JP4010760B2 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP4010760B2
JP4010760B2 JP2000313024A JP2000313024A JP4010760B2 JP 4010760 B2 JP4010760 B2 JP 4010760B2 JP 2000313024 A JP2000313024 A JP 2000313024A JP 2000313024 A JP2000313024 A JP 2000313024A JP 4010760 B2 JP4010760 B2 JP 4010760B2
Authority
JP
Japan
Prior art keywords
sample
light
signal
modulation frequency
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000313024A
Other languages
English (en)
Other versions
JP2002122477A (ja
Inventor
玲子 黒田
洋爾 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Jasco Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Jasco Corp
Priority to JP2000313024A priority Critical patent/JP4010760B2/ja
Publication of JP2002122477A publication Critical patent/JP2002122477A/ja
Application granted granted Critical
Publication of JP4010760B2 publication Critical patent/JP4010760B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、測定装置に関するもので、より具体的には試料が固体の場合のCD(円二色性)を測定したり、試料の光学的性質を判定することのできる測定装置に関する。
【0002】
【発明の背景】
よく知られているように、円二色性(CD)は、発色団を持ち光学活性な物質が左右円偏光に対して異なった吸収を示す現象をいう。円二色性(CD)測定装置は、例えば、光源から出射される光の光路上にモノクロメータ,偏光子,偏光変調器(PEM),試料,検光子,検出器を配置し、その検出器の出力を信号処理装置に与えるようになっている。
【0003】
これにより、光源から出射される光がモノクロメータで単色光に変換され、さらにその単色光が偏光子を透過することにより直線偏光になり、その直線偏光は偏光変調器にてその偏光方向が交番的に変更され円偏光と直線偏光が同時に形成される。そして、偏光変調器から出射される光を試料に照射することにより、試料の光学特性に応じて所定の光成分が吸収され出力されるので、係る出力を検出器で受光する。検出器は、例えば光−電気変換素子であり、受光した光強度に応じた電気信号を出力するので、その出力信号(電気信号)に基づいて信号処理装置で所定の信号処理を行い、CDを算出するようになっている。
【0004】
試料が例えば液体の場合には、試料セルなどの試料室内に供給した液体に対して光を照射することによりCDを測定するようになっている。試料室は各種の形態があるが、何れも試料室自体は固定設置されている。また、測定対象の試料が結晶,フィルムその他の固体試料の場合には、試料台に試料を固定し、その試料表面に光を照射するようにしている。
【0005】
しかし、本発明者の研究により、試料が固体の場合には、上記した液体の場合と同様に測定すると、正確な真のCDを求めることができないことがわかった。これは固体試料が持つ巨視的な異方性により見かけのCD信号が検出されるためである。さらなる原因の一つに、試料が持つ光学的性質の一つである光学的均質性がある。
【0006】
すなわち、例えば、高分子フィルム等は、光学的均質性を有する(均質)ものと、有さない(不均質)ものがある。つまり、光学的に不均質な場合、試料の表面側から光を照射した場合と、裏面側から光を照射した場合では、測定結果が異なることがある。しかも、同じ面でもその角度位置により異なる。
【0007】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、固体の真のCD値を求めることができる測定装置を提供することにある。さらに、測定対象の試料が光学的均質性を有するか否かの判断を行うことのできる測定装置を提供することを他の目的とする。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る測定装置は、光源から出射される光の光路上に、単色光を出射する分光器と、その単色光を直線偏光させる偏光子と、その偏光子を透過した光の偏光状態を所定の基本変調周波数で、右回りの円偏光,左回りの円偏光に交番的に変化させると同時に2倍の基本変調周波数で垂直・水平の直線偏光に交番的に変化させる偏光変調器と、その偏光変調器から得られた光が入射されるように試料を保持する試料保持装置と、その試料保持装置を通過した光が通過する検光子を通過した光の強度を検出する検出器と、その検出器の出力に基づいて信号処理する信号処理部を備えた測定装置である。そして、前記検光子は、前記光路上と光路外に移動可能にする。さらに、前記試料保持装置は、前記試料に照射される光の光路と直交する平面内で前記試料をその光路回りに回転可能に保持するとともに、反転して前記試料の表面側と裏面側のそれぞれから光を入射可能とする。前記信号処理部は、前記検出器の出力信号のうち前記偏光変調器における変調周波数に相当する周波数成分及びその変調周波数の2倍の周波数成分に基づいて信号処理するもので、前記検光子を光路上に配置した状態で前記試料をその光路回りに回転させ、基本変調周波数成分が最大位置となる角度位置を求め、その求めた前記角度位置から前記試料を45度回転させた位置で、前記試料を反転させ、前記検光子を前記光路外に配置した状態で、前記試料の表面から光を照射した時に得られた前記変調周波数に相当する周波数成分と、前記試料の裏面から光を照射した時に得られた前記変調周波数に相当する周波数成分を得、それらを加えて2で割ることにより真のCD値を算出するようにする。
【0009】
そして本発明では、試料を回転可能に配置する。この回転は、好ましくは自動的に行うか、少なくとも試料保持装置に回転機構を設けて手動で回転させることである。但し、本発明はこのように試料保持部に回転機構を設けるのは必須ではなく、試料を試料保持装置から取り外した後、再度取り付ける際に異なる回転角度に取り付けることによっても、結果的に試料を回転させることができるからである。
【0010】
また、別の解決手段としては、光源から出射される光の光路上に、単色光を出射する分光器と、その単色光を直線偏光させる偏光子と、その偏光子を透過した光の偏光状態を所定の基本変調周波数で、右回りの円偏光,左回りの円偏光に交番的に変化させると同時に2倍の基本変調周波数で垂直・水平の直線偏光に交番的に変化させる偏光変調器と、その偏光変調器から得られた光が入射されるように試料を保持する試料保持装置と、その試料保持装置を通過した光の強度を検出する検出器と、その検出器の出力に基づいて信号処理する信号処理部を備えた測定装置である。そして、前記試料保持装置は、前記試料を反転して前記試料の表面側と裏面側のそれぞれから光を入射可能とする。前記信号処理部は、前記検出器の出力信号のうち前記偏光変調器における変調周波数に相当する周波数成分に基づいて信号処理するもので、前記試料の表面から光を照射した時に得られた前記変調周波数に相当する周波数成分Fと、前記試料の裏面から光を照射した時に得られた前記変調周波数に相当する周波数成分Bを求める。F=−Bならば前記試料は光学的に均質と判断し、F=−Bでないならば前記試料は光学的に不均質と判断する機能を備えるようにした。
【0011】
【発明の実施の形態】
図1は、本発明の第1の実施の形態である真のCDを測定する測定装置の一例を示している。同図に示すように、光源1から出射される光の光路上に分光器(モノクロメータ)2,偏光子3,偏光変調器4,試料保持装置5,検光子6,検出器7を配置し、その検出器7の出力を信号処理装置8に与えるようになっている。
【0012】
これにより、光源1から出射される光が分光器2で単色光に変換され、さらにその単色光が偏光子3を透過することにより直線偏光になり、その直線偏光は偏光変調器4にてその偏光方向が交番的に変更され円偏光と直線偏光が同時に形成される。そして、偏光変調器4から出射される光を試料保持装置5に取り付けられた試料に照射すると、試料内を透過する際に複屈折を生じて出力されるので、これを検光子6によって光の強度に変えて検出器7で受光する。検出器7は、例えば光−電気変換素子であり、受光した光強度に応じた電気信号を出力するので、その出力信号(電気信号)に基づいて信号処理装置8で所定の信号処理を行い、CDを算出するようになっている。
【0013】
分光器2としては、偏光に対して悪影響の少ないプリズム分光器が望ましいが、回折格子を用いた分光器でもかまわない。また、偏光子3,検光子6としては、通常グラントムソンプリズムを使用することが好ましい。偏光子3としてより完全を期するため、ブリュースター角に石英板をおいた偏光子を併用してもよい。また、結晶プリズムを使用し、分光器と偏光子を兼用してもよい。
【0014】
なお、グランテーラープリズムは方解石を使っているので235nm以下の波長は測れないが、本発明のように、液晶やフィルムその他の固体等のCDを測ろうとする場合には可視域を注目しているので十分適用できる。
【0015】
偏光変調器4は、例えばPEMを用いることができる。PEMに対する変調周波数は、50kHzとする。良質のPEMの場合、残留歪み量αは0.1度から0.01度くらいの小さなものであり、この様なPEMを用いることにより、LD,LBに起因する見かけのCDをできる限り小さくする。従って、ポッケルスセルのように残留歪みが10度と大きいものはあまり好ましくはない。もちろん、係るポッケルスセルを本発明の範囲から積極的に除く意図はなく、仕様・要求に応じて使うのはかまわない。なお、偏光変調器4の基準位置は試料を設置しない状態で、装置のベースラインがまっすぐになるような位置に設定する。
【0016】
試料保持装置5は、照射される光の光路と直交する平面内で試料Sをその光路回りに回転させることができるようにしている。一例としては、試料Sを保持するホルダを回転自在に取付台に設置し、そのホルダをステッピングモータなどの回転角度を制御可能なモータの回転出力を受けて、任意角度で回転し停止するように構成することである。この場合に、その回転角の制御を、信号処理回路8からの制御信号に基づいて行うようにすると良い。また簡易的には、手動で回転させることができるようになっていても良い。
【0017】
さらに、試料保持装置5は、試料Sの表裏を簡単に取り替える(反転する)ことができるようになっている。つまり、上記した試料Sのホルダは、取付台に対して着脱自在に装着されるようになっており、例えば試料Sを保持した状態のままホルダを取り外し、裏返してホルダを取付台に装着することができ、これにより、試料Sの表面側と裏面側のそれぞれに対して光を照射することが可能となる。なお、この試料保持装置5の具体的な構成は、後述する。
【0018】
さらにまた、検光子6も回転可能となり、光軸の角度(特に、偏光子3の光軸との角度等)を変更・調整することができるようにしている。また、検光子6の基準位置(角度)を正確に設置するためには、試料保持装置5内に試料を入れない状態でのベースラインがゼロになるように検光子6の角度を決めることで達成できる。しかも、この検光子6は、可動式となっており、光路上に位置させて試料Sを通過した光が照射可能な状態と、光路から離脱し、試料Sを通過した光が直接次段の検出器7に入射する状態を採ることができる。
【0019】
検出器7は、CD信号が微小であるため、例えば、光電子増倍管(PMT)のように高感度な検出器を用いるのが好ましい。そして、検出器7からは、変調周波数と同一の50kHz成分と、その2倍波の100kHz成分が出力されるようになっている。そして、50kHz成分に基づいてCDが求められる。
【0020】
さらに、検出器7からの出力信号は、CDは微小な信号なので、実際には同期検波法を用いる。つまり、実際には検出器7の出力を周波数成分を取り出すためのロックインアンプに接続し、そのロックインアンプから出力される所定周波数の信号成分を信号処理装置8に与えるようになる。なお、信号処理装置8の範疇にロックインアンプを含めて考えてもよい。
【0021】
また、信号処理装置8は、後述する手順に従って検出器7からの出力信号に基づいて演算処理する機能と、各種の装置に対して制御信号(試料保持装置5に対する回転角の制御命令等)を出力する機能を有するようにしている。
【0022】
次に、測定の手順・原理について説明しつつ、信号処理装置8の機能を説明する。本測定装置により得られる信号をミュラー行列を用いて理論的に解析すると以下のようになる。すなわち、単色入射光Iin,偏光子P,偏光変調器M,試料S,検光子A,検出器Dのミュラー行列は、次のように与えられる。なお、上記した如く、光変調器4として、PEMを用いているので、
ωm=50kHz
である。
【0023】
【数1】
Figure 0004010760
【0024】
【数2】
Figure 0004010760
【0025】
ここでθは、試料のx軸からの回転角である。また、LDはX―Y方向直線二色性,LBはX―Y方向直線偏光複屈折,LD′は45度方向直線二色性,LB´は45度方向直線偏光複屈折である。
【0026】
【数3】
Figure 0004010760
【0027】
ここで、 ,P は、検出器7のx軸,y軸に対する光の通過率で、aはx軸に対する検出器7の光軸の方位角である。そして、検出器7で受光される光の強度Idは、上記したD,S,M,P,Iinの行列演算を行うことにより、次のように与えられる。
【0028】
【数4】
Figure 0004010760
【0029】
そして、sin(δ+α),cos(δ+α)は、フーリエ変換すると近似的に下記式のように展開できる。
【0030】
【数5】
Figure 0004010760
【0031】
ここで、J(δm ),J(δm ),J(δm )は、それぞれ0次、1次、2次のベッセル関数である。エアブランク(Air Blank)に対しては、
CD=CB=LD=LD′=LB=LB′=0
となるので、光の強度を示す式(6)は、下記式(9)のようになる。
【0032】
【数6】
Figure 0004010760
【0033】
そして、上記式(9)は、下記式のように展開できる。
【0034】
【数7】
Figure 0004010760
【0035】
さらに、検出された電気信号は、直流成分(dc成分)と、基本周波数成分(ωm成分)と、2倍高調波成分(2ωm)よりなり、下記に示す比例式により表される。
【0036】
【数8】
Figure 0004010760
【0037】
【数9】
Figure 0004010760
【0038】
【数10】
Figure 0004010760
【0039】
一方、測定装置である固体CD分光計のCD信号として出力される信号は、
CDr=Vac(ωm)/Vdc
で、Vdcが一定になるように制御される。そこで、式(12)で表される基本周波数信号(ωm信号)は、CDベースラインのシフト量であり、式(13)で表される2倍高調波信号(2ωm信号)は、LDベースラインのシフト量である。従って、上記した式(12),(13)は、固体CD分光計(測定装置)の性能を示しているといえる。また、R(2ωm)信号は、基本周波数成分を検出するためのロックインアンプの2倍高調波応答性,R(ωm)信号は、2ωm成分を検出するロックインアンプの1/2高調波応答性である。
【0040】
これらのことから、固体CD分光計の性能は、
(1)使用するロックインアンプの高調波応答性
(2)使用されるPEMの残留歪み量α
(3)使用される検出器(光電子増倍管)の偏光特性
に依存していることがわかる。
【0041】
そこで、50kHz用ロックインアンプには、2倍高調波成分である100kHzの信号を除去する回路を組み込み、100kHz用ロックインアンプには、基本周波数波成分である50kHzの信号を除去する回路を組み込むようにする。これにより、50kHz用ロックインアンプでは、2ωm信号成分が0に近似でき、100kHz用ロックインアンプでは、ωm信号成分が0に近似でき、さらに、光変調器に残留ひずみ量αの小さいPEMを用いているので、cosα=1と近似できる。よって、上記した式(11),式(12)は、それぞれ下記式(14),式(15)に示すように近似できる。
【0042】
【数11】
Figure 0004010760
【0043】
この式から、100kHzのベースラインシフトは、使用する光電子増倍管の偏光特性に反映されることがわかる。さらに、式(6)からωm信号は、下記式(16)で表すことができる。
【0044】
【数12】
Figure 0004010760
【0045】
この式(16)から、AppCDは、LD,LB,PEMの残留歪み並びに光電子増倍管の偏光特性に大きく依存することがわかる。さらに、光の吸収が起こらない領域では、CD=LD=LD′=0となるので、式(16)は、下記式(17)のように近似できる。
【0046】
【数13】
Figure 0004010760
【0047】
従って、固体の試料SとPEMの持つLBと、光電子増倍管の偏光特性に起因する見かけのCDが存在することがわかる。特に、試料Sが結晶の場合、大きなLBを持つので、▲1▼検出器7として偏光特性の小さい光電子増倍管を選ぶこと、及び▲2▼PEMを駆動させた状態で、そのPEM残留歪み量αを測定することが、最終的に真のCDを測定するための重要な要素となる。
▲1▼偏光特性の小さい光電子増倍管の選び方
式(15)はLDベースラインを表しており、下記式(15−1)が成り立っている。
【0048】
【数14】
Figure 0004010760
【0049】
上記した式(15−1)中において、光電子増倍管の偏光特性をあらわす因子(P −P )と、その光電子増倍管の光軸からの方位角aは、波長によって変化する。そして、式(15−1)から明らかなように、200nmから700nm間でのLDベースラインを多数の光電子増倍管について測定し、その中で前波長領域に渡って最もベースラインシフトの小さいものを選ぶと良い。さらに、選択した光電子増倍管を測定装置に装着するとともに回転させ、cos2aが最も小さくなる角度位置を見つけ、その位置に固定する。
【0050】
なお、式(14)は、CDベースラインシフトを表しており、その信号レベルは、LDベースラインシフトと比べてsinα分だけ小さくなる。また、式(14)と式(15)を比較すると、LDベースラインが最も小さくなる位置で、CDベースラインも最小となることがわかる。従って、上記した光電子増倍管の回転角度位置の特定は、2ωm(100kHZ)信号の出力をモニターしながら行うと、より精度良く行える。
▲2▼駆動状態のPEMの残留歪み量αの測定
図1に示す光学部品の配置において、検光子6を偏光子3に対してクロスの状態にセットする。このときの検光子6のミュラー行列は、下記式のように表せる。
【0051】
【数15】
Figure 0004010760
【0052】
エアーブランクに対して、光電子増倍管における光の強度Idは、D,A,M,P,Iinの行列計算から、下記式(18)で表せる。
【0053】
【数16】
Figure 0004010760
【0054】
また、基本周波数(50kHz)のωm信号は、式(19)のようになる。
【0055】
【数17】
Figure 0004010760
【0056】
上記した式から明らかなように、ωm信号の大きさはsinαに比例し、PEMの残留歪み量αが小さいほど、ωm信号も小さくなる。よって、複数個のPEMを用意し、それぞれ実際に駆動させ、その駆動状態におけるωm(50kHz)を測定し、その出力が最も小さいPEMを選ぶと良い。
一方、式(6)から2ωm(100kHz)信号は、式(20)のように表すことができる。
【0057】
【数18】
Figure 0004010760
【0058】
そして、PEMの残留歪み量αが0.1度以下のものを用いると、sinαは十分小さいといえるので、上記した式(20)は、下記式(21)に示すように近似できる。
【0059】
【数19】
Figure 0004010760
【0060】
さらに、光の吸収が起こらない領域では、CD=LD=LD′=0となるので、式(21)は、下記式(22)のように近似できる。
【0061】
【数20】
Figure 0004010760
【0062】
よって、LBに起因する見かけ上のLD,AppLDが存在することがわかる。特に、大きなLBを持つ結晶試料の場合には、顕著に現れる。そこでまず、結晶試料は、厚さを1mm程度に設定する。
【0063】
一般に結晶試料のLDは、LBに比べて10−1のオーダーで小さく、CD,CBもLDに比べて10−2〜10−3程度オーダーで小さい。よって、そのままでは、大きなLB,LDの存在によってCDを検出するのが困難となる。そこで、PEMの残留歪み量αが小さいとすると式(16)より、下記式(23)を得る。
【0064】
【数21】
Figure 0004010760
【0065】
さらに、CDベースラインが最小になるような位置に光電子増倍管の方位角がセットされているので、cos2aは0に近似でき、sin2aは1に近似できる。従って、式(23)のAppCDは、下記式(23−1)となる。
【0066】
【数22】
Figure 0004010760
【0067】
この式(23−1)から、真のCDと1/2(LD′LB−LDLB′)に起因する見かけ上のCD成分は、試料の回転に依存しないが、LDとPEMの残留ひずみとのカップリング,光電子増倍管の偏光特性とLBとのカップリングに起因する見かけ上のCD成分は、試料の回転に依存することがわかる。そこで、本形態では、試料を回転可能に保持し、回転させながら各種データを測定し、それに基づいて真のCDを算出するようにした。
【0068】
また、何回も言うが、結晶試料の場合には、LBが大きい。従って、LBに起因するAppCDはかなり大きくなる。そこで、ωm(50kHz)信号として観測されるAppCDから真のCDを求めるため、以下のような手順に従って測定する。
*測定手順
▲1▼測定対象の結晶試料を、ホルダにセットするとともに取付台に回転自在にセットする。このとき、試料の照射面は、入射光に垂直になるようにする。また、検光子はセットしない。この状態で、ωm(50kHz)信号と、2ωm(100kHz)信号を2台のロックインアンプを用いて波長をスキャンしながら測定する。これにより、ωm信号からAppCDを得、2ωm信号からLDスペクトルを得る。
【0069】
▲2▼LDスペクトルのピーク波長に波長をセットする。次いで、試料を回転させながらLDスペクトルの変化を測定し、LDが最大になる角度位置で試料の回転を停止する。このとき、式(21)は、式(24)のようになる。
【0070】
【数23】
Figure 0004010760
【0071】
ここで、
LDmax=(LD+LD′1/2
γ=tan−1(LD′/LD)
cos(2θ+γ)=0度または180度
のときに、LD信号が最大となる。
【0072】
次に、この最大となった回転角度位置で試料を保持したまま波長を再度スキャンさせ、AppCDと、LDmaxを測定する。このとき、LDmaxは、LD′max=0となるので、上記した式(23−1)は、式(23−2)のようになる。
【0073】
【数24】
Figure 0004010760
【0074】
▲3▼AppCDのピークに波長をセットする。次いで、試料を回転させながらA CDスペクトルの変化を測定する。このとき、AppCDの値が回転とともに変化する場合には、AppCDにLDとLBが寄与しているといえる。そして、変化の程度が大きいほど、LDとLBの寄与も大きい。つまり、変化の程度から、AppCDにLDとLBがどれくらい寄与しているかがわかる。
【0075】
次いで、光の吸収がない波長で試料を回転させながらAppCDスペクトルを測定する。このとき、AppCDが2θで変化すると、AppCDにLBが大きく寄与していることがわかる。
【0076】
▲4▼次に、検光子6を図2に示す状態にセットする。つまり、検光子6を光路上に配置する。このときの検出器(光電子増倍管)7で検出する光の強度Idは、D,A,S,M,P,Iinの行列計算により、式(25)のように与えられる。
【0077】
【数25】
Figure 0004010760
【0078】
使用する検光子が理想的な場合には、エアブランクに対しては、
Id=1/4I
となるので、ωm(50kHz)信号並びに2ωm(100kHz)信号は存在しない。しかし、実際には、使用されるカルサィト・グラム・テラープリズムにはわずかにLBとCBが存在するので、上記下2つの信号もわずかに出現し、ベースラインシフトとして現れる。よって、使用するプリズムは、高性能でできるだけLB,CBが存在しないものが良い。
【0079】
そして、ωm(50kHz)信号は、下記式(26)のようになる。
【0080】
【数26】
Figure 0004010760
【0081】
固体試料の場合には、上記したごとくCDはLBに比べて10−2から10−3小さいので、CDは無視でき、検出される信号はLBである。よって、上記した式(26)は、式(27)のようにみなすことができる。
【0082】
【数27】
Figure 0004010760
【0083】
なお、CD信号がLD信号と同じ大きさの場合にのみ、観測される信号にCDの寄与が出現する。そして、LBが無視できるほどに小さいか、液体のようにLBが存在しない場合には、観測される信号は真のCDとなる。
【0084】
従って、検光子無しで測定したωm(50kHz)信号が、真のCDであるか、AppCDであるかは、検光子有りで測定したωm(50kHz)信号と比較し、両者が異なっている場合には、検光子無しで測定したωm(50kHz)信号はAppCDであり、検光子ありで測定したωm(50kHz)信号は、LBである。
【0085】
そこで、検光子有りの状態で固体試料を回転させながらωm(50kHz)信号つまりLBを測定し、LBが最大となる角度位置で固定し、その位置で波長をスキャンしてLBmaxスペクトルを測定する。
▲5▼次に、LBmaxの位置から正確に試料を45度回転させる。すると、式(27)は、
LB信号=−GLBmaxcos90度=0
となる。すなわち、LBmax=0となり、逆にLB′は最大(LB′max)となる。
【0086】
試料をこの45度回転させた角度位置に保持し、光路から検光子6を除く。この状態で波長をスキャンしてωm信号,2ωm信号、すなわち、AppCD,LDスペクトルを測定する。このとき、式(23−1)は、式(28)に示すようになる。
【0087】
【数28】
Figure 0004010760
【0088】
ここで、角度(η−γ)は、LBmaxを与える角度とLDmaxを与える角度との差である。そして、sin(η−γ)<1なので、式(28)において、LDmaxsin(η−γ)sinαは、無視できるほど小さい。よって、式(28)は、下記に示す式(28−1)のように近似できる。
【0089】
【数29】
Figure 0004010760
【0090】
上記の操作により、結晶試料のように大きなLBを持つものであっても、そのLDのCD信号への寄与と、光電子増倍管の偏光特性と試料のLB間のカップリングに起因する偽のCDを消去することができる。そして、式(28−1)で示されるAppCDスペクトルを記録する。
【0091】
次いで、LDLB′maxの寄与を除去する。すなわち、上記した結晶試料をx軸(縦軸)に対して正確に180度回転させる。つまり、試料の表裏を反転し、今まで入射面(出射面)であったものが出射面(入射面)になるようにする。
【0092】
すると、CD,LDはこの回転によって符号を変えないが、LB′maxは符号が変わる(+LB′max→−LB′max)。そして、この反転した状態で波長をスキャンしてAppCDスペクトルを測定する。なお、測定される信号は、式(28−2)で求められる。
【0093】
【数30】
Figure 0004010760
【0094】
そして、試料の表面に対して光を照射した状態で測定して得られた(AppCD)faceと、試料の裏面に対して光を照射した状態で測定して得られた(AppCD)backとを加算し、下記式(29)を得る。
【0095】
【数31】
Figure 0004010760
【0096】
次いで、求めた値を2で割ると、真のCDが求められる
次に、本形態に用いられる試料保持装置5の具体的な構成について説明する。この試料保持装置5は、上記した測定を容易に行えるようにするため、試料Sを360度回転させたり、裏,表の切り替えを簡単に行えるようにしたものである。
【0097】
まず、図3,図4に示すように、試料保持装置5は、ベースプレート10の上に、第1レンズL1,第2レンズL2並びに検光子6用の各ホルダとともに所定の位置関係で固定されている。そして、この試料保持装置5は、ベースプレート10の上面に起立配置された支持プレート11と、その支持プレート11に対して着脱自在に取り付けられるホルダ12とから構成されている。
【0098】
支持プレート11は、金属板からなり、ホルダ12の取り付け面、つまり、第1レンズL1側の面に、円筒状の凹部11aが形成されており、その凹部11a内に円筒状のホルダ12が挿入され保持されるようになる。また、凹部11aの中心には、支持プレート11の厚さ方向に貫通する貫通孔11bが形成され、試料S内を通過した光が、この貫通孔11bを通って後段の第2レンズL2に至る。
【0099】
ホルダ12は、図5に拡大して示すように、光路に沿って前後に2分割されており、それぞれ円筒状の第1ホルダ要素13と第2ホルダ要素14を備えている。第1,第2ホルダ要素13,14は、その中心軸に沿って貫通孔13a,14aが形成され、両ホルダ要素13,14を連結して一体化した際にはこの貫通孔13a,14aが同一直線上に繋がり、その内部を測定用の光が通過するようになる。
【0100】
第1,第2ホルダ要素13,14は、互いにネジ機構により簡単に結合/分離ができるようになっている。すなわち、第1ホルダ要素13の接合面には、雌ネジ13bが形成され、第2ホルダ要素14の接合面には雄ネジ14bが形成されている。これにより、両ネジ13b,14bを結合することにより、図5(b)に示すように第2ホルダ要素14の接合面側の一部が第1ホルダ要素13の接合面側内に挿入した状態で両者は一体化される。
【0101】
そして、第1,第2ホルダ要素13,14の対向する接合面間で、試料Sを挟み込み、これにより、ホルダ12内に試料Sを保持するようになる。このとき、試料Sにかかるストレスを抑制するため、両接合面に形成したリング状の凹溝13c,14c内には、それぞれOリング15が装着され、試料Sに対しては、そのOリング15が接触されるようになる。
【0102】
そして、ネジ13b,14bの締め付け量を調整することにより、上記の挿入距離は調整できるので、第1,第2ホルダ要素13,14の接合面に形成される隙間16の間隔も調整できる。よって、試料Sの厚さに応じて、隙間16の距離を調整することにより、試料Sにかかる保持圧力を適切なものにすることができる。換言すると、異なる厚さの試料Sに対しても、対応できるホルダ12となる。特に、結晶,フィルムなどの膜厚の薄い試料Sの場合、大きな圧力が加わると、試料Sに歪みを生じ、正確な測定ができなくなるが、本形態では係る問題が発生しない。
【0103】
また、第1,第2ホルダ要素13,14の非接合面側は、外側に突出するフランジ13d,14dが設けられている。このフランジ13d,14dの外径は、上記した支持プレート11に設けた凹部11aの内径と略一致している。これにより、フランジ13d,14dのいずれも凹部11a内に挿入することができる(図では第2ホルダ要素14のフランジ14dが挿入されている)。さらに、凹部11aとフランジ13d,14dが円形状となっているので、フランジ13d,14dを凹部11a内に挿入した状態で、フランジ13d,14dひいてはホルダ12を回転させることができる。
【0104】
さらに、フランジ13d,14dの表面には、磁石17を取り付けている。これにより、支持プレート11が金属板であるので、フランジ13d,14dを凹部11a内に挿入した状態では、磁石17が金属板からなる支持プレート11に付着する。この磁石17により、ホルダ12を支持プレート11に固定することができる。また、磁石であるので、簡単にホルダ12を支持プレート11から取り外すこともできる。
【0105】
従って、本形態によれば、ホルダ12内に試料Sをセットした状態で、一方のフランジ14d(13d)を支持プレート11の凹部11aに挿入すると、ホルダ12は支持プレート11に固定され、試料Sの表面(或いは裏面)が第1レンズL1側に向き、光が照射される。もちろん、支持プレート11は、光路と直交する平面内に位置するので、試料Sは、光軸に対して垂直面に位置する。この状態で、ホルダ12を持って回転すると、360度内の任意の角度位置に位置させ、そこで固定することができる。
【0106】
さらに、一度ホルダ12を支持プレート11から取り外し、ホルダ12を裏返して他方のフランジ13d(14d)を支持プレート11の凹部11aに挿入すると、ホルダ12は支持プレート11に固定され、試料Sの裏面(或いは表面)が第1レンズL1側に向き、光が照射される。
【0107】
従って、試料Sを360度回転させ、しかも表と裏の両方に照射させることができるので、上記した固体CD測定装置において、見かけのシグナルを打ち消すことができ、真のCDを求めることができる。
【0108】
なお、本実施の形態では、ホルダ12の回転を手動で行うようにしたが、例えばホルダ12の周囲に歯車を設け、その歯車をパルスモータ(ステッピングモータ)の出力軸に取り付けた歯車と直接または間接的に連結させることにより、自動的に回転させることができる。このようにすると、パルスモータの駆動を信号処理装置8で制御するようにすると、現在の試料Sの角度がわかり、自動的に測定が行える。
【0109】
また、上記した実施の形態では、ホルダ12側に磁石を設けたが、支持プレート11側に磁石を設け、ホルダ自体を金属で形成したり、フランジの表面に金属板を設けるように磁石の設置を逆にしてもよい。さらには、ホルダ12の固定を磁石で行う必要はなく、他のメカ的その他の任意の固定手段を用いることができる。但し、本実施の形態のように磁石を用いると、簡単に構成でき、試料の装着並びに測定作業も容易に行える点で好ましい。
【0110】
図6,図7は、本発明の第2の実施の形態である試料(石英板等の基板に堆積された膜,高分子フィルム,膜,ゲル,結晶等)が光学的に均質であるか否かを判定する装置を示している。これら図6,図7と、図1,図2を比較すると明らかなように、基本的な構成は、第1の実施の形態の構成から検光子6を取り除いた構成となっている。
【0111】
従って、使用する偏光変調器(PEM)4は、残留歪み量が小さく、検出器7の偏光特性が小さく,ロックインアンプの2倍高調波除去率の高いものが用いられる。そして、単色入射項Iin,偏光子P,偏光変調器(PEM)M,検出器Dのミュラー行列は、第1の実施の形態の際に記載した式(1)〜式(3),式(5)の通りである。
【0112】
さらに、高分子フィルム,膜,ゲル,結晶などの固体試料を表すミュラー行列は、試料が巨視的異方性,直線複屈折LB,直線二色性LDを持ち、光学的に均質であるとすると、下記式のように表すことができる。
【0113】
【数32】
Figure 0004010760
【0114】
【数33】
Figure 0004010760
【0115】
【数34】
Figure 0004010760
【0116】
【数35】
Figure 0004010760
【0117】
−Fをテーラ展開すると、下記式(35)が得られる。
【0118】
【数36】
Figure 0004010760
【0119】
この式(35)中、F,F,F等が持つ物理的意味は、光学的に均質な1層構造(F),光学的に均質な2層構造(F),光学的に均質な3層構造(F)を表す。そして、試料への入射光は、M,P,Iinの行列計算により求められ、下記式(36)で与えられる。
【0120】
【数37】
Figure 0004010760
【0121】
説明の便宜上、試料が光学的に均質な2層構造からなると仮定する。まず、入射光が第1層を通過した後の偏光状態は、次式により求められる。すなわち、第1層のミュラー行列式Sは、下記式(37)であるので、第1層を通過した光の偏光状態Iは式(38)のようになる。
【0122】
【数38】
Figure 0004010760
【0123】
【数39】
Figure 0004010760
【0124】
そして、第2層は第1層と同じミュラー行列要素を持つので、第2層を通過した光は、下記式(39)で表すことができ、順次展開すると最終的に式(41)のようになる。
【0125】
【数40】
Figure 0004010760
【0126】
【数41】
Figure 0004010760
【0127】
【数42】
Figure 0004010760
【0128】
さらに検出器7における受信した光の強度は、偏光特性の小さい光電子増倍管を使用すると、下記式(42)のようになる。
【0129】
【数43】
Figure 0004010760
【0130】
上記した式(41),式(42)から明らかなように、第2層を通過する光の円偏光成分は、光電子増倍管での光強度と関係がない。換言すると、円偏光成分は試料のLDとLBに何らの相互作用もしていないといえる。さらに、sin(δ+α)とcos(δ+α)は、フーリエ変換すると、第1の実施の形態の説明の際に示した式(7),式(8)のようになるので、検出されるωm(50kHz)信号と、2ωm(100kHz)信号はそれぞれ下記式で表される。
【0131】
【数44】
Figure 0004010760
【0132】
【数45】
Figure 0004010760
【0133】
さらに、使用したPEMの残留歪み量αが小さいとすると、sinαが0とみなせるので、式(43)は式(43′)のように近似できる。
【0134】
【数46】
Figure 0004010760
【0135】
さらに、(LD′LB―LDLB′)sin(δ+α)は、式(41)から明らかなように、第2層に入射する直線偏光成分とLDとLBの相互作用によって生じるものである。
【0136】
次に、試料をこの角度位置で反転し、表裏を逆にセットする(試料を裏返す)。すると、LDとLBは何の変化も生じないが、LD′とLB′は、その符号が変わる。つまり、試料を裏返すと、LB′は―LB′となり、LD′は−LD′となる。従って、試料を裏返した時に得られるω信号は、式(43′)中にLB′とLD′の符号を反転すれば良いので、下記式(45)となる。なお、2ωm信号は、試料を裏返しても変わらないので、式(44)の通りとなる。
【0137】
【数47】
Figure 0004010760
【0138】
つまり、上記した式(43′)と式(45)を比較すると明らかなように、試料の表面と裏面に対してそれぞれ入射光を照射させた場合に得られるωm(50kHz)信号は、絶対値が等しく、符号が反転している。従って、光学的に均質な試料を反転させて、その表面と裏面のそれぞれについてωm(50kHz)信号を測定し、得られた両信号を加算すると、各信号が相殺されて0となる。
【0139】
次に、試料が光学的に等しくない2層構造を持つ場合について考察する。入射光に対して第1層をS1,第2層をS2とする。これを表面とすると、これに対するミュラー行列式は、以下のようになる。
face=S1face・S2face
=Ae1+Ae2
【数48】
Figure 0004010760
【0140】
【数49】
Figure 0004010760
【0141】
試料を裏返した場合には、各層のLD,LD,LB,LBの符号は変わらないが、LD′,LD′,LB′,LB′の符号は反転する。従って、入射光に対するミュラー行列は、下記のように表せる。
back=S2back・S1back
【数50】
Figure 0004010760
【0142】
【数51】
Figure 0004010760
【0143】
従って、試料の表面に対して入射光を与えた場合のωm信号(ωm(50kHz)face)と、試料の裏面に対して入射光を与えた場合のωm信号(ωm(50kHz)back)は、下記式(50),式(51)に示すようになる。
【0144】
【数52】
Figure 0004010760
【0145】
【数53】
Figure 0004010760
【0146】
同様に、試料の表面に対して入射光を与えた場合の2ωm信号(2ωm(100kHz)face)と、試料の裏面に対して入射光を与えた場合の2ωm信号(ωm(100kHz)back)は、下記式(52),式(53)に示すようになる。
【0147】
【数54】
Figure 0004010760
【0148】
【数55】
Figure 0004010760
【0149】
上記した各式から明かなように、2ωm(100kHz)信号、すなわち、LD信号は、表面と裏面で大きさも等しく符号も変わらない。これに対し、ωm(50kHz)信号は、入射光に対して表面と裏面では大きさは異なり、その符号は変わるとは限らない。つまり、光学的に不均質な2層構造の場合、下記式(54)のような相関関係を持つ。
【0150】
【数56】
Figure 0004010760
【0151】
以上のことから、LB,LDのような巨視的異方性を持つ試料が光学的に均質であるかどうかを判定するには、本実施の形態の装置を用い、入射光に対して試料の表面とこれを正確に裏返した裏面の両面について、ωm(50kHz)信号を測定し、その大きさが等しいが符号が異なっているならば試料は光学的に均質であると判定でき、両面で信号の大きさが異なる(符号の一致/不一致は問わず)場合には試料は光学的に異なる2層以上の構造を持っていると判断できる。係る判断を、信号処理装置8が行う。
【0152】
【発明の効果】
上記したように、本発明では、簡単な演算処理によって固体試料の持つ真のCDを測定することができ、また、試料が光学的に均質か不均質かの判定ができる。
【図面の簡単な説明】
【図1】本発明に係る測定装置の第1の実施の形態を示す図である。
【図2】その光学配置を示す図である。
【図3】試料保持装置の一実施の形態を示す側面図である。
【図4】試料保持装置の一実施の形態を示す平面図である。
【図5】ホルダの一例を示す図である。
【図6】本発明に係る測定装置の第2の実施の形態を示す図である。
【図7】その光学配置を示す図である。
【符号の説明】
1 光源
2 分光器
3 偏光子
4 偏光変調器
5 試料保持装置
6 検光子
7 検出器
8 信号処理装置

Claims (2)

  1. 光源から出射される光の光路上に、単色光を出射する分光器と、その単色光を直線偏光させる偏光子と、その偏光子を透過した光の偏光状態を所定の基本変調周波数で、右回りの円偏光,左回りの円偏光に交番的に変化させると同時に2倍の基本変調周波数で垂直・水平の直線偏光に交番的に変化させる偏光変調器と、その偏光変調器から得られた光が入射されるように試料を保持する試料保持装置と、その試料保持装置を通過した光が通過する検光子を通過した光の強度を検出する検出器と、その検出器の出力に基づいて信号処理する信号処理部を備えた測定装置であって、
    前記検光子は、前記光路上と光路外に移動可能にし、
    前記試料保持装置は、前記試料に照射される光の光路と直交する平面内で前記試料をその光路回りに回転可能に保持するとともに、反転して前記試料の表面側と裏面側のそれぞれから光を入射可能とし、
    前記信号処理部は、前記検出器の出力信号のうち前記偏光変調器における変調周波数に相当する周波数成分及びその変調周波数の2倍の周波数成分に基づいて信号処理するもので、
    前記検光子を光路上に配置した状態で前記試料をその光路回りに回転させ、基本変調周波数成分が最大位置となる角度位置を求め、
    前記角度位置から前記試料を45度回転させた位置で、前記試料を反転させ、前記検光子を前記光路外に配置した状態で、前記試料の表面から光を照射した時に得られた前記変調周波数に相当する周波数成分と、前記試料の裏面から光を照射した時に得られた前記変調周波数に相当する周波数成分を得、それらを加えて2で割ることにより真のCD値を算出する測定装置。
  2. 光源から出射される光の光路上に、単色光を出射する分光器と、その単色光を直線偏光させる偏光子と、その偏光子を透過した光の偏光状態を所定の基本変調周波数で、右回りの円偏光,左回りの円偏光に交番的に変化させると同時に2倍の基本変調周波数で垂直・水平の直線偏光に交番的に変化させる偏光変調器と、その偏光変調器から得られた光が入射されるように試料を保持する試料保持装置と、その試料保持装置を通過した光の強度を検出する検出器と、その検出器の出力に基づいて信号処理する信号処理部を備えた測定装置であって、
    前記試料保持装置は、前記試料を反転して前記試料の表面側と裏面側のそれぞれから光を入射可能とし、
    前記信号処理部は、前記検出器の出力信号のうち前記偏光変調器における変調周波数に相当する周波数成分に基づいて信号処理するもので、前記試料の表面から光を照射した時に得られた前記変調周波数に相当する周波数成分Fと、前記試料の裏面から光を照射した時に得られた前記変調周波数に相当する周波数成分Bを求め、
    F=−Bならば前記試料は光学的に均質と判断し、
    F=−Bでないならば前記試料は光学的に不均質と判断する機能を備えたことを特徴とする測定装置。
JP2000313024A 2000-10-13 2000-10-13 測定装置 Expired - Fee Related JP4010760B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313024A JP4010760B2 (ja) 2000-10-13 2000-10-13 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313024A JP4010760B2 (ja) 2000-10-13 2000-10-13 測定装置

Publications (2)

Publication Number Publication Date
JP2002122477A JP2002122477A (ja) 2002-04-26
JP4010760B2 true JP4010760B2 (ja) 2007-11-21

Family

ID=18792507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313024A Expired - Fee Related JP4010760B2 (ja) 2000-10-13 2000-10-13 測定装置

Country Status (1)

Country Link
JP (1) JP4010760B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538344B2 (ja) * 2005-03-01 2010-09-08 日本分光株式会社 軸方位測定装置および方法
JP4947998B2 (ja) * 2006-02-28 2012-06-06 国立大学法人宇都宮大学 光学特性計測装置及び光学特性計測方法
JP6013102B2 (ja) * 2012-04-05 2016-10-25 浜松ホトニクス株式会社 円二色性計測方法及び円二色性計測装置
JP6784396B2 (ja) * 2015-12-28 2020-11-11 大学共同利用機関法人自然科学研究機構 円偏光照射器、分析装置及び顕微鏡
JPWO2022181320A1 (ja) 2021-02-25 2022-09-01
CN114397279B (zh) * 2022-01-19 2023-07-18 天津大学 任意应变状态下二维材料和应变物体的应变状态检测方法

Also Published As

Publication number Publication date
JP2002122477A (ja) 2002-04-26

Similar Documents

Publication Publication Date Title
JP4921090B2 (ja) 光学異方性パラメータ測定方法及び測定装置
US6473179B1 (en) Birefringence measurement system
CN101473212A (zh) 聚焦光束椭偏仪
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
US6268914B1 (en) Calibration Process For Birefringence Measurement System
JP4249608B2 (ja) 深紫外波長での複屈折測定
JP4663529B2 (ja) 光学的異方性パラメータ測定方法及び測定装置
US20040233434A1 (en) Accuracy calibration of birefringence measurement systems
JP4010760B2 (ja) 測定装置
Wang Linear birefringence measurement instrument using two photoelastic modulators
US6697157B2 (en) Birefringence measurement
US6628389B1 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
EP0603863B1 (en) Birefringent member cell gap measurement method and instrument
Postava et al. Null ellipsometer with phase modulation
Xia et al. New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms
Harada et al. Vertical-type chiroptical spectrophotometer (I): Instrumentation and application to diffuse reflectance circular dichroism measurement
US7002685B2 (en) System for measuring of both circular and linear birefringence
JP6805469B2 (ja) 誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置
JP5446644B2 (ja) 楕円偏光板の貼合角測定装置
JP3940376B2 (ja) ゲル状試料用分光測定装置
JP3936712B2 (ja) 検出対象のパラメータ検出方法及び検出装置
JP2576781B2 (ja) 複屈折体のセルギャップ測定方法およびその装置
JP4728830B2 (ja) 光学的異方性パラメータ測定方法及び測定装置
JP3539006B2 (ja) 複合層のレターデーション測定方法及び装置
JP2001337035A (ja) 測定装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001016

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20001016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4010760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees