piece 72 is bonded is moved, and the minute sample piece 72 is fixed to the sample stage 80 with the W deposition films 81a and 81b (FIG. 9A).
(H) The manipulator 20 is separated by the focused ion beam 10 (FIG. 9B).
(I) When a thin film is necessary, the sample micro-piece 72 is processed into a thin film with the focused ion beam 10 (FIG. 9C).
[0026]
(J) The manipulator 20 is brought into contact with the root portion of the tip 39a attached to the tip of the fine conducting wire 30a attached to the sample holder 8, and the manipulator 20 is bonded to the fine conducting wire 30a by the W deposition film 82 (FIG. 10 ( a)).
(K) The tip portion of the tip 39a is processed to a diameter of about 0.1 μm by the FIB 10 and sharpened. When the chip 12 is not used, the tip of the fine conductor 39a itself is processed to have a diameter of about 0.1 μm and sharpened (FIG. 10B).
[0027]
(L) The manipulator 20 is driven to bring the tip of the chip 39a of the fine conductor 30a into contact with the wiring in the micro sample piece 72, and the chip 39a and the wiring in the micro sample piece 72 are bonded by the W deposition film 83a. (FIG. 11A).
(M) The manipulator 20 is separated by the focused ion beam 10 (FIG. 11B).
(N) Similarly, the other fine conducting wire 30b is bonded to another wiring portion of the sample minute piece 72 by the W deposition film 83b (FIG. 11C). Thereafter, the manipulator 20 is separated from the fine conducting wire 30b using the focused ion beam 10.
Next, the micro sample piece 72 is transported together with the sample holder 8 to an observation device such as a transmission electron microscope, and the lead wires 33a and 33b to which the fine lead wires 30a and 30b are attached are connected to a voltage power source placed outside the device.
[0028]
(O) Thereafter, the voltage power source is controlled, voltage is applied to the wiring portion of the sample micro-piece 72 that is in contact with the fine conductors 30a and 30b, and the voltage is applied to the wiring portion in the sample piece 72 while measuring the current. The phenomenon that occurs is observed (FIG. 12).
For example, when a large current is passed through the metal wiring in the device, the metal atoms in the wiring move and are swept away by collision with electrons to generate cavities and cracks. This phenomenon is called migration, but the above method makes it possible to observe such a phenomenon in real time.
[0029]
An example will be described in which the sample 72 produced by the above method is inserted into a transmission electron microscope and the cross section is observed. FIG. 13 is a schematic diagram for explaining an example of a phenomenon observed by the method of the present invention. FIG. 13A is a cross-sectional observation example of a micro sample piece 90 having a metal wiring 91. The metal wiring 91 is covered with metal nitride films 92 and 93 for preventing migration. In the state where no voltage is applied, as shown in FIG. 13A, no cavities or cracks are observed in the wiring 91, the crystal grains 94 are observed, and inclusions are observed in the crystal grain boundaries 95. Not observed. Next, a current is passed through the wiring 91 of the sample 90, and the phenomenon of migration is observed. By passing a large current, the appearance of the cavities 96 and cracks is directly observed, and finally, as shown in FIG. 13B, the metal nitride film 93 is broken and the metal crystal grains 94 are melted and protruded. State changes and structural changes such as the generation of cavities 96 are observed in real time. In addition, the voltage dependency of the occurrence of migration is measured by changing the applied voltage. From the obtained results, it is possible to elucidate the mechanism of migration occurrence.
[0030]
In the observation example described above, the part specified by the optical microscope is extracted from the sample. However, in the FIB apparatus, detection of the failed part of the sample may be obtained by applying a voltage, and the part may be extracted. The method will be described with reference to FIG.
(A) The manipulator 20 is driven, the tip of the chip 39a attached to the fine conductor 30a is brought into contact with the wiring in the sample 100, and the chip 39a and the wiring in the sample 100 are bonded by the W deposition film 101 (FIG. 14 (a)).
(B) The manipulator 20 is separated from the tip 39a with a focused ion beam, and the tip 39b attached to the other fine conducting wire 30b is brought into contact with another wiring in the sample 100 in the same manner as in FIG. (FIG. 14B).
(C) The manipulator 20 is separated from the chip 39b with a focused ion beam, the voltage power supply 25 is controlled, and a voltage is applied to the contacted wiring part. The current is measured, the state of the sample 100 is observed, and the analysis location is determined.
[0031]
By the above operation, the sample 100 can be observed in a bulk state in a bulk state. Further, the determined analysis location can be extracted according to the process described with reference to FIGS. 6 and 7 and further observed from the cross-sectional direction.
Moreover, in the said Example, although the specific location was extracted and the voltage was applied to some extracted micro sample pieces, the process demonstrated in FIGS. 10-12 using the sample previously thinned by machining etc. According to the above, voltage may be applied to the sample wiring for observation.
[0032]
In the above example, the fine conductors 30a and 30b are attached to the sample holder 8. However, the fine conductors 30a and 30b may be attached in the vicinity of the sample piece arranged in the sample chamber of the FIB apparatus. FIG. 15 is a schematic view of the sample chamber of the FIB apparatus in which fine conductors for applying a voltage to the sample are provided in the sample chamber.
[0033]
This FIB apparatus is provided with two hollow ports 112 and 113 in the vicinity of a sample 111 mounted on the sample holder 110 and set in the sample chamber. Fine conducting wires 130a and 130b are arranged in the vicinity of the sample 111 through the insides of the hollow ports 112 and 113, respectively. In order to maintain the vacuum in the sample chamber 120 of the FIB apparatus, an O-ring 121 is disposed around the hollow ports 112 and 113 that penetrate the wall of the sample chamber 120. In the hollow ports 112 and 113, conductive wires having a diameter larger than that of the fine conductive wires 130a and 130b are arranged, and the fine conductive wires 130a and 130b are attached to and detached from the conductive wires in the hollow ports with the same structure as described in FIGS. Connected freely. The inner walls of the hollow ports 112 and 113 are coated with an insulator or the conductor is coated with an insulator to prevent a short circuit between the conductor and the hollow port. The distance between the tip portions of the ports 112 and 113 is determined so that the tip portions of the two fine conductive wires 130a and 130b coming out of the ports 112 and 113 can be easily bonded to the sample 111. The tip ends of the two fine conductive wires 130 a and 130 b are fixed to the micro wiring of the sample 111 by W deposition films using the W deposition gun 23 from both sides with respect to the cross section of the sample 111. A terminal portion of the lead wire drawn out of the FIB apparatus is connected to a voltage power source 118, and the voltage power source 118 is connected to a voltage power source control unit 119.
[0034]
In the above embodiment, the tip of the fine lead is made of the same material as the fine lead and has a conical tip with a diameter larger than that of the fine lead, and the tip of the tip is processed to a diameter of 0.1 microns or less with a focused ion beam. However, the tip of the fine conductor itself may be processed using a focused ion beam without using a conical tip.
[0035]
【The invention's effect】
According to the present invention, it is possible to directly observe a phenomenon generated in an actual device by applying a voltage by directly applying a voltage to a micro wiring portion of the device using a charged particle beam apparatus and observing the change. Thus, it becomes possible to elucidate the mechanism of failure occurrence due to voltage, and it becomes easier to elucidate the cause of failure.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a focused ion beam (FIB) apparatus used in the present invention.
FIG. 2 is a schematic configuration diagram of a tip portion of an example of a sample holder according to the present invention.
FIG. 3 is a detailed view showing a connection structure for fixing a tip portion of a fine conducting wire to the conducting wire.
FIG. 4 is a schematic view of a sample holder for fixing a sample stage to which a sample is attached to a sample holder.
FIG. 5 is a detailed view of a sample voltage application unit.
FIG. 6 is a diagram illustrating an example of a sample analysis method according to the present invention.
FIG. 7 is a diagram illustrating an example of a sample analysis method according to the present invention.
FIG. 8 is a schematic view of a sample holder on which a sample stage is set.
FIG. 9 is a diagram illustrating an example of a sample analysis method according to the present invention.
FIG. 10 is a diagram illustrating an example of a sample analysis method according to the present invention.
FIG. 11 is a diagram illustrating an example of a sample analysis method according to the present invention.
FIG. 12 is an explanatory diagram of a state in which a voltage is applied to the wiring portion of the sample micro-piece.
FIG. 13 is a schematic diagram illustrating an example of a phenomenon observed by the method of the present invention.
FIG. 14 is a diagram for explaining another example of the sample analysis method according to the present invention.
FIG. 15 is a schematic view of a sample chamber of an FIB apparatus in which fine conductors are provided in the sample chamber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... FIB apparatus, 2 ... Ion gun, 3 ... Condenser lens, 4 ... Diaphragm, 5 ... Deflector, 6 ... Objective lens, 7 ... Sample fine movement mechanism, 8 ... Sample holder, 9 ... Secondary electron detector, 10 ... Focused ion beam, 11 ... sample, 12 ... fine movement control unit, 14 ... monitor, 15 ... deflection signal control unit, 16 ... CPU, 18 ... voltage power supply, 19 ... voltage power supply control unit, 20 ... manipulator, 21 ... manipulator drive unit 22 ... Manipulator drive control unit, 23 ... Deposition gun, 30a, 30b ... Fine conductor, 31 ... Groove, 32a, 32b ... Tube, 33a, 33b ... Conductor, 36 ... Sample holder, 38 ... Sample holding spring, 39a, 39b ... chip, 40 ... sample presser, 41,42 ... tapered portion, 60 ... LSI sample, 61a to 61d ... marking, 72 ... micro sample piece, 80 ... sample stage, 9 ... micro sample piece, 91 ... metal wiring, 92 and 93 ... metal nitride film, 94 ... crystal grains, 95 ... grain boundary, 96 ... cavity, 100 ... sample, 110 ... sample holder, 111 ... sample

Claims (2)

試料を取り付けた試料台を保持する手段を備え、試料台に取り付けられた試料が荷電粒子線装置の光軸上に位置するように荷電粒子線装置内に装着される試料ホルダにおいて、
試料の所定箇所に電圧を印加するための先端が自由に移動できる一対の微細導線と、外部の電源と接続される一対の導線と、を有し、前記一対の導線の端部は前記一対の微細導線にそれぞれ着脱自在に接続され、前記導線は前記試料ホルダに設けられた一対のチューブ内にそれぞれ配置され、前記微細導線は前記試料ホルダに設けられた一対の溝内に配置され、前記先端の移動の自由度を上げるために前記微細導線の一部がコイル状になっていることを特徴とする試料ホルダ。
In a sample holder equipped with a means for holding a sample stage to which a sample is attached, and mounted in the charged particle beam apparatus so that the sample attached to the sample stage is positioned on the optical axis of the charged particle beam apparatus,
A pair of fine conductors that can freely move the tip for applying a voltage to a predetermined portion of the sample, and a pair of conductors connected to an external power source, and ends of the pair of conductors are the pair of conductors Removably connected to the fine conductors, the conductors are respectively disposed in a pair of tubes provided in the sample holder, the fine conductors are disposed in a pair of grooves provided in the sample holder, and the tip In order to increase the degree of freedom of movement, a part of the fine conductor is coiled.
請求項1記載の試料ホルダが装着可能であることを特徴とする荷電粒子線装置。  A charged particle beam apparatus capable of mounting the sample holder according to claim 1.
JP2001223167A 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same Expired - Fee Related JP4012705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223167A JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223167A JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007190890A Division JP4534235B2 (en) 2007-07-23 2007-07-23 Sample analysis method

Publications (3)

Publication Number Publication Date
JP2003035682A JP2003035682A (en) 2003-02-07
JP2003035682A5 JP2003035682A5 (en) 2005-01-20
JP4012705B2 true JP4012705B2 (en) 2007-11-21

Family

ID=19056543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223167A Expired - Fee Related JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Country Status (1)

Country Link
JP (1) JP4012705B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199629B2 (en) 2003-09-18 2008-12-17 株式会社日立ハイテクノロジーズ Internal structure observation method and apparatus
JP4570980B2 (en) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 Sample stage and sample processing method
JP4616701B2 (en) 2005-05-30 2011-01-19 日本電子株式会社 Sample holder for electron microscope
JP4489652B2 (en) * 2005-07-29 2010-06-23 アオイ電子株式会社 Small sample table assembly
US7511510B2 (en) * 2005-11-30 2009-03-31 International Business Machines Corporation Nanoscale fault isolation and measurement system
JP4923716B2 (en) * 2006-05-11 2012-04-25 株式会社日立製作所 Sample analysis apparatus and sample analysis method
JP4795308B2 (en) * 2007-06-25 2011-10-19 株式会社日立ハイテクノロジーズ Sample holder for internal structure observation and electron microscope
JP4653148B2 (en) * 2007-08-10 2011-03-16 株式会社アタゴ Hand-held refractometer and manufacturing method thereof
JP5390945B2 (en) * 2009-06-09 2014-01-15 日本電子株式会社 Sample preparation method for transmission electron microscope
JP5094788B2 (en) * 2009-06-18 2012-12-12 株式会社日立製作所 Electron microscope and its sample holder

Also Published As

Publication number Publication date
JP2003035682A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US8334519B2 (en) Multi-part specimen holder with conductive patterns
JP4408538B2 (en) Probe device
US7388365B2 (en) Method and system for inspecting specimen
Stevie et al. Applications of focused ion beams in microelectronics production, design and development
US8134131B2 (en) Method and apparatus for observing inside structures, and specimen holder
JP4185604B2 (en) Sample analysis method, sample preparation method and apparatus therefor
JP4012705B2 (en) Sample holder and charged particle beam apparatus using the same
JP3677968B2 (en) Sample analysis method and apparatus
US11709199B2 (en) Evaluation apparatus for semiconductor device
JP5020483B2 (en) Charged particle beam equipment
JP4090657B2 (en) Probe device
JP4520905B2 (en) Analysis device, probe control method, and analysis system
JP4534235B2 (en) Sample analysis method
JP2002033366A (en) Probe unit and sample manipulating device using the same
US11391756B2 (en) Probe module and probe
JP3383574B2 (en) Process management system and focused ion beam device
JP3041403B2 (en) Charged beam cross-section processing / observation equipment
JP2000156393A (en) Board extracting method and electronic component manufacture using the same
JP4505946B2 (en) Charged particle beam apparatus and probe control method
US20210048450A1 (en) Method for Manufacturing Semiconductor Device
JP4354002B2 (en) Sample preparation apparatus and focused ion beam apparatus
JP2006294632A5 (en)
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece
JP2807715B2 (en) Ion beam processing equipment
JP2007212202A (en) Sample evaluation device and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees