JP2003035682A - Sample holder and sample analysis method - Google Patents

Sample holder and sample analysis method

Info

Publication number
JP2003035682A
JP2003035682A JP2001223167A JP2001223167A JP2003035682A JP 2003035682 A JP2003035682 A JP 2003035682A JP 2001223167 A JP2001223167 A JP 2001223167A JP 2001223167 A JP2001223167 A JP 2001223167A JP 2003035682 A JP2003035682 A JP 2003035682A
Authority
JP
Japan
Prior art keywords
sample
fine
tip
micro
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001223167A
Other languages
Japanese (ja)
Other versions
JP2003035682A5 (en
JP4012705B2 (en
Inventor
Norie Yaguchi
紀恵 矢口
Takeo Ueno
武夫 上野
Hidemi Koike
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP2001223167A priority Critical patent/JP4012705B2/en
Publication of JP2003035682A publication Critical patent/JP2003035682A/en
Publication of JP2003035682A5 publication Critical patent/JP2003035682A5/ja
Application granted granted Critical
Publication of JP4012705B2 publication Critical patent/JP4012705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To observe a phenomenon that is generated in a device by directly applying a voltage to a specific section inside an LSI whose design dimensions are approximately 0.1 μm. SOLUTION: A process for mounting fine conductors 30a and 30b to an extracted fine sample piece 72, and a process for applying a voltage to the mounted fine conductors are added to a process for machining and extracting an arbitrary region in a target sample into fine sample pieces using charge particle beams.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料分析方法に関
わり、特に、半導体、電子デバイス材料等の試料を分析
する方法、及びその分析のために用いられる試料ホルダ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample analysis method, and more particularly to a method for analyzing a sample such as a semiconductor or an electronic device material, and a sample holder used for the analysis.

【0002】[0002]

【従来の技術】LSIの故障箇所や動作特性を制約して
いる故障箇所を探し出すためには、LSI内部の電位を
直接測定することが必要である。また、探し出した箇所
の故障原因を解明することが必要となる。まず、故障箇
所を探し出すためには、従来、細い金属プローブを光学
顕微鏡で観察しながら内部配線に接触させ、接続してい
るオシロスコープで波形を観察し、電圧測定を行ってい
た。この場合、操作に熟練を要するだけでなく、場合に
よっては、LSIを壊すこともある。また、エミッショ
ン顕微鏡法を用い、発光箇所を1μm以下の位置精度で
検出し、故障箇所を決定する方法もある。更に、別の従
来技術として、走査電子顕微鏡の、試料表面の電位分布
を反映する電位コントラストを利用し、電子ビームを電
位測定用プローブとして用い、目的の配線にビームを照
射、電位波形をサンプリングし、LSIの電気特性を試
験する電子ビームテスターがある。上記いずれの場合
も、故障箇所及び動作特性を制約している箇所を確定す
るのみである。
2. Description of the Related Art In order to find a failure location of an LSI or a failure location that limits the operating characteristics, it is necessary to directly measure the potential inside the LSI. In addition, it is necessary to elucidate the cause of the failure in the searched out part. First, in order to find a failure location, conventionally, a thin metal probe was brought into contact with internal wiring while observing with an optical microscope, and a waveform was observed with an oscilloscope connected thereto, and voltage was measured. In this case, not only does the operation require skill, but the LSI may be broken in some cases. There is also a method of detecting a light emitting portion with a positional accuracy of 1 μm or less and determining a failure portion by using an emission microscope method. Furthermore, as another conventional technique, the potential contrast that reflects the potential distribution on the sample surface of the scanning electron microscope is used, the electron beam is used as a probe for measuring potential, the target wiring is irradiated with the beam, and the potential waveform is sampled. , There are electron beam testers that test the electrical characteristics of LSIs. In any of the above cases, only the failure location and the location where the operating characteristics are restricted are determined.

【0003】そこで、上記従来技術で解析箇所が決定さ
れた場合、次に集束イオンビーム(FIB:Focused Ion
Beam)法や走査電子顕微鏡(SEM:Scanning Electr
on Microscopy)法を用いて特定解析箇所をより高倍率
で観察していた。解析箇所が表面に無い場合や、その断
面を観察しないと故障原因が把握できない場合、FIB
を用いて、断面が表面に現れるように加工し、SEMや
FIBで観察していた。SEMやFIBより、さらに高
分解能で観察が必要な場合は、特開平11−13505
1号公報に記載のように、FIB照射と試料搬送手段に
よって試料基板から特定箇所の微小試料を分離して薄膜
試料を作製し、透過電子顕微鏡(TEM:Transmission
Electron Microscopy)法で観察を行なっていた。
Therefore, when the analysis point is determined by the above conventional technique, the focused ion beam (FIB: Focused Ion) is next determined.
Beam) method and scanning electron microscope (SEM: Scanning Electr)
on Microscopy) method was used to observe specific analysis points at higher magnification. If there is no analysis point on the surface or if the cause of failure cannot be understood without observing the cross section, FIB
Was processed so that the cross-section would appear on the surface, and observed by SEM or FIB. When observation with higher resolution than that of SEM or FIB is required, JP-A-11-13505
As described in Japanese Patent Publication No. 1, a thin film sample is prepared by separating a micro sample at a specific location from a sample substrate by FIB irradiation and sample transport means, and then a transmission electron microscope (TEM) is used.
Electron Microscopy) method was used for observation.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、光
学顕微鏡を用いているため、分解能が低く、LSIの設
計寸法が0.1μm程度の配線への対応については配慮
されていなかった。上記他の観察法もLSI内部の電位
故障箇所を検出するのみで、故障箇所の動作及び構造変
化を直接観察することはできなかった。また、正常箇所
の動作について直接観察するという点については、考え
られていない。また、上記別の従来技術では、解析箇所
を特定した後は、特定箇所を、形態観察用の装置で探し
出し、観察を行なっており、断面観察が必要な場合には
特定箇所を取り出し薄膜加工し観察していたが、試料微
小部に電圧を印加しながら、デバイスに発生する現象を
直接観察するという点については、配慮されていなかっ
た。
In the above-mentioned prior art, since the optical microscope is used, the resolution is low, and no consideration has been given to dealing with the wiring having the design dimension of the LSI of about 0.1 μm. The other observation methods described above only detect the potential failure portion inside the LSI and cannot directly observe the operation and structural change of the failure portion. Moreover, it is not considered to directly observe the operation of a normal part. Further, in the above-mentioned another conventional technique, after the analysis point is specified, the specific point is searched for with a device for morphological observation and observed, and when the cross-section observation is necessary, the specific point is taken out and thin film processing is performed. Although it was observed, no consideration was given to directly observing the phenomenon occurring in the device while applying a voltage to the minute portion of the sample.

【0005】本発明の目的は、従来技術では困難であっ
た設計寸法が0.1μm程度のLSI等の試料内部の特
定箇所を摘出後し、TEM用試料とし、その試料微小部
に電圧を直接印加し、デバイス内の変化、例えば配線に
用いている金属の結晶構造の変化や電圧印加時の絶縁膜
の耐圧の測定や電圧による変化などを観察可能とする試
料分析方法を提供することにある。本発明の他の目的
は、LSI等の試料内部の微小部に直接配線し、電圧を
印加した際の電流を直接測定することにより、電位故障
箇所の検出が可能な試料分析方法を提供することにあ
る。本発明の更に他の目的は、LSI等の試料内部の微
小部に直接配線し、電圧を印加する分析を可能にする試
料ホルダを提供することにある。
An object of the present invention is to extract a specific portion inside a sample such as an LSI having a design dimension of about 0.1 μm, which was difficult in the prior art, and use it as a sample for TEM, and directly apply a voltage to the minute portion of the sample. An object of the present invention is to provide a sample analysis method capable of observing a change in a device when applied, for example, a change in crystal structure of a metal used for wiring, a measurement of withstand voltage of an insulating film when a voltage is applied, and a change due to voltage. . Another object of the present invention is to provide a sample analysis method capable of detecting a potential fault location by directly wiring a minute portion inside a sample such as an LSI and directly measuring a current when a voltage is applied. It is in. It is still another object of the present invention to provide a sample holder that enables direct analysis to a minute portion inside a sample such as an LSI and applies a voltage.

【0006】[0006]

【課題を解決するための手段】上記目的は、以下の手段
により達成される。本発明による試料ホルダは、試料を
取り付けた試料台を保持する手段を備え、試料台に取り
付けられた試料が荷電粒子線装置の光軸上に位置するよ
うに荷電粒子線装置内に装着される試料ホルダにおい
て、試料の所定箇所に電圧を印加するための先端が自由
に移動できる一対の微細導線を有することを特徴とす
る。
The above object can be achieved by the following means. The sample holder according to the present invention comprises means for holding the sample stage on which the sample is attached, and is mounted in the charged particle beam device so that the sample attached to the sample stage is located on the optical axis of the charged particle beam device. A feature of the sample holder is that the tip for applying a voltage to a predetermined portion of the sample has a pair of fine conductive wires that can freely move.

【0007】この試料ホルダは、試料ホルダの軸部を通
り外部の電源と接続される一対の導線と、一対の導線の
端部に一対の微細導線をそれぞれ着脱自在に接続する手
段とを備えるものとすることができる。微細導線は、先
端の移動自由度を増すため一部がコイル状になっている
ことが好ましい。
This sample holder is provided with a pair of conducting wires that pass through the shaft of the sample holder and is connected to an external power source, and a means for detachably connecting a pair of fine conducting wires to the ends of the pair of conducting wires. Can be It is preferable that a part of the fine wire has a coil shape in order to increase the freedom of movement of the tip.

【0008】本発明による試料分析方法は、試料から微
小試料片を摘出する工程と、微小試料片を試料ホルダに
固定する工程と、試料ホルダに固定した微小試料片の所
定箇所に一対の微細導線を通電可能に取り付ける工程
と、一対の微細導線に電圧を印加する工程と、一対の微
細導線を介して微小試料片の所定箇所に流れる電流を測
定する工程とを含むことを特徴とする。
The sample analysis method according to the present invention comprises a step of extracting a minute sample piece from a sample, a step of fixing the minute sample piece to a sample holder, and a pair of fine conducting wires at predetermined positions of the minute sample piece fixed to the sample holder. Is attached so that it can be energized, a step of applying a voltage to the pair of fine conductors, and a step of measuring a current flowing through a pair of fine conductors at a predetermined location of the micro sample piece.

【0009】本発明による試料分析方法は、また、試料
から微小試料片を摘出する工程と、微小試料片を試料ホ
ルダに固定する工程と、試料ホルダに固定した微小試料
片の所定箇所に一対の微細導線を通電可能に取り付ける
工程と、一対の微細導線が取り付けられた微小試料片が
固定された試料ホルダを荷電粒子線装置に装着する工程
と、一対の微細導線を介して微小試料片の所定箇所に電
圧を印加しながら、荷電粒子線装置によって、微小試料
片の前記所定箇所を観察する工程とを含むことを特徴と
する。
The sample analysis method according to the present invention also includes a step of extracting a minute sample piece from the sample, a step of fixing the minute sample piece to the sample holder, and a pair of predetermined portions of the minute sample piece fixed to the sample holder. A step of attaching a fine conductor wire so that it can be energized, a step of mounting a sample holder to which a minute sample piece having a pair of minute conductor wires attached is fixed to a charged particle beam device, and a predetermined step of the minute sample piece through a pair of minute conductor wires. And a step of observing the predetermined part of the micro sample piece with a charged particle beam device while applying a voltage to the part.

【0010】試料から微小試料片を摘出する工程は、集
束イオンビームを用いた加工により試料から微小試料片
を摘出する工程であってもよいし、機械加工により試料
から微小試料片を摘出する工程であってもよい。荷電粒
子線装置は透過電子顕微鏡とすることができ、その場
合、微細導線を介して微小試料片の所定箇所に電圧を印
加しながら所定箇所の電子線透過像を観察することがで
き、試料に電圧印加することによって発生する現象を実
時間で観察することができる。
The step of extracting the micro sample piece from the sample may be a step of extracting the micro sample piece from the sample by processing using a focused ion beam, or a step of extracting the micro sample piece from the sample by machining. May be The charged particle beam device can be a transmission electron microscope, in which case it is possible to observe an electron beam transmission image of a predetermined location while applying a voltage to a predetermined location of a micro sample piece through a fine conducting wire. It is possible to observe in real time the phenomenon that occurs when a voltage is applied.

【0011】微小試料片に一対の微細導線を通電可能に
取り付ける工程は、微細導線の先端部あるいは微細導線
に固定されたチップの先端部を集束イオンビームにより
細く加工する工程と、細く加工された微細導線あるいは
チップの先端部を微小試料片上の所定位置に移動させる
工程と、細く加工された微細導線あるいはチップの先端
部を微小試料片上の所定位置に固定する工程とを含むこ
とができる。
The step of electrically attaching a pair of fine conducting wires to the minute sample piece includes the step of finely processing the tip portion of the fine conducting wire or the tip portion of the chip fixed to the fine conducting wire by the focused ion beam, and the finely worked step. The method may include the step of moving the tip of the fine conductor wire or the tip to a predetermined position on the micro sample piece, and the step of fixing the tip of the finely processed fine conductor wire or the tip to the predetermined position on the micro sample piece.

【0012】細く加工された微細導線あるいはチップの
先端部を微小試料片上の所定位置に移動させる工程は、
集束イオンビーム装置に備えられた3軸(X,Y,Z)
駆動可能なマニュピレータ先端部をビームアシストデポ
ジションにより微細導線あるいはチップの一部に固定
し、マニュピレータを移動させることにより行うことが
できる。
The step of moving the finely processed fine conductor wire or the tip of the chip to a predetermined position on the fine sample piece is
Three axes (X, Y, Z) provided in the focused ion beam device
This can be performed by fixing the drivable manipulator tip portion to a fine conductor wire or a part of the chip by beam assist deposition and moving the manipulator.

【0013】本発明による試料分析方法は、また、集束
イオンビーム装置に備えられた3軸(X,Y,Z)駆動
可能なマニュピレータ先端部をビームアシストデポジシ
ョンにより第1の微細導線あるいは第1の微細導線に固
定された第1のチップの一部に固定する工程と、マニュ
ピレータを移動させることにより第1の微細導線あるい
は第1のチップの先端部を試料上の所定位置に移動させ
る工程と、ビームアシストデポジションにより試料中の
所定箇所に第1の微細導線あるいは第1のチップの先端
部を取り付ける工程と、前記工程を反復して試料中の所
定箇所に第2の微細導線あるいは第2の微細導線に固定
された第2のチップの先端部を取り付ける工程と、第1
の微細導線と第2の導線の間に電圧を印加する工程と、
第1の微細導線と第2の微細導線を介して試料に流れる
電流を測定する工程とを含むことを特徴とする。
In the sample analyzing method according to the present invention, the tip of the manipulator which can be driven in three axes (X, Y, Z) provided in the focused ion beam apparatus is subjected to beam-assisted deposition to produce the first fine conductor wire or the first fine conductor wire. Fixing to a part of the first chip fixed to the fine conductor wire, and a step of moving the manipulator to move the first fine conductor wire or the tip of the first chip to a predetermined position on the sample. Attaching the first fine conductor wire or the tip of the first chip to a predetermined location in the sample by beam assisted deposition, and repeating the above steps to the second fine conductor wire or the second fine conductor wire in the predetermined location in the sample. Attaching the tip portion of the second chip fixed to the fine conductor wire of
Applying a voltage between the fine conductor wire and the second conductor wire,
And a step of measuring a current flowing through the sample through the first fine conductor wire and the second fine conductor wire.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明で用いる集束イオ
ンビーム(FIB)装置の一例を示す概略図である。こ
のFIB装置1は、イオン銃2、コンデンサーレンズ
3、絞り4、偏向器5、対物レンズ6、試料微動機構
7、試料ホルダ8、二次電子検出器9を備える。試料1
1は、3軸(X、Y、Z)方向に移動可能で、試料装填
部が回転可能な試料ホルダ8に装填されている。試料1
1の移動は、微動制御部12から制御される試料微動機
構7によって行われる。コンデンサーレンズ3と対物レ
ンズ6の間には、試料11に入射する集束イオンビーム
10を偏向し、走査するための偏向器5が配置されてい
る。偏向器5は加工領域を制御する偏向信号制御部15
によって制御され、偏向信号制御部15は、ビーム位置
のデータを得るため、CPU16と接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a focused ion beam (FIB) device used in the present invention. The FIB device 1 includes an ion gun 2, a condenser lens 3, a diaphragm 4, a deflector 5, an objective lens 6, a sample fine movement mechanism 7, a sample holder 8, and a secondary electron detector 9. Sample 1
1 is movable in three axis (X, Y, Z) directions, and is loaded on a sample holder 8 whose sample loading section is rotatable. Sample 1
The movement of 1 is performed by the sample fine movement mechanism 7 controlled by the fine movement control unit 12. A deflector 5 for deflecting and scanning the focused ion beam 10 incident on the sample 11 is arranged between the condenser lens 3 and the objective lens 6. The deflector 5 is a deflection signal control unit 15 that controls the processing area.
The deflection signal control unit 15 is connected to the CPU 16 in order to obtain beam position data.

【0015】イオン銃2から放出されたイオンビーム1
0は、コンデンサーレンズ3及び対物レンズ6を通過
し、試料ホルダ8に保持された試料11上に収束され
る。イオンビーム照射によって試料11から発生した二
次電子は二次電子検出器9により検出される。二次電子
検出器9の検出信号は増幅器13により増幅され、モニ
ター14に入力される。モニター14の画面上のXY位
置信号をイオンビーム10の偏向制御と同期させ、二次
電子検出器9からの二次電子強度信号によってモニター
14の輝度を変調することにより、モニター14上に試
料の走査イオン(SIM:scanning ion microscopy)
像が表示される。
Ion beam 1 emitted from ion gun 2
0 passes through the condenser lens 3 and the objective lens 6 and is converged on the sample 11 held by the sample holder 8. Secondary electrons generated from the sample 11 by the ion beam irradiation are detected by the secondary electron detector 9. The detection signal of the secondary electron detector 9 is amplified by the amplifier 13 and input to the monitor 14. By synchronizing the XY position signal on the screen of the monitor 14 with the deflection control of the ion beam 10 and modulating the brightness of the monitor 14 by the secondary electron intensity signal from the secondary electron detector 9, the sample on the monitor 14 can be adjusted. Scanning ion microscopy (SIM)
The image is displayed.

【0016】試料ホルダ8の試料支持部近傍には、後述
するように、先端を浮かせた状態で2本の微細導線が取
り付けられている。FIB装置1の試料室内には3軸
(X、Y、Z)方向に移動可能なマニュピレータ20が
配置され、マニュピレータ20はマニュピレータ駆動制
御部22の制御のもとにマニュピレータ駆動部21によ
って駆動される。後述するように、微細導線の先端部の
移動は、マニュピレータ20を微細導線に固定し、マニ
ュピレータ20を移動することにより行なう。マニュピ
レータ20の微細導線への固定は、デポジション銃23
からタングステン化合物ガスや炭素化合物ガスを吹き付
け、イオンビーム10と反応させる、いわゆるイオンビ
ームアシストデポジションにより行う。
As will be described later, two fine conducting wires are attached to the sample holder 8 in the vicinity of the sample supporting portion with the tip thereof floating. A manipulator 20 movable in three axis (X, Y, Z) directions is arranged in the sample chamber of the FIB apparatus 1, and the manipulator 20 is driven by a manipulator drive unit 21 under the control of a manipulator drive control unit 22. . As will be described later, the movement of the tip of the fine conductor wire is performed by fixing the manipulator 20 to the fine conductor wire and moving the manipulator 20. The fixing of the manipulator 20 to the fine lead wire is performed by the deposition gun 23.
A so-called ion beam assisted deposition, in which a tungsten compound gas or a carbon compound gas is sprayed from the above to react with the ion beam 10.

【0017】図2は、本発明による試料ホルダの一例の
先端部の概略構成図である。試料ホルダ8は、試料から
摘出した微小試料片を装着し、FIB装置内あるいは透
過電子顕微鏡等の他の荷電粒子ビーム装置に挿入して観
察するために用いられる。試料ホルダ8の試料固定部周
辺には、太さ5〜10μm程度のタングステン、銅等か
らなる微細導線30a,30bを這わせるための溝31
が設けてあり、溝31の内壁は、微細導線が接地しない
よう絶縁物でコーティングされている。あるいは、溝3
1の内壁を絶縁物でコーティングする代わりに、先端部
及び末端部以外を絶縁物で被覆した微細導線30a,3
0bを用いてもよい。試料ホルダ8の軸内に設けられた
チューブ32a,32b内には、微細導線より太い導線
33a,33bが通され、微細導線30a,30bは、
この導線33a,33bの先端部にネジ34a,34b
で接続される。導線33a,33bの他端部は、試料ホ
ルダ8の末端部から外部に引き出されている。チューブ
32a,32bの内壁は絶縁物でコーティングされてい
る。2本の微細導線30a,30bは先端部を自由に動
かすことができ、さらに先端部の移動の自由度を上げる
ため一部をコイル状としている。試料ホルダ8の軸内に
設けられた軸内チューブ32a,32bと導線33a,
33bの間には、試料ホルダ8を荷電粒子ビーム装置に
挿入した時、荷電粒子ビーム装置試料室内及び観察装置
室内の真空を保つために、Oリング35a,35bが配
されている。あるいは、軸内チューブ32a,32bと
導線33a,33bの間は、樹脂等で封止して気密を保
ってもよい。
FIG. 2 is a schematic diagram of the tip of an example of the sample holder according to the present invention. The sample holder 8 is used for mounting a minute sample piece extracted from the sample and inserting it into the FIB apparatus or another charged particle beam apparatus such as a transmission electron microscope for observation. Around the sample fixing portion of the sample holder 8, a groove 31 for crawling the fine conductive wires 30a and 30b made of tungsten, copper or the like having a thickness of about 5 to 10 μm.
Is provided, and the inner wall of the groove 31 is coated with an insulator so that the fine conductor wire is not grounded. Alternatively, groove 3
Instead of coating the inner wall of No. 1 with an insulating material, fine conductor wires 30a, 3 having the tip and the end except for the insulating material are coated.
0b may be used. In the tubes 32a, 32b provided in the shaft of the sample holder 8, conductors 33a, 33b thicker than the fine conductors are passed, and the fine conductors 30a, 30b are
Screws 34a and 34b are attached to the tips of the conductors 33a and 33b.
Connected by. The other ends of the conducting wires 33 a and 33 b are drawn out from the end of the sample holder 8. The inner walls of the tubes 32a and 32b are coated with an insulating material. The two fine conducting wires 30a and 30b can be freely moved at their tips, and are partially coiled to increase the degree of freedom of movement of the tips. In-shaft tubes 32a, 32b and conductors 33a provided in the shaft of the sample holder 8,
O-rings 35a and 35b are arranged between the portions 33b in order to maintain the vacuum inside the charged particle beam device sample chamber and the observation device chamber when the sample holder 8 is inserted into the charged particle beam device. Alternatively, the space between the axial tubes 32a, 32b and the conductors 33a, 33b may be sealed with resin or the like to maintain airtightness.

【0018】図3は、導線33a,33bに微細導線3
0a,30bの先端部を固定するための構造を示す詳細
図である。図3(a)は上面図、図3(b)は側面図で
ある。図示するように、微細導線30a,30bは、導
線33a,33bの端部に着脱自在に固定できる構造に
なっており、交換することができる。試料ホルダ8の軸
内のチューブ32a,32bを通る導線33a,33b
には、微細導線30a,30bよりも径の太いものが用
いられる。導線33a,33bの端部は2分割されてお
り、2分割された根元にネジ24を有する。微細導線3
0a,30bの2分割された端部の隙間に導線33a,
33bの末端を挟み込み、ネジ34a,34bを締めて
隙間の間隔を狭めることにより端部を固定する。図4は
試料を取り付けた試料台を試料ホルダ8に固定するため
の試料押さえ40の概略図であり、図4(a)は試料押
さえの表面の図、図4(b)は試料ホルダ8に対面する
試料押さえの裏面の図、図4(c)は試料押さえの上面
図である。
In FIG. 3, the fine conductors 3 are attached to the conductors 33a and 33b.
It is a detailed view showing the structure for fixing the tip of 0a, 30b. 3A is a top view and FIG. 3B is a side view. As shown in the figure, the fine conductors 30a and 30b have a structure in which they can be detachably fixed to the ends of the conductors 33a and 33b and can be replaced. Conductors 33a, 33b passing through tubes 32a, 32b in the shaft of the sample holder 8
The diameter of the fine conductive wires 30a and 30b is larger than that of the fine conductive wires 30a and 30b. The ends of the conductive wires 33a and 33b are divided into two parts, and the screw 24 is provided at the base part of the two divided parts. Fine conductor 3
In the gap between the two divided ends of 0a and 30b, the conductive wire 33a,
The end of 33b is sandwiched, and screws 34a and 34b are tightened to narrow the gap to fix the end. 4A and 4B are schematic views of a sample holder 40 for fixing the sample holder to which the sample is attached to the sample holder 8. FIG. 4A is a view of the surface of the sample holder, and FIG. FIG. 4C is a top view of the sample holder, which is a view of the back surface of the sample holder facing each other.

【0019】試料を取り付けた試料台(図9等参照)
は、試料ホルダ8の中央開口部近傍の半円盤状に低くな
っている円環状の試料台受け部36(図2参照)に橋渡
しをするように載せられ、その上に試料押さえ40を載
せて固定する。試料押え40の左右両端41,42及び
開口部の周囲部分43はテーパー状になっている。試料
押さえ40は、試料押さえバネ38(図2参照)によっ
て試料ホルダ8に固定される。具体的には、試料押え4
0のテーパー部分41を図2に示した試料ホルダ8の逆
テーパー部分37に差込み、試料押えばね38をセット
された試料押え40のところまで移動し、試料押え40
のテーパー部分42に載せるようにして試料台を固定す
る。試料押さえ40が微細導線30a,30bと接する
部分あるいは試料押さえ40の裏面44は、微細導線3
0a,30bが接地しないよう絶縁物でコーティングさ
れている。
A sample table to which a sample is attached (see FIG. 9 etc.)
Is placed so as to bridge the annular sample holder 36 (see FIG. 2) that is lowered in the shape of a semi-disk near the central opening of the sample holder 8, and the sample holder 40 is placed on it. Fix it. The left and right ends 41, 42 of the sample holder 40 and the peripheral portion 43 of the opening are tapered. The sample holder 40 is fixed to the sample holder 8 by the sample holder spring 38 (see FIG. 2). Specifically, sample holder 4
The taper part 41 of 0 is inserted into the reverse taper part 37 of the sample holder 8 shown in FIG. 2, the sample pressing spring 38 is moved to the set sample pressing 40, and the sample pressing 40
The sample table is fixed so that the sample table is mounted on the taper portion 42 of. The portion where the sample holder 40 is in contact with the fine conductors 30a and 30b or the back surface 44 of the sample holder 40 has the fine conductor 3
0a and 30b are coated with an insulating material so as not to be grounded.

【0020】FIB装置を用いた加工によって微細導線
が固定された試料は、その微細導線から試料に電圧を印
加して通電電流が測定され、あるいは電流を流したとき
の試料の状態変化が観察される。試料の測定、観察は、
試料に微細導線を取り付けるのに用いたFIB装置内で
引き続き行うこともできるし、測定、観察の目的によっ
てはFIB装置によって試料に微細導線を取り付けた
後、試料ホルダをFIB装置から取り外して他の荷電粒
子ビーム装置、例えば透過電子顕微鏡等に装着して行う
こともできる。図1に示したFIB装置1は、試料ホル
ダ8から引き出された導線33a,33bに電圧を印加
する電圧電源18、及び電圧電源を制御する電圧電源制
御部19を備えており、微細導線の取り付け加工を行っ
た試料に対して電圧を印加して引き続き測定や観察を行
うことができる。
For the sample to which the fine conductor wire is fixed by the processing using the FIB device, a voltage is applied to the specimen from the fine conductor wire to measure the energization current, or a change in the state of the specimen when the current is passed is observed. It For sample measurement and observation,
It can be carried out continuously in the FIB device used for attaching the fine conductor wire to the sample, or depending on the purpose of measurement or observation, after attaching the fine conductor wire to the sample by the FIB device, the sample holder is detached from the FIB device. It can also be carried out by mounting it on a charged particle beam device such as a transmission electron microscope. The FIB device 1 shown in FIG. 1 is equipped with a voltage power supply 18 for applying a voltage to the conductors 33a, 33b drawn out from the sample holder 8 and a voltage power supply controller 19 for controlling the voltage power supply. A voltage can be applied to the processed sample for subsequent measurement and observation.

【0021】図5は、FIB装置あるいは透過電子顕微
鏡等の荷電粒子ビーム装置の鏡筒50に装着された試料
ホルダ8の微細導線を介して試料に電圧を印加する試料
電圧印加部の詳細図である。試料電圧印加部は、試料ホ
ルダ8及び電圧電源18、電圧電源制御部19で構成さ
れる。微小試料片は、試料ホルダ8に取り付けられた例
えば半円盤状の試料台にタングステンデポジション膜に
より予め固定されている。試料台は、試料押さえにより
試料ホルダ8に固定されている。微小試料片には、2本
の微細導線の先端部がタングステンデポジション膜によ
り固定されている。外部に引き出された導線33a,3
3bの末端部は電圧電源18に接続され、電圧電源18
は電圧電源制御部19に接続されている。試料ホルダ8
の軸は、荷電粒子ビーム装置内の真空を保つために、周
囲にOリング51を備える。
FIG. 5 is a detailed view of a sample voltage applying section for applying a voltage to a sample through a fine lead wire of a sample holder 8 mounted on a lens barrel 50 of a charged particle beam apparatus such as a FIB apparatus or a transmission electron microscope. is there. The sample voltage application unit is composed of the sample holder 8, the voltage power supply 18, and the voltage power supply control unit 19. The minute sample piece is fixed in advance by a tungsten deposition film on, for example, a semi-disc-shaped sample table attached to the sample holder 8. The sample table is fixed to the sample holder 8 by a sample holder. The tips of two fine conducting wires are fixed to the micro sample piece by a tungsten deposition film. Conductive wires 33a, 3 led out to the outside
The end of 3b is connected to the voltage power supply 18,
Is connected to the voltage power supply controller 19. Sample holder 8
The axis of is equipped with an O-ring 51 around it to maintain the vacuum in the charged particle beam device.

【0022】次に、本発明による試料分析方法の一例に
ついて、図6から図13を用いて順を追って説明する。 (a)予め、LSI試料60の中の特定箇所を光学顕微
鏡等で観察し、レーザーマーカを使って、その周辺にマ
ーキング61a〜61dを施す(図6(a))。 (b)試料60を図1に示したFIB装置に導入する。
試料60に集束イオンビーム10を照射し、発生する二
次電子によるSIM像を観察する。レーザーマーカで付
けたマーキング61a〜61dを目印に、SIM像で、
特定箇所を探す(図6(b))。
Next, an example of the sample analysis method according to the present invention will be described step by step with reference to FIGS. 6 to 13. (A) In advance, a specific portion in the LSI sample 60 is observed with an optical microscope or the like, and markings 61a to 61d are provided around the specific portion using a laser marker (FIG. 6A). (B) The sample 60 is introduced into the FIB device shown in FIG.
The sample 60 is irradiated with the focused ion beam 10 and the SIM image by the generated secondary electrons is observed. With the markings 61a to 61d attached with laser markers as marks, SIM images,
Search for a specific location (Fig. 6 (b)).

【0023】(c)特定箇所の周囲に、集束イオンビー
ム10で溝62を加工する(図6(c))。 (d)FIB装置に装着されたXYZ方向に稼動可能な
マニュピレータ20を、同じくFIB装置に装着された
ビームアシストデポジション機能を用いて、タングステ
ン(W)デポジション膜71で特定箇所を含む微小試料
片72の端部に接着する(図7(a))。
(C) A groove 62 is formed around the specific portion by the focused ion beam 10 (FIG. 6 (c)). (D) Using the beam assist deposition function of the manipulator 20 mounted on the FIB device and capable of operating in the XYZ directions, a micro sample including a specific portion on the tungsten (W) deposition film 71. It is adhered to the end of the piece 72 (FIG. 7A).

【0024】(e)微小試料片72を元試料60から完
全に切り取り、マニュピレータ20ごと持ち上げ退避さ
せる(図7(b))。 (f)電圧印加用の微細導線30a,30bを備えた試
料ホルダ8に、微小試料片72を固定するための試料台
80をセットし、試料押え40で押さえ込み固定する
(図8)。試料ホルダ8をFIB装置の中に導入する。
微細導線30a,30bの先端部にはタングステン等か
らなるチップ39a,39bを固定し、チップの先端は
予めFIB10によりサブミクロン程度の径になるよう
に加工しておく。チップ39a,39bは必ずしも用い
なくともよい。試料台80の形状は、図では直方体とし
たが、一般には試料ホルダ8の円環状の試料台受け部3
6(図2参照)に収まる半円盤状の形をしている。
(E) The micro sample piece 72 is completely cut from the original sample 60, and the manipulator 20 is lifted and retracted (FIG. 7 (b)). (F) The sample holder 80 for fixing the minute sample piece 72 is set on the sample holder 8 provided with the fine conducting wires 30a, 30b for voltage application, and the sample holder 40 is pressed and fixed (FIG. 8). The sample holder 8 is introduced into the FIB device.
Tips 39a and 39b made of tungsten or the like are fixed to the tips of the fine conductive wires 30a and 30b, and the tips of the tips are preliminarily processed by the FIB 10 so as to have a diameter of about submicron. The chips 39a and 39b do not necessarily have to be used. Although the shape of the sample table 80 is a rectangular parallelepiped in the drawing, it is generally an annular sample table receiving portion 3 of the sample holder 8.
It has a semi-disc shape that fits in 6 (see FIG. 2).

【0025】(g)微小試料片72を接着したマニュピ
レータ20を移動させ、微小試料片72を試料台80に
Wデポジション膜81a,81bで固定する(図9
(a))。 (h)マニュピレータ20を集束イオンビーム10で切
り離す(図9(b))。 (i)薄膜化が必要なときは、集束イオンビーム10で
試料微小片72を薄膜加工する(図9(c))。
(G) The manipulator 20 to which the micro sample piece 72 is adhered is moved to fix the micro sample piece 72 to the sample table 80 with W deposition films 81a and 81b (FIG. 9).
(A)). (H) The manipulator 20 is separated by the focused ion beam 10 (FIG. 9B). (I) When it is necessary to reduce the film thickness, the sample ion piece 72 is processed into a thin film by the focused ion beam 10 (FIG. 9C).

【0026】(j)試料ホルダ8に取り付けられた微細
導線30aの先端に取り付けたチップ39aの根元部分
にマニュピレータ20を接触させ、Wデポジション膜8
2により、微細導線30aにマニュピレータ20を接着
する(図10(a))。 (k)チップ39aの先端部分は、FIB10により、
直径0.1μm程度に加工し、尖らせておく。チップ1
2を用いない場合には、微細導線39a自身の先端を直
径0.1μm程度に加工し尖らせておく(図10
(b))。
(J) The manipulator 20 is brought into contact with the root portion of the tip 39a attached to the tip of the fine conducting wire 30a attached to the sample holder 8 to bring the W deposition film 8 into contact.
The manipulator 20 is adhered to the fine conducting wire 30a by 2 (FIG. 10A). (K) The tip portion of the tip 39a is
It is processed into a diameter of about 0.1 μm and sharpened. Chip 1
When 2 is not used, the tip of the fine conductive wire 39a itself is processed to have a diameter of about 0.1 μm and sharpened (FIG. 10).
(B)).

【0027】(l)マニュピレータ20を駆動し、微細
導線30aのチップ39aの先端部を微小試料片72内
の配線に接触させ、Wデポジション膜83aにより、チ
ップ39aと微小試料片72内の配線とを接着する(図
11(a))。 (m)マニュピレータ20を集束イオンビーム10で切
り離す(図11(b))。 (n)同様に、試料微小片72の別の配線部分に他方の
微細導線30bを、Wデポジション膜83bにより、接
着する(図11(c))。その後、集束イオンビーム1
0を用いてマニュピレータ20を微細導線30bから切
り離す。次に、透過電子顕微鏡などの観察装置に微小試
料片72を試料ホルダ8ごと搬送し、微細導線30a,
30bが取り付けられた導線33a,33bを装置外に
置かれた電圧電源に接続する。
(L) The manipulator 20 is driven to bring the tip of the tip 39a of the fine conducting wire 30a into contact with the wiring in the micro sample piece 72, and the W deposition film 83a is used to connect the tip 39a and the wire in the micro sample piece 72. And (FIG. 11A). (M) The manipulator 20 is separated by the focused ion beam 10 (FIG. 11B). (N) Similarly, the other fine conducting wire 30b is adhered to another wiring portion of the sample minute piece 72 by the W deposition film 83b (FIG. 11C). After that, focused ion beam 1
0 is used to disconnect the manipulator 20 from the fine conductor wire 30b. Next, the micro sample piece 72 is conveyed together with the sample holder 8 to an observation device such as a transmission electron microscope, and the micro conductive wire 30a,
The conductors 33a and 33b to which 30b is attached are connected to a voltage power source placed outside the device.

【0028】(o)その後、電圧電源を制御し、微細導
線30a,30bを接触させた試料微小片72の配線部
に電圧を印加し、電流を測定しながら、電圧印加により
試料片72内の配線部分に発生する現象を観察する(図
12)。例えば、デバイス中の金属配線に大電流を通電
すると、配線の金属原子が、電子との衝突により移動し
押し流されて空洞やクラックを発生させる。この現象
は、マイグレーションと呼ばれているが、上記方法によ
り、このような現象を実時間で観察することが可能にな
る。
(O) After that, the voltage power source is controlled to apply a voltage to the wiring portion of the sample fine piece 72 in contact with the fine conductive wires 30a and 30b, and while measuring the current, the voltage is applied to the inside of the sample piece 72. The phenomenon occurring in the wiring portion is observed (Fig. 12). For example, when a large current is applied to a metal wire in a device, the metal atom of the wire moves and is swept away by collision with an electron, and a cavity or a crack is generated. Although this phenomenon is called migration, the above method makes it possible to observe such phenomenon in real time.

【0029】上記方法で作製した試料72を透過電子顕
微鏡に挿入し、その断面を観察する場合を例にとって説
明する。図13は、本発明の方法で観察される現象の一
例を説明する模式図である。図13(a)は、金属配線
91を有した微小試料片90の断面観察例である。金属
配線91は、マイグレーション防止用の金属窒化膜9
2,93などで覆われている。電圧を印加しない状態で
は、図13(a)に示すように、配線91には空洞やク
ラックは観察されず、結晶粒94が敷き詰められたよう
に観察され、結晶粒界95には介在物は観察されない。
次に、試料90の配線91に電流を流し、マイグレーシ
ョンの発生現象を観察する。大電流を流すことにより、
空洞96やクラックが発生する様子を直接観察し、最終
的には、図13(b)に示すように金属窒化膜93を破
って金属結晶粒94が溶融し突出する状態や、空洞96
が発生するなどの構造変化が実時間で観察される。ま
た、印加電圧を変化させ、マイグレーション発生の電圧
依存性を測定する。得られた結果より、マイグレーショ
ン発生のメカニズムを解明することが可能となる。
An example will be described in which the sample 72 produced by the above method is inserted into a transmission electron microscope and its cross section is observed. FIG. 13 is a schematic diagram illustrating an example of a phenomenon observed by the method of the present invention. FIG. 13A is an example of a cross-section observation of the micro sample piece 90 having the metal wiring 91. The metal wiring 91 is a metal nitride film 9 for preventing migration.
It is covered with 2,93 etc. In the state where no voltage is applied, as shown in FIG. 13A, no voids or cracks are observed in the wiring 91, it is observed that the crystal grains 94 are spread, and inclusions are not present in the crystal grain boundaries 95. Not observed.
Next, an electric current is applied to the wiring 91 of the sample 90 to observe the phenomenon of occurrence of migration. By passing a large current,
By directly observing how the cavities 96 and cracks are generated, finally, as shown in FIG. 13B, a state in which the metal nitride film 93 is broken and the metal crystal grains 94 are melted and projected, and the cavities 96 are formed.
Structural changes such as occurrence of are observed in real time. Also, the applied voltage is changed and the voltage dependence of migration occurrence is measured. From the results obtained, it becomes possible to elucidate the mechanism of migration occurrence.

【0030】上記した観察例では、試料から光学顕微鏡
で特定した部位を摘出したが、FIB装置内で、試料の
故障箇所の検出を電圧を印加することによって求め、そ
の部位を摘出しても良い。その方法を図14を用いて説
明する。 (a)マニュピレータ20を駆動させ、微細導線30a
に取り付けたチップ39aの先端部を試料100内の配
線に接触させ、Wデポジション膜101により、チップ
39aと試料100内の配線を接着する(図14
(a))。 (b)チップ39aからマニュピレータ20を集束イオ
ンビームで切り離し、(a)と同様に試料100内の別
の配線に、もう一方の微細導線30bに取り付けたチッ
プ39bを接触させ、Wデポジション膜102により接
着する(図14(b))。 (c)チップ39bからマニュピレータ20を集束イオ
ンビームで切り離し、電圧電源25を制御し、接触させ
た配線部に電圧を印加する。電流を測定し、試料100
の状態を観察し、解析箇所を決定する。
In the above observation example, the site specified by the optical microscope was extracted from the sample. However, the failure site of the sample may be detected in the FIB apparatus by applying a voltage, and the site may be extracted. . The method will be described with reference to FIG. (A) The manipulator 20 is driven to drive the fine conductor wire 30a.
The tip portion of the chip 39a attached to the sample 100a is brought into contact with the wiring inside the sample 100, and the W deposition film 101 bonds the chip 39a and the wiring inside the sample 100 (FIG. 14).
(A)). (B) The manipulator 20 is separated from the tip 39a by a focused ion beam, and another wiring in the sample 100 is brought into contact with the tip 39b attached to the other fine conducting wire 30b in the same manner as in (a), and the W deposition film 102 is formed. To adhere (FIG. 14B). (C) The manipulator 20 is separated from the chip 39b by a focused ion beam, the voltage power supply 25 is controlled, and a voltage is applied to the contacted wiring portion. Measure the current and sample 100
Observe the state of and determine the analysis point.

【0031】上記動作により、試料100はバルクの状
態で、電圧印加時の平面の観察が可能である。また、決
定した解析箇所を図6、図7を用いて説明した工程に従
って摘出し、さらにその断面方向からの観察も可能であ
る。また、上記実施例では、特定箇所を摘出し、摘出し
た微小試料片の一部に電圧を印加したが、予め、機械加
工などで薄膜化した試料を用い、図10から図12で説
明した工程に従い試料配線に電圧を印加して観察しても
よい。
By the above operation, the sample 100 can be observed in a plane in a bulk state when a voltage is applied. It is also possible to extract the determined analysis point according to the steps described with reference to FIGS. 6 and 7 and further observe it from the cross-sectional direction. Further, in the above-mentioned embodiment, a specific portion was extracted and a voltage was applied to a part of the extracted minute sample piece. However, a sample thinned in advance by machining or the like is used, and the steps described in FIGS. Accordingly, a voltage may be applied to the sample wiring for observation.

【0032】また、上記の例では、微細導線30a,3
0bを試料ホルダ8に取り付けているが、FIB装置の
試料室内に配置される試料片の近傍に装着してもよい。
図15は、試料に電圧を印加するための微細導線を試料
室内に設けたFIB装置の試料室の概略図である。
Further, in the above example, the fine conductive wires 30a, 3
Although 0b is attached to the sample holder 8, it may be attached near the sample piece arranged in the sample chamber of the FIB device.
FIG. 15 is a schematic view of a sample chamber of an FIB device in which a fine conductor wire for applying a voltage to the sample is provided in the sample chamber.

【0033】このFIB装置は、試料ホルダ110に装
着されて試料室内にセットされた試料111の近傍に2
本の中空ポート112,113を設けている。それぞれ
の中空ポート112,113の内部を通して試料111
の近傍に微細導線130a,130bが配置されてい
る。FIB装置の試料室120の真空を維持するため
に、試料室120の壁部を貫通する中空ポート112,
113の周囲には、Oリング121を配してある。中空
ポート112,113内には微細導線130a,130
bより径の太い導線が配置され、図2、図3にて説明し
たのと同様の構造で微細導線130a,130bは中空
ポート内の導線と着脱自在に接続されている。中空ポー
ト112,113の内壁を絶縁物によりコーティングす
るか、導線を絶縁物によりコーティングすることによ
り、導線と中空ポートの間の短絡を防止している。各ポ
ート112,113から出た2本の微細導線130a,
130bの先端部を試料111に接着しやすいように、
ポート112,113の先端部の間隔が決められてい
る。試料111の微小配線には、2本の微細導線130
a,130bの先端部が、それぞれ試料111の断面に
対し両側からWデポジション銃23を用いたWデポジシ
ョン膜により固定される。FIB装置の外部に引き出さ
れた導線の末端部は電圧電源118に接続され、電圧電
源118は電圧電源制御部119に接続されている。
This FIB device is installed in the sample holder 110 and is installed near the sample 111 set in the sample chamber.
Book hollow ports 112 and 113 are provided. The sample 111 is passed through the inside of each hollow port 112, 113.
Fine conductors 130a and 130b are arranged in the vicinity of. In order to maintain the vacuum of the sample chamber 120 of the FIB device, a hollow port 112 penetrating the wall of the sample chamber 120,
An O-ring 121 is arranged around 113. Inside the hollow ports 112 and 113, the fine conductors 130a and 130
A conductor wire having a diameter larger than that of b is arranged, and the fine conductor wires 130a and 130b are detachably connected to the conductor wire in the hollow port in the same structure as described in FIGS. 2 and 3. The inner walls of the hollow ports 112 and 113 are coated with an insulating material or the conductive wire is coated with an insulating material to prevent a short circuit between the conductive wire and the hollow port. Two fine conductors 130a from each port 112, 113,
In order to easily attach the tip of 130b to the sample 111,
The distance between the tips of the ports 112 and 113 is determined. The fine wiring of the sample 111 includes two fine conducting wires 130.
The tip portions of a and 130b are fixed to the cross section of the sample 111 from both sides by a W deposition film using a W deposition gun 23. The terminal end of the lead wire extended to the outside of the FIB device is connected to the voltage power supply 118, and the voltage power supply 118 is connected to the voltage power supply control unit 119.

【0034】上記実施例では、微細導線の先端部に、微
細導線と同材料で、微細導線より直径が太い円錐状のチ
ップをつけ、収束イオンビームでチップ先端を直径0.
1ミクロン以下に加工して用いたが、円錐状のチップを
使用せずに微細導線自体の先端部を集束イオンビームを
用いて加工するようにしても良い。
In the above-mentioned embodiment, a tip of the fine conducting wire is provided with a conical tip made of the same material as the fine conducting wire and having a diameter larger than that of the fine conducting wire, and the tip of the tip is made to have a diameter of 0.
Although it was processed to have a size of 1 micron or less, the tip of the fine conductor wire itself may be processed using a focused ion beam without using a conical tip.

【0035】[0035]

【発明の効果】本発明によれば、荷電粒子ビーム装置を
用いて、デバイスの微小配線部分に直接電圧を印加し、
その変化を観察することにより、電圧印加により実デバ
イスに発生する現象を直接観察することが可能となり、
電圧による故障発生のメカニズムを解明可能とし、故障
原因の解明が容易となる。
According to the present invention, a charged particle beam apparatus is used to directly apply a voltage to a minute wiring portion of a device,
By observing the change, it becomes possible to directly observe the phenomenon that occurs in the actual device due to voltage application,
This makes it possible to elucidate the mechanism of failure occurrence due to voltage, making it easier to understand the cause of failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる集束イオンビーム(FIB)装
置の一例を示す概略図。
FIG. 1 is a schematic view showing an example of a focused ion beam (FIB) device used in the present invention.

【図2】本発明による試料ホルダの一例の先端部の概略
構成図。
FIG. 2 is a schematic configuration diagram of a tip portion of an example of a sample holder according to the present invention.

【図3】導線に微細導線の先端部を固定するための接続
構造を示す詳細図。
FIG. 3 is a detailed view showing a connection structure for fixing the tip portion of the fine conductor wire to the conductor wire.

【図4】試料を取り付けた試料台を試料ホルダに固定す
るための試料押さえの概略図。
FIG. 4 is a schematic view of a sample holder for fixing a sample table on which a sample is attached to a sample holder.

【図5】試料電圧印加部の詳細図。FIG. 5 is a detailed view of a sample voltage applying section.

【図6】本発明による試料分析方法の一例を説明する
図。
FIG. 6 is a diagram illustrating an example of a sample analysis method according to the present invention.

【図7】本発明による試料分析方法の一例を説明する
図。
FIG. 7 is a diagram illustrating an example of a sample analysis method according to the present invention.

【図8】試料台をセットした試料ホルダの概略図。FIG. 8 is a schematic view of a sample holder on which a sample table is set.

【図9】本発明による試料分析方法の一例を説明する
図。
FIG. 9 is a diagram illustrating an example of a sample analysis method according to the present invention.

【図10】本発明による試料分析方法の一例を説明する
図。
FIG. 10 is a diagram illustrating an example of a sample analysis method according to the present invention.

【図11】本発明による試料分析方法の一例を説明する
図。
FIG. 11 is a diagram illustrating an example of a sample analysis method according to the present invention.

【図12】試料微小片の配線部に電圧を印加している状
態の説明図。
FIG. 12 is an explanatory diagram of a state in which a voltage is applied to the wiring portion of the sample micro piece.

【図13】本発明の方法で観察される現象の一例を説明
する模式図。
FIG. 13 is a schematic diagram illustrating an example of a phenomenon observed by the method of the present invention.

【図14】本発明による試料分析方法の他の例を説明す
る図。
FIG. 14 is a diagram illustrating another example of the sample analysis method according to the present invention.

【図15】微細導線を試料室内に設けたFIB装置の試
料室の概略図。
FIG. 15 is a schematic view of a sample chamber of an FIB device in which a fine conductor wire is provided in the sample chamber.

【符号の説明】[Explanation of symbols]

1…FIB装置、2…イオン銃、3…コンデンサーレン
ズ、4…絞り、5…偏向器、6…対物レンズ、7…試料
微動機構、8…試料ホルダ、9…二次電子検出器、10
…集束イオンビーム、11…試料、12…微動制御部、
14…モニター、15…偏向信号制御部、16…CP
U、18…電圧電源、19…電圧電源制御部、20…マ
ニュピレータ、21…マニュピレータ駆動部、22…マ
ニュピレータ駆動制御部、23…デポジション銃、30
a,30b…微細導線、31…溝、32a,32b…チ
ューブ、33a,33b…導線、36…試料台受け部、
38…試料押さえバネ、39a,39b…チップ、40
…試料押え、41,42…テーパー部分、60…LSI
試料、61a〜61d…マーキング、72…微小試料
片、80…試料台、90…微小試料片、91…金属配
線、92,93…金属窒化膜、94…結晶粒、95…結
晶粒界、96…空洞、100…試料、110…試料ホル
ダ、111…試料
DESCRIPTION OF SYMBOLS 1 ... FIB apparatus, 2 ... Ion gun, 3 ... Condenser lens, 4 ... Aperture, 5 ... Deflector, 6 ... Objective lens, 7 ... Sample fine movement mechanism, 8 ... Sample holder, 9 ... Secondary electron detector, 10
... Focused ion beam, 11 ... Sample, 12 ... Fine motion control unit,
14 ... Monitor, 15 ... Deflection signal controller, 16 ... CP
U, 18 ... Voltage power supply, 19 ... Voltage power supply control unit, 20 ... Manipulator, 21 ... Manipulator drive unit, 22 ... Manipulator drive control unit, 23 ... Deposition gun, 30
a, 30b ... Fine conductor wire, 31 ... Groove, 32a, 32b ... Tube, 33a, 33b ... Conductor wire, 36 ... Sample stage receiving portion,
38 ... Sample pressing spring, 39a, 39b ... Chip, 40
… Sample holder, 41, 42… Tapered part, 60… LSI
Samples, 61a to 61d ... Marking, 72 ... Micro sample piece, 80 ... Sample stage, 90 ... Micro sample piece, 91 ... Metal wiring, 92, 93 ... Metal nitride film, 94 ... Crystal grain, 95 ... Crystal grain boundary, 96 … Cavity, 100… Sample, 110… Sample holder, 111… Sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 武夫 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 小池 英巳 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 Fターム(参考) 2G001 AA03 AA05 BA07 BA11 CA03 GA06 GA09 GA11 HA13 JA02 JA03 QA01 QA02 QA10 2G052 AA13 AC28 AD12 AD32 AD52 CA04 DA33 GA33 JA04 2G132 AA00 AE02 AF12 AF13 AL11 AL12 5C001 AA01 BB06 BB07 CC03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takeo Ueno             1040 Ichimo, Ichima, Hitachinaka City, Ibaraki Prefecture             Inside the company Hitachi Science Systems (72) Inventor Hidemi Koike             882 Ichige, Ichima, Hitachinaka City, Ibaraki Prefecture             Ceremony company Hitachi measuring instruments group F-term (reference) 2G001 AA03 AA05 BA07 BA11 CA03                       GA06 GA09 GA11 HA13 JA02                       JA03 QA01 QA02 QA10                 2G052 AA13 AC28 AD12 AD32 AD52                       CA04 DA33 GA33 JA04                 2G132 AA00 AE02 AF12 AF13 AL11                       AL12                 5C001 AA01 BB06 BB07 CC03

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 試料を取り付けた試料台を保持する手段
を備え、試料台に取り付けられた試料が荷電粒子線装置
の光軸上に位置するように荷電粒子線装置内に装着され
る試料ホルダにおいて、 試料の所定箇所に電圧を印加するための先端が自由に移
動できる一対の微細導線を有することを特徴とする試料
ホルダ。
1. A sample holder equipped with a means for holding a sample stage having a sample attached thereto, the sample holder being mounted in the charged particle beam device such that the sample attached to the sample stage is located on the optical axis of the charged particle beam device. In the sample holder, the tip for applying a voltage to a predetermined portion of the sample has a pair of fine conductive wires that can move freely.
【請求項2】 請求項1記載の試料ホルダにおいて、当
該試料ホルダの軸部を通り外部の電源と接続される一対
の導線と、前記一対の導線の端部に前記一対の微細導線
をそれぞれ着脱自在に接続する手段とを備えることを特
徴とする試料ホルダ。
2. The sample holder according to claim 1, wherein a pair of conductive wires that pass through a shaft portion of the sample holder and are connected to an external power source, and the pair of fine conductive wires are attached to and detached from the ends of the pair of conductive wires, respectively. And a means for freely connecting the sample holder.
【請求項3】 請求項1又は2記載の試料ホルダにおい
て、前記微細導線は一部がコイル状になっていることを
特徴とする試料ホルダ。
3. The sample holder according to claim 1, wherein a part of the fine conductor wire has a coil shape.
【請求項4】 試料から微小試料片を摘出する工程と、 前記微小試料片を試料ホルダに固定する工程と、 前記試料ホルダに固定した前記微小試料片の所定箇所に
一対の微細導線を通電可能に取り付ける工程と、 前記一対の微細導線に電圧を印加する工程と、 前記一対の微細導線を介して前記微小試料片の前記所定
箇所に流れる電流を測定する工程とを含むことを特徴と
する試料分析方法。
4. A step of extracting a micro sample piece from a sample, a step of fixing the micro sample piece to a sample holder, and a pair of micro conductive wires can be energized to predetermined locations of the micro sample piece fixed to the sample holder. A sample, a step of applying a voltage to the pair of fine conductors, and a step of measuring a current flowing through the pair of fine conductors to the predetermined location of the micro sample piece. Analysis method.
【請求項5】 試料から微小試料片を摘出する工程と、 前記微小試料片を試料ホルダに固定する工程と、 前記試料ホルダに固定した前記微小試料片の所定箇所に
一対の微細導線を通電可能に取り付ける工程と、 前記一対の微細導線が取り付けられた前記微小試料片が
固定された前記試料ホルダを荷電粒子線装置に装着する
工程と、 前記一対の微細導線を介して前記微小試料片の前記所定
箇所に電圧を印加しながら、前記荷電粒子線装置によっ
て、前記微小試料片の前記所定箇所を観察する工程とを
含むことを特徴とする試料分析方法。
5. A step of extracting a micro sample piece from a sample, a step of fixing the micro sample piece to a sample holder, and a pair of micro conducting wires can be energized to predetermined locations of the micro sample piece fixed to the sample holder. A step of attaching the sample holder to which the micro sample piece to which the pair of fine conductor wires are attached is fixed to a charged particle beam device, and the step of attaching the micro sample piece to the charged particle beam device via the pair of fine conductor wires. Observing the said predetermined part of the said micro sample piece with the said charged particle beam device, applying a voltage to a predetermined part, The sample analysis method characterized by the above-mentioned.
【請求項6】 請求項4又は5記載の試料分析方法にお
いて、前記試料から微小試料片を摘出する工程は、集束
イオンビームを用いた加工により前記試料から微小試料
片を摘出する工程であることを特徴とする試料分析方
法。
6. The sample analysis method according to claim 4 or 5, wherein the step of extracting the micro sample piece from the sample is a step of extracting the micro sample piece from the sample by processing using a focused ion beam. A sample analysis method characterized by the above.
【請求項7】 請求項4又は5記載の試料分析方法にお
いて、前記試料から微小試料片を摘出する工程は、機械
加工により前記試料から微小試料片を摘出する工程であ
ることを特徴とする試料分析方法。
7. The sample analysis method according to claim 4 or 5, wherein the step of extracting the micro sample piece from the sample is a step of extracting the micro sample piece from the sample by machining. Analysis method.
【請求項8】 請求項5記載の試料分析方法において、
前記荷電粒子線装置は透過電子顕微鏡であり、前記微細
導線を介して前記微小試料片の前記所定箇所に電圧を印
加しながら前記所定箇所の電子線透過像を観察すること
を特徴とする試料分析方法。
8. The sample analysis method according to claim 5, wherein
The charged particle beam device is a transmission electron microscope, and a sample analysis characterized by observing an electron beam transmission image of the predetermined location while applying a voltage to the predetermined location of the micro sample piece through the fine conducting wire. Method.
【請求項9】 請求項4〜8のいずれか1項記載の試料
分析方法において、前記微小試料片に前記一対の微細導
線を通電可能に取り付ける工程は、前記微細導線の先端
部あるいは前記微細導線に固定されたチップの先端部を
集束イオンビームにより細く加工する工程と、細く加工
された前記微細導線あるいはチップの先端部を前記微小
試料片上の所定位置に移動させる工程と、細く加工され
た前記微細導線あるいはチップの先端部を前記微小試料
片上の所定位置に固定する工程とを含むことを特徴とす
る試料分析方法。
9. The sample analysis method according to claim 4, wherein the step of attaching the pair of fine conductive wires to the micro sample piece so that electricity can flow is the tip portion of the fine conductive wire or the fine conductive wire. A step of finely processing the tip of the tip fixed by a focused ion beam; a step of moving the finely processed fine conductor wire or the tip of the tip to a predetermined position on the micro sample piece; Fixing the tip of the fine conductor wire or the tip at a predetermined position on the minute sample piece.
【請求項10】 請求項9記載の試料分析方法におい
て、細く加工された前記微細導線あるいはチップの先端
部を前記微小試料片上の所定位置に移動させる工程は、
集束イオンビーム装置に備えられた3軸(X,Y,Z)
駆動可能なマニュピレータ先端部をビームアシストデポ
ジションにより前記微細導線あるいはチップの一部に固
定し、前記マニュピレータを移動させることにより行う
ことを特徴とする試料分析方法。
10. The method for analyzing a sample according to claim 9, wherein the step of moving the tip end of the finely processed fine conductor wire or chip to a predetermined position on the minute sample piece comprises:
Three axes (X, Y, Z) provided in the focused ion beam device
A sample analysis method, wherein a drivable manipulator tip portion is fixed to the fine conductor wire or a part of a chip by beam assist deposition, and the manipulator is moved.
【請求項11】 集束イオンビーム装置に備えられた3
軸(X,Y,Z)駆動可能なマニュピレータ先端部をビ
ームアシストデポジションにより第1の微細導線あるい
は前記第1の微細導線に固定された第1のチップの一部
に固定する工程と、 前記マニュピレータを移動させることにより前記第1の
微細導線あるいは第1のチップの先端部を試料上の所定
位置に移動させる工程と、 ビームアシストデポジションにより試料中の所定箇所に
前記第1の微細導線あるいは第1のチップの先端部を取
り付ける工程と、 前記工程を反復して試料中の所定箇所に第2の微細導線
あるいは前記第2の微細導線に固定された第2のチップ
の先端部を取り付ける工程と、 前記第1の微細導線と第2の微細導線の間に電圧を印加
する工程と、 前記第1の微細導線と第2の微細導線を介して前記試料
に流れる電流を測定する工程とを含むことを特徴とする
試料分析方法。
11. A focused ion beam device equipped with 3
Fixing the tip of the manipulator capable of driving the axis (X, Y, Z) to the first fine conductor wire or a part of the first chip fixed to the first fine conductor wire by beam assist deposition; Moving the manipulator to move the tip of the first fine conductor or the tip of the first chip to a predetermined position on the sample; and the beam assist deposition to move the first fine conductor or the first fine conductor to a predetermined position in the sample. Attaching the tip of the first chip and attaching the tip of the second chip fixed to the second fine conductor or the second fine conductor to a predetermined position in the sample by repeating the above steps A step of applying a voltage between the first fine conductor wire and the second fine conductor wire, and a current flowing through the sample via the first fine conductor wire and the second fine conductor wire. Sample analysis method characterized by comprising the step of constant.
JP2001223167A 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same Expired - Fee Related JP4012705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223167A JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223167A JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007190890A Division JP4534235B2 (en) 2007-07-23 2007-07-23 Sample analysis method

Publications (3)

Publication Number Publication Date
JP2003035682A true JP2003035682A (en) 2003-02-07
JP2003035682A5 JP2003035682A5 (en) 2005-01-20
JP4012705B2 JP4012705B2 (en) 2007-11-21

Family

ID=19056543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223167A Expired - Fee Related JP4012705B2 (en) 2001-07-24 2001-07-24 Sample holder and charged particle beam apparatus using the same

Country Status (1)

Country Link
JP (1) JP4012705B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226970A (en) * 2005-02-21 2006-08-31 Sii Nanotechnology Inc Sample support built by semiconductor silicon process technique
JP2007033376A (en) * 2005-07-29 2007-02-08 Aoi Electronics Co Ltd Micro sample block aggregate
JP2007273489A (en) * 2007-06-25 2007-10-18 Hitachi High-Technologies Corp Sample holder
JP2007292788A (en) * 2007-08-10 2007-11-08 Atago:Kk Handheld refractometer and manufacturing method for same
JP2007303946A (en) * 2006-05-11 2007-11-22 Hitachi Ltd Sample analyzer and sample analyzing method
US7462830B2 (en) 2003-09-18 2008-12-09 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
US7566884B2 (en) 2005-05-30 2009-07-28 Jeol Ltd. Specimen holder for electron microscope
JP2010510474A (en) * 2005-11-30 2010-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Nanoscale fault isolation and measurement system
JP2010286276A (en) * 2009-06-09 2010-12-24 Jeol Ltd Method of preparing sample for transmission-type electron microscope, and sample holder
JP2011003369A (en) * 2009-06-18 2011-01-06 Hitachi Ltd Electron microscope and sample holder for the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134131B2 (en) 2003-09-18 2012-03-13 Hitachi, Ltd. Method and apparatus for observing inside structures, and specimen holder
US7462830B2 (en) 2003-09-18 2008-12-09 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
US7476872B2 (en) 2003-09-18 2009-01-13 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
JP4570980B2 (en) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 Sample stage and sample processing method
JP2006226970A (en) * 2005-02-21 2006-08-31 Sii Nanotechnology Inc Sample support built by semiconductor silicon process technique
US7566884B2 (en) 2005-05-30 2009-07-28 Jeol Ltd. Specimen holder for electron microscope
JP4489652B2 (en) * 2005-07-29 2010-06-23 アオイ電子株式会社 Small sample table assembly
JP2007033376A (en) * 2005-07-29 2007-02-08 Aoi Electronics Co Ltd Micro sample block aggregate
JP2010510474A (en) * 2005-11-30 2010-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Nanoscale fault isolation and measurement system
JP2007303946A (en) * 2006-05-11 2007-11-22 Hitachi Ltd Sample analyzer and sample analyzing method
US8334519B2 (en) 2006-05-11 2012-12-18 Hitachi, Ltd. Multi-part specimen holder with conductive patterns
JP2007273489A (en) * 2007-06-25 2007-10-18 Hitachi High-Technologies Corp Sample holder
JP2007292788A (en) * 2007-08-10 2007-11-08 Atago:Kk Handheld refractometer and manufacturing method for same
JP4653148B2 (en) * 2007-08-10 2011-03-16 株式会社アタゴ Hand-held refractometer and manufacturing method thereof
JP2010286276A (en) * 2009-06-09 2010-12-24 Jeol Ltd Method of preparing sample for transmission-type electron microscope, and sample holder
JP2011003369A (en) * 2009-06-18 2011-01-06 Hitachi Ltd Electron microscope and sample holder for the same
US8338798B2 (en) 2009-06-18 2012-12-25 Hitachi, Ltd. Sample holder for electron microscope

Also Published As

Publication number Publication date
JP4012705B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US7301146B2 (en) Probe driving method, and probe apparatus
US8334519B2 (en) Multi-part specimen holder with conductive patterns
US7388365B2 (en) Method and system for inspecting specimen
US8134131B2 (en) Method and apparatus for observing inside structures, and specimen holder
JP2002141382A (en) Charged particle beam equipment and sample manufacturing equipment
WO2001063660A1 (en) Apparatus for detecting defect in device and method of detecting defect
JP2002333387A (en) Beam member and sample processor, and sampling method using the same
JP2000146781A (en) Sample analysis method and sample preparation method and device therefor
JP4012705B2 (en) Sample holder and charged particle beam apparatus using the same
JP2002148159A (en) Sample preparation method and device for it
JP5020483B2 (en) Charged particle beam equipment
JPH11108813A (en) Method and device for preparing sample
JP4090657B2 (en) Probe device
KR102540604B1 (en) Charged particle beam apparatus
JP4520905B2 (en) Analysis device, probe control method, and analysis system
JP4534235B2 (en) Sample analysis method
JP3383574B2 (en) Process management system and focused ion beam device
JP2002033366A (en) Probe unit and sample manipulating device using the same
JP3041403B2 (en) Charged beam cross-section processing / observation equipment
JP2007212202A (en) Sample evaluation device and method
KR20030050320A (en) Method and apparatus for inspecting semiconductor substrate
JP3335790B2 (en) Fine processing method and device
JP2001324459A (en) Charged particle beam apparatus and probe control method
JP2004170395A (en) Charged particle beam system
JPH0618636A (en) Method and tester for testing device using ion beam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees