JP4009729B2 - Zinc sulfide nanostructure coated with boron nitride film and method for producing the same - Google Patents

Zinc sulfide nanostructure coated with boron nitride film and method for producing the same Download PDF

Info

Publication number
JP4009729B2
JP4009729B2 JP2004056403A JP2004056403A JP4009729B2 JP 4009729 B2 JP4009729 B2 JP 4009729B2 JP 2004056403 A JP2004056403 A JP 2004056403A JP 2004056403 A JP2004056403 A JP 2004056403A JP 4009729 B2 JP4009729 B2 JP 4009729B2
Authority
JP
Japan
Prior art keywords
zinc sulfide
boron nitride
nitride film
coated
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004056403A
Other languages
Japanese (ja)
Other versions
JP2005247597A (en
Inventor
義雄 板東
ズウ・ウィンチェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004056403A priority Critical patent/JP4009729B2/en
Publication of JP2005247597A publication Critical patent/JP2005247597A/en
Application granted granted Critical
Publication of JP4009729B2 publication Critical patent/JP4009729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、紫外線領域の発光ダイオードやレーザー等の発光材料として利用可能な窒化ホウ素膜に覆われた硫化亜鉛ナノ構造物及びその製造方法に関する。   The present invention relates to a zinc sulfide nanostructure covered with a boron nitride film that can be used as a light emitting material such as a light emitting diode or a laser in the ultraviolet region, and a method for producing the same.

硫化亜鉛は3.7eVのバンドギャップエネルギーを有する直接遷移型半導体であるため、特に青色領域の発光ダイオードやレーザーの発光材料として盛んに研究開発されている(例えば非特許文献1〜3を参照)。
ところで、半導体物質の形状寸法(サイズ)をナノメートル(nm)オーダーにすると、量子サイズ効果によって、バンドギャップエネルギーが大きくなり、例えば、硫化亜鉛をナノサイズにした構造物、すなわち、硫化亜鉛ナノ構造物は、紫外線領域のバンドギャップエネルギーを有するようになる。このため、硫化亜鉛ナノ構造物は、紫外線領域の発光ダイオードやレーザー等の発光材料として期待されている。
Since zinc sulfide is a direct transition semiconductor having a band gap energy of 3.7 eV, it has been actively researched and developed as a light emitting diode or laser light emitting material in the blue region (see, for example, Non-Patent Documents 1 to 3). .
By the way, when the shape dimension (size) of a semiconductor material is set to the nanometer (nm) order, the band gap energy increases due to the quantum size effect. For example, a structure in which zinc sulfide is nanosized, that is, a zinc sulfide nanostructure. Things come to have a band gap energy in the ultraviolet region. For this reason, zinc sulfide nanostructures are expected as light emitting materials such as light emitting diodes and lasers in the ultraviolet region.

しかしながら、ナノ構造物は、物質の体積に対する表面積の比、即ち、比表面積が極めて大きいので、必然的に化学反応性が高い。また、表面が化学反応によって変質した場合には、比表面積が極めて大きいので、構造的変形や、特性の劣化が生じやすい。
このため、デバイス作成時、あるいは実使用時において特性が劣化しやすいという課題があり、硫化亜鉛ナノ構造物も同様の課題を有している。
T.Yamamotoほか、Phys.B,308−311巻、916頁、2001年 T.V.Prevenslik,J.Lumin.87−89巻、1210頁、2000年 C.Falcony et al.,J.Appl.Phys.72巻、1525頁、1992年
However, since the nanostructure has a very large surface area ratio relative to the volume of the substance, that is, the specific surface area, it is necessarily highly chemically reactive. In addition, when the surface is altered by a chemical reaction, the specific surface area is extremely large, so that structural deformation and characteristic deterioration are likely to occur.
For this reason, there exists a subject that a characteristic tends to deteriorate at the time of device creation or actual use, and a zinc sulfide nanostructure has the same subject.
T.A. Yamamoto et al., Phys. B, 308-311, 916, 2001 T.A. V. Prevenslik, J. et al. Lumin. 87-89, 1210, 2000 C. Falcony et al. , J .; Appl. Phys. 72, 1525, 1992

本発明は上記課題に鑑み、化学的に不活性な、すなわち、化学的安定性が高く、かつ、紫外線領域の発光ダイオードやレーザーの発光材料として使用できる硫化化亜鉛ナノ構造物を提供すること、及びその製造方法を提供することを目的とする。
化学的安定性が高い硫化亜鉛ナノ構造物を形成できれば、デバイス作製時、あるいは実使用時における特性劣化の問題を解決することができ、硫化亜鉛ナノ構造物のバンドギャップエネルギーを生かした紫外線領域の発光ダイオードやレーザーが可能になる。
In view of the above problems, the present invention provides a zinc sulfide nanostructure that is chemically inert, that is, has high chemical stability and can be used as a light emitting diode or laser light emitting material in the ultraviolet region, And it aims at providing the manufacturing method.
If zinc sulfide nanostructures with high chemical stability can be formed, the problem of characteristic deterioration during device fabrication or actual use can be solved, and in the ultraviolet region utilizing the band gap energy of zinc sulfide nanostructures. Light emitting diodes and lasers are possible.

上記目的を達成するために、本発明の窒化ホウ素で被覆された硫化亜鉛ナノ構造物は、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーが窒化ホウ素膜で被覆されていることを特徴とする。
この構成によれば、とげ状の側枝部分はナノサイズであるので、量子サイズ効果により紫外線領域のバンドギャップエネルギーを有しており、また、窒化ホウ素(BN)膜は化学的に極めて安定であり、かつ、窒化ホウ素膜のバンドギャップエネルギーが5.5eVであるため紫外線領域で透明であるから、紫外線領域の発光ダイオードやレーザーの発光材料として使用できる硫化亜鉛ナノ構造物が得られる。
To achieve the above object, the zinc sulfide nanostructure coated with boron nitride according to the present invention is characterized in that zinc sulfide twinned nanowhiskers having spine-like side branches are coated with a boron nitride film. .
According to this configuration, since the spine-shaped side branch portion is nano-sized, it has a band gap energy in the ultraviolet region due to the quantum size effect, and the boron nitride (BN) film is chemically extremely stable. In addition, since the band gap energy of the boron nitride film is 5.5 eV, it is transparent in the ultraviolet region, so that a zinc sulfide nanostructure that can be used as a light emitting diode or laser light emitting material in the ultraviolet region is obtained.

また、上記の窒化ホウ素膜は結晶性窒化ホウ素膜であり、この結晶性窒化ホウ素膜は、結晶性窒化ホウ素の特定の結晶面がとげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの
表面と平行な結晶配向性を有して成長している。この構成によれば、硫化亜鉛双晶ナノウィスカー表面の原子と結晶性窒化ホウ素膜の原子とが、格子レベルの規則性で結合しているので、結合力が極めて高く、従って、化学的安定性が極めて高い。
Further, the boron nitride film is a crystalline boron nitride film, and this crystalline boron nitride film is parallel to the surface of the zinc sulfide twinned nanowhisker in which a specific crystal plane of the crystalline boron nitride has a spine-shaped side branch. It grows with a good crystal orientation. According to this configuration, the atoms on the surface of zinc sulfide twinned nanowhiskers and the atoms in the crystalline boron nitride film are bonded with regularity at the lattice level, so the bonding force is extremely high, and thus chemical stability is achieved. Is extremely high.

本発明の窒化ホウ素膜で被覆された硫化亜鉛ナノ構造物の製造方法は縦型高周波誘導加熱炉の上部と下部にそれぞれ、硫化亜鉛双晶ウィスカーを載せた窒化ホウ素円板とB−N−O化合物粉末を入れた坩堝を配置し、窒素ガスとアンモニアガスの混合ガスを導入しながら、B−N−O化合物の粉末を1300〜1750℃の範囲で加熱してB−N−O化合物蒸気を発生させ、硫化亜鉛双晶ウィスカーを850〜950℃の範囲で加熱し、1〜3時間この状態を維持することによって合成することを特徴とする
この方法によれば、硫化亜鉛双晶ナノウィスカーが再結晶化して、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーになると共に、この表面に窒化ホウ素膜が成長する。この窒化ホウ素膜は、結晶性窒化ホウ素膜であり、結晶性窒化ホウ素の特定の結晶面が、とげ
状の側枝を有する硫化亜鉛双晶ナノウィスカーの表面に平行な結晶配向性を有して成長する。
The method for producing a zinc sulfide nanostructure coated with a boron nitride film according to the present invention includes a boron nitride disc having zinc sulfide twin whiskers placed on the upper and lower portions of a vertical high frequency induction heating furnace, and BN- A crucible containing O compound powder was placed, and while introducing a mixed gas of nitrogen gas and ammonia gas, the B—N—O compound powder was heated in the range of 1300 to 1750 ° C. to obtain a B—N—O compound vapor. It is generated, by heating the zinc sulfide twins whiskers in the range of 850 to 950 ° C., characterized by synthesis by maintaining 1-3 hours this state.
According to this method, the zinc sulfide twinned nanowhiskers are recrystallized to become zinc sulfide twinned nanowhiskers having thorn-like side branches, and a boron nitride film grows on this surface. This boron nitride film is a crystalline boron nitride film, and a specific crystal plane of the crystalline boron nitride has a crystal orientation parallel to the surface of a zinc sulfide twinned nanowhisker having spine-like side branches. To do.

本発明の窒化ホウ素で被覆された硫化亜鉛ナノ構造物、及びその製造方法によれば、窒化ホウ素膜が化学的に安定であり、紫外線領域において透明であり、ナノサイズの構造を有するから、この硫化亜鉛ナノ構造物を用いれば、実使用可能な、紫外線領域の発光ダイオードやレーザーが可能になる。また、窒化ホウ素膜が結晶性窒化ホウ素であり、硫化亜鉛双晶ナノウィスカーの表面に結晶配向して成長しているので、化学的安定性が極めて高いと共に、硫化亜鉛ナノ構造物毎の特性が均一になる。   According to the zinc sulfide nanostructure coated with boron nitride of the present invention and the manufacturing method thereof, the boron nitride film is chemically stable, transparent in the ultraviolet region, and has a nano-sized structure. If zinc sulfide nanostructures are used, a light-emitting diode or laser in the ultraviolet region that can be actually used can be realized. In addition, since the boron nitride film is crystalline boron nitride and grows with crystal orientation on the surface of the zinc sulfide twinned nanowhisker, the chemical stability is extremely high and the characteristics of each zinc sulfide nanostructure are It becomes uniform.

以下、本発明を実施するための最良の形態を図面に基づき詳細に説明する。
図1は、本発明の窒化ホウ素で被覆された硫化亜鉛ナノ構造物を製造する装置の一例を示す模式図である。この装置を例に製造方法を説明する。
図において、縦型高周波誘導加熱装置1は、炉心管2の周囲に、上部誘導加熱コイル3及び下部誘導加熱コイル4を有している。硫化亜鉛双晶ウィスカー5を載せた窒化ホウ素円板6、及びB−N−O化合物粉末7をいれた坩堝8をそれぞれ、炉心管2の上部及び下部に配置し、それぞれ、上部誘導加熱コイル3及び下部誘導加熱コイル4で加熱する。矢印9はB−N−O化合物蒸気を表し、矢印10は窒素ガスとアンモニアガスの混合ガスを表している。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an example of an apparatus for producing a zinc sulfide nanostructure coated with boron nitride according to the present invention. A manufacturing method will be described using this apparatus as an example.
In the figure, a vertical high-frequency induction heating apparatus 1 has an upper induction heating coil 3 and a lower induction heating coil 4 around a core tube 2. A boron nitride disc 6 on which zinc sulfide twin crystal whiskers 5 are placed, and crucibles 8 containing B—N—O compound powder 7 are arranged at the upper and lower portions of the core tube 2, respectively, and the upper induction heating coil 3, respectively. And it heats with the lower induction heating coil 4. FIG. Arrow 9 represents a B—N—O compound vapor, and arrow 10 represents a mixed gas of nitrogen gas and ammonia gas.

図1の装置を用いて窒化ホウ素で被覆された硫化亜鉛ナノ構造物を製造する方法を説明する。
初めに、硫化亜鉛双晶ウィスカー、及びB−N−O化合物粉末を作製しておく。
硫化亜鉛双晶ウィスカーは周知の方法で作製でき、例えば、硫化亜鉛粉末を窒素気流中で、1200℃で約2時間加熱することにより得られる。B−N−O化合物の粉末は、例えば、後に詳細に説明するように、ホウ酸とメラミンから合成できる。
硫化亜鉛双晶ウィスカー5、及びB−N−O化合物7を図1に示したように配置し、上部誘導加熱コイル3で硫化亜鉛双晶ウィスカー5を加熱し、下部誘導加熱コイル4でB−N−O化合物粉末7を加熱してB−N−O化合物蒸気9を生成し、かつ、窒素ガスとアンモニアガスの混合ガス10を流し、一定時間この状態を保持して製造する。
A method of manufacturing a zinc sulfide nanostructure coated with boron nitride using the apparatus of FIG. 1 will be described.
First, zinc sulfide twin whiskers and B—N—O compound powder are prepared.
Zinc sulfide twin whiskers can be produced by a well-known method, and can be obtained, for example, by heating zinc sulfide powder at 1200 ° C. for about 2 hours in a nitrogen stream. The powder of the B—N—O compound can be synthesized from boric acid and melamine, for example, as will be described in detail later.
The zinc sulfide twin whisker 5 and the B—N—O compound 7 are arranged as shown in FIG. 1, the zinc sulfide twin whisker 5 is heated by the upper induction heating coil 3, and the B— The N—O compound powder 7 is heated to produce a B—N—O compound vapor 9, and a mixed gas 10 of nitrogen gas and ammonia gas is allowed to flow, and this state is maintained for a certain time.

B−N−O化合物7は1300〜1750℃の温度範囲で、硫化亜鉛双晶ナノウィスカー5は850〜950℃の温度範囲で加熱するのが好ましい。
B−N−O化合物と硫化亜鉛双晶ウィスカーの重量比は10:1〜30:1の範囲が好ましく、B−N−O化合物の硫化亜鉛双晶ウィスカーに対する重量比を30:1よりも大きくしても、窒化ホウ素膜の成長速度は大きくならず、10:1よりも小さくすると、硫化亜鉛双晶ウィスカーの表面全部を窒化ホウ素膜で覆うことが出来ない。
The B—N—O compound 7 is preferably heated in the temperature range of 1300 to 1750 ° C., and the zinc sulfide twinned nanowhisker 5 is preferably heated in the temperature range of 850 to 950 ° C.
The weight ratio of the B—N—O compound and the zinc sulfide twin whisker is preferably in the range of 10: 1 to 30: 1, and the weight ratio of the B—N—O compound to the zinc sulfide twin whisker is greater than 30: 1. However, the growth rate of the boron nitride film does not increase, and if it is less than 10: 1, the entire surface of the zinc sulfide twin whisker cannot be covered with the boron nitride film.

窒素ガスの流量は500〜3000cm3 /minが好ましく、3000cm3 /minより大きくしても窒化ホウ素膜の被膜特性に変化はなく、500cm3 /minよりも流量が小さいと、硫化亜鉛双晶ナノウィスカーの全表面に均一に窒化ホウ素膜が被覆されなくなる。アンモニアガスの流量は10〜100cm3 /minの範囲が好ましく、100cm3 /minより多く流しても窒化ホウ素膜の被膜特性に変化はなく、10cm3 /minよりも流量が少ないと、硫化亜鉛双晶ナノウィスカーの全表面に均一に窒化ホウ素膜が被覆されなくなる。 Flow rate of nitrogen gas is preferably 500~3000cm 3 / min, 3000cm 3 / be greater than min no change in the film properties of the boron nitride film, the flow rate is less than 500 cm 3 / min, zinc sulfide twin nano The entire surface of the whisker is not uniformly coated with the boron nitride film. The flow rate of the ammonia gas is preferably in the range of 10~100cm 3 / min, 100cm 3 / min even more flowed no change in the film properties of the boron nitride film, the flow rate is less than 10 cm 3 / min, zinc sulfide bi The boron nitride film is not uniformly coated on the entire surface of the crystal nanowhiskers.

B−N−O化合物の蒸気は、1300〜1750℃の温度範囲で十分発生するので、1750℃以上に加熱する必要はなく、1300℃よりも低いと窒化ホウ素膜を形成するための蒸気が十分に供給されない。   Since the vapor of the B—N—O compound is sufficiently generated in the temperature range of 1300 to 1750 ° C., it is not necessary to heat to 1750 ° C. or higher, and if it is lower than 1300 ° C., the vapor for forming the boron nitride film is sufficient Not supplied.

硫化亜鉛双晶ウィスカーの加熱温度は850〜950℃の温度範囲が好ましく、950℃よりも高いと、硫化亜鉛双晶ウィスカーが窒化ホウ素円板上から蒸発逸散してしまい、850℃よりも低いと、とげ状の側枝を持った硫化亜鉛双晶ナノウィスカーが形成されない。加熱時間は1〜3時間の範囲が好ましく、3時間で十分に反応が進行するので、これ以上の時間をかける必要はなく、1時間未満の場合は、窒化ホウ素膜で被膜されていない硫化亜鉛双晶ナノウィスカーの割合が増える。
生成された、窒化ホウ素膜で被覆された硫化亜鉛双晶ナノウィスカーは、肉眼では白色の粉末に見える。
The heating temperature of the zinc sulfide twin whisker is preferably in the temperature range of 850 to 950 ° C. If the temperature is higher than 950 ° C., the zinc sulfide twin whisker evaporates away from the boron nitride disc, and is lower than 850 ° C. As a result, zinc sulfide twin nanowhiskers having thorn-like side branches are not formed. The heating time is preferably in the range of 1 to 3 hours, and since the reaction proceeds sufficiently in 3 hours, it is not necessary to spend more time, and in the case of less than 1 hour, zinc sulfide not coated with a boron nitride film Increases the proportion of twin nanowhiskers.
The resulting zinc sulfide twinned nanowhiskers coated with a boron nitride film appear white powder to the naked eye.

上記の製造方法によれば、硫化亜鉛双晶ウィスカーが再結晶化して、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーになると共に、この表面に窒化ホウ素膜が成長する。この窒化ホウ素膜は結晶性窒化ホウ素膜であり、この結晶性窒化ホウ素膜は、結晶性窒化ホウ素の特定の結晶面が、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの表面に平行な結晶配向性を有して成長する。   According to the above manufacturing method, the zinc sulfide twin whisker is recrystallized to become a zinc sulfide twin nano whisker having spine-like side branches, and a boron nitride film grows on this surface. This boron nitride film is a crystalline boron nitride film, and this crystalline boron nitride film is a crystal in which a specific crystal plane of crystalline boron nitride is parallel to the surface of a zinc sulfide twinned nanowhisker having thorn-like side branches. Grows with orientation.

次に、実施例に基づいて詳細に説明する。
初めに、B−N−O化合物を次のようにして合成した。
1000cm3 の水に0.4モルのホウ酸を100℃で溶解し、この溶液に0.2モルのメラミンを徐々に添加し、添加終了後、室温に冷却して2日間放置して白色粉末を沈殿させた。白色粉末を乾燥後、さらに脱水するため、空気中で500℃、2時間加熱後、窒素中で800℃、1時間加熱して、化学式B4 3 2 Hで表される黄色の化合物粉末を得た。さらに、この黄色化合物を空気中で600℃、2時間焼成して酸素含有量の高い白色のB−N−O化合物粉末を得た。
Next, it demonstrates in detail based on an Example.
First, a B—N—O compound was synthesized as follows.
Dissolve 0.4 mol of boric acid in 1000 cm 3 of water at 100 ° C., gradually add 0.2 mol of melamine to this solution, cool to room temperature after the addition is complete, and leave it for 2 days. Precipitated. In order to further dehydrate the white powder after drying, it is heated in air at 500 ° C. for 2 hours, then in nitrogen at 800 ° C. for 1 hour, and a yellow compound powder represented by the chemical formula B 4 N 3 O 2 H Got. Further, this yellow compound was calcined in air at 600 ° C. for 2 hours to obtain a white B—N—O compound powder having a high oxygen content.

次に、硫化亜鉛双晶ウィスカーを次のようにして合成した。
アルドリッチ社製の硫化亜鉛粉末(純度99.99%)0.5gをグラファイト製のボートに入れ、このボートを抵抗加熱炉の中に設置した。抵抗加熱炉に窒素ガスを1000cm3 /minの流量で流しながら、1200℃に2時間加熱した。抵抗加熱炉のグラファイト壁の内面に硫化亜鉛双晶ウィスカーである白色粉末が0.3g堆積した。
Next, zinc sulfide twin whiskers were synthesized as follows.
0.5 g of zinc sulfide powder (purity: 99.99%) manufactured by Aldrich was placed in a graphite boat, and this boat was placed in a resistance heating furnace. While flowing nitrogen gas through the resistance heating furnace at a flow rate of 1000 cm 3 / min, heating was performed at 1200 ° C. for 2 hours. 0.3 g of white powder as zinc sulfide twin whiskers was deposited on the inner surface of the graphite wall of the resistance heating furnace.

上記方法で合成したB−N−O化合物粉末2gと硫化亜鉛双晶ウィスカー粉末0.1gを、図1に示したように配置した。なお、窒化ホウ素円板6とグラファイト坩堝8の距離
は15cmである。この反応系に窒素ガスを1500cm3 /minの流量で流し、アンモニアガスを50cm3 /minの流量で流しながら、B−N−O化合物7を1700℃に、硫化亜鉛双晶ナノウィスカーを900℃に加熱し、この状態を1.5時間継続した。その後、室温に冷却した後に、窒化ホウ素円板6上に白色の粉末が0.1g堆積した。
As shown in FIG. 1, 2 g of the B—N—O compound powder synthesized by the above method and 0.1 g of zinc sulfide twinned whisker powder were arranged. The distance between the boron nitride disc 6 and the graphite crucible 8 is 15 cm. Nitrogen gas to the reaction system to flow at a flow rate of 1500 cm 3 / min, while flowing ammonia gas at a flow rate of 50 cm 3 / min, the B-N-O compound 7 to 1700 ° C., 900 ° C. The zinc sulfide twin nanowhisker And this state was continued for 1.5 hours. Thereafter, after cooling to room temperature, 0.1 g of white powder was deposited on the boron nitride disc 6.

図2に、実施例で合成した硫化亜鉛双晶ウィスカーの走査型電子顕微鏡像を示し、挿入図にその高分解能透過型電子顕微鏡像を示す。図2から、合成した硫化亜鉛双晶ナノウィスカーは、太さ1μm程度の棒状であること、及び挿入図から長さ方向に対して約59°の帯角を有する双晶ウィスカーであることが分かる。   FIG. 2 shows a scanning electron microscope image of the zinc sulfide twin crystal whisker synthesized in the example, and an inset shows a high-resolution transmission electron microscope image thereof. FIG. 2 shows that the synthesized zinc sulfide twinned nanowhisker is a rod having a thickness of about 1 μm, and the inset shows a twin whisker having a band angle of about 59 ° with respect to the length direction. .

図3に、実施例で合成した白色粉末、すなわち、合成したとげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの走査型電子顕微鏡像を示す。
この図から、棒状部分の太さが約300nmで、その側面から長さ約500nmのとげ状突起が張り出していることがわかる。
FIG. 3 shows a scanning electron microscope image of the white powder synthesized in Example, that is, a zinc sulfide twin nanowhisker having a synthesized spine-shaped side branch.
From this figure, it can be seen that the bar-shaped portion has a thickness of about 300 nm, and a spine-shaped protrusion having a length of about 500 nm protrudes from the side surface.

図4にとげ状部分の先端近傍の高分解能透過型電子顕微鏡像を示す。
図から、とげ状部分は、〔001〕で示した格子面が面間隔0.626nmで配列した単結晶であることがわかる。また、とげ状部分の表面を覆って面間隔0.334nmの格子面が配列していることがわかる。微少領域電子線解析の結果、及び上記面間隔から、〔001〕で示した格子面は、wurutzite型硫化亜鉛の(001)面であり、また、面間隔0.334nmの格子面は、hexagonal型窒化ホウ素の(002)面であることが確認された。また、図から、とげ状部分の先端のサイズは約5nmであるから、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーは、紫外線発光が可能であることがわかる。
FIG. 4 shows a high-resolution transmission electron microscope image near the tip of the barbed portion.
From the figure, it can be seen that the barbed portion is a single crystal in which lattice planes indicated by [001] are arranged with a plane spacing of 0.626 nm. It can also be seen that lattice planes with a surface spacing of 0.334 nm are arranged so as to cover the surface of the barbed portion. From the results of the microscopic region electron beam analysis and the above-mentioned plane spacing, the lattice plane indicated by [001] is the (001) plane of wurtzite type zinc sulfide, and the lattice plane with a plane spacing of 0.334 nm is a hexagonal type. It was confirmed to be the (002) plane of boron nitride. Moreover, since the size of the tip of the spine-shaped portion is about 5 nm, it can be seen that the zinc sulfide twin nanowhisker having the spine-shaped side branch can emit ultraviolet light.

図5は、とげ状部分の表面を覆う部分のEELS(Electron Energy Loss Spectrometer)による測定結果を示す図であり、挿入図は、とげ状部分のEDX(Energy−Dispersive X−ray Analysis)による測定結果を示す図である。
EELSのスペクトルに、それぞれホウ素と窒素のK端に対応する188eVと401eVのピークが現れていることから、とげ状部分の表面を覆う物質の組成は窒化ホウ素であり、また、EDXのスペクトルから、とげ状部分の組成は硫化亜鉛であることが確認された。
FIG. 5 is a diagram showing a measurement result by EELS (Electron Energy Loss Spectrometer) of a portion covering the surface of the spine-shaped portion, and an inset is a measurement result by EDX (Energy-Dispersive X-ray Analysis) of the spinous portion. FIG.
Since 188 eV and 401 eV peaks corresponding to the K-edges of boron and nitrogen, respectively, appear in the EELS spectrum, the composition of the material covering the surface of the barbed portion is boron nitride, and from the EDX spectrum, It was confirmed that the composition of the barbed portion was zinc sulfide.

図4及び図5から、本発明の窒化ホウ素で被覆された硫化亜鉛ナノ構造物は、とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーと、この表面を被覆する結晶性窒化ホウ素膜とからなり、この結晶性窒化ホウ素膜は、特定の結晶面がとげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの表面と平行な結晶配向性を有して成長しており、硫化亜鉛双晶ナノウィスカーと結晶性窒化ホウ素膜の結合が極めて強固であることがわかる。   4 and 5, the zinc sulfide nanostructure coated with boron nitride according to the present invention comprises a zinc sulfide twinned nanowhisker having a spine-like side branch and a crystalline boron nitride film covering the surface. This crystalline boron nitride film is grown with a crystal orientation parallel to the surface of the zinc sulfide twin nanowhisker having a specific crystal plane having a spine-shaped side branch, It can be seen that the bonding of the crystalline boron nitride film is extremely strong.

本発明によれば、化学的安定性に優れ、紫外線領域で透明であり、かつ、ナノサイズの硫化亜鉛ナノ構造物が得られるので、例えば、この硫化亜鉛ナノ構造物を発光材料とした、紫外線領域の発光ダイオードやレーザーを製造することができる。   According to the present invention, it is excellent in chemical stability, transparent in the ultraviolet region, and nanosized zinc sulfide nanostructures can be obtained. Area light emitting diodes and lasers can be manufactured.

本発明の窒化ホウ素で被覆された硫化亜鉛ナノ構造物を製造する装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus which manufactures the zinc sulfide nanostructure coated with the boron nitride of this invention. 実施例で合成した硫化亜鉛双晶ウィスカーの走査型電子顕微鏡像、及び高分解能透過型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image and high-resolution transmission electron microscope image of the zinc sulfide twin crystal whisker synthesize | combined in the Example. 実施例で合成した窒化ホウ素膜で覆われたとげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの高分解能透過型電子顕微鏡像を示す図である。It is a figure which shows the high resolution transmission electron microscope image of the zinc sulfide twin crystal nanowhisker which has the spine-like side branch covered with the boron nitride film synthesize | combined in the Example. とげ状部分の先端近傍の高分解能透過型電子顕微鏡像を示す図である。It is a figure which shows the high-resolution transmission electron microscope image near the front-end | tip of a spine-shaped part. とげ状部分の表面を覆う部分のEELS(Electron Energy Loss Spectrometer)による測定結果を示す図であり、挿入図は、とげ状部分のEDX(Energy−Dispersive X−ray Analysis)による測定結果を示す図である。It is a figure which shows the measurement result by EELS (Electron Energy Loss Spectrometer) of the part which covers the surface of a spine-like part, and an inset is a figure which shows the measurement result by EDX (Energy-Dispersive X-ray Analysis) of a spine part is there.

符号の説明Explanation of symbols

1 縦型高周波誘導加熱装置
2 炉心管
3 誘導加熱コイル
4 誘導加熱コイル
5 硫化亜鉛双晶ナノウィスカー
6 窒化ホウ素円盤
7 B−N−O化合物粉末
8 坩堝
9 B−N−O化合物蒸気
10 窒素ガス及びアンモニアガスの混合ガス
DESCRIPTION OF SYMBOLS 1 Vertical type high frequency induction heating apparatus 2 Core tube 3 Induction heating coil 4 Induction heating coil 5 Zinc sulfide twin crystal nano whisker 6 Boron nitride disk 7 B—N—O compound powder 8 Crucible 9 B—N—O compound vapor 10 Nitrogen gas And mixed gas of ammonia gas

Claims (3)

とげ状の側枝を有する硫化亜鉛双晶ナノウィスカーが窒化ホウ素膜で被覆されていることを特徴とする、窒化ホウ素膜で被覆された硫化亜鉛ナノ構造物。   A zinc sulfide nanostructure coated with a boron nitride film, characterized in that zinc sulfide twinned nanowhiskers having thorn-like side branches are coated with a boron nitride film. 前記窒化ホウ素膜は結晶性窒化ホウ素膜であり、この結晶性窒化ホウ素膜は、結晶性窒化ホウ素の特定の結晶面がとげ状の側枝を有する硫化亜鉛双晶ナノウィスカーの表面と平行な結晶配向性を有して成長していることを特徴とする、請求項1に記載の窒化ホウ素膜で被覆された硫化亜鉛ナノ構造物。   The boron nitride film is a crystalline boron nitride film, and the crystalline boron nitride film has a crystal orientation parallel to the surface of a zinc sulfide twinned nanowhisker in which a specific crystal plane of the crystalline boron nitride has spine-shaped side branches. The zinc sulfide nanostructure coated with a boron nitride film according to claim 1, wherein the zinc sulfide nanostructure is grown with good properties. 縦型高周波誘導加熱炉の上部と下部にそれぞれ、硫化亜鉛双晶ウィスカーを載せた窒化ホウ素円板とホウ素と窒素と酸素とからなる化合物粉末を入れた坩堝を配置し、窒素ガスとアンモニアガスの混合ガスを流しながら、ホウ素と窒素と酸素とからなる化合物の粉末を1300〜1750℃の温度範囲で加熱してホウ素と窒素と酸素とからなる化合物蒸気を発生させ、硫化亜鉛双晶ウィスカーを850〜950℃の温度範囲で加熱し、1〜3時間の時間範囲でこの状態を維持することによって合成することを特徴とする、窒化ホウ素膜で被覆された硫化亜鉛ナノ構造物の製造方法。   A boron nitride disk with zinc sulfide twin whiskers and a crucible containing compound powder composed of boron, nitrogen, and oxygen are placed at the top and bottom of the vertical induction furnace, respectively. While flowing the mixed gas, the compound powder composed of boron, nitrogen, and oxygen is heated in a temperature range of 1300 to 1750 ° C. to generate a compound vapor composed of boron, nitrogen, and oxygen. A method for producing a zinc sulfide nanostructure coated with a boron nitride film, which is synthesized by heating in a temperature range of ˜950 ° C. and maintaining this state in a time range of 1 to 3 hours.
JP2004056403A 2004-03-01 2004-03-01 Zinc sulfide nanostructure coated with boron nitride film and method for producing the same Expired - Lifetime JP4009729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056403A JP4009729B2 (en) 2004-03-01 2004-03-01 Zinc sulfide nanostructure coated with boron nitride film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056403A JP4009729B2 (en) 2004-03-01 2004-03-01 Zinc sulfide nanostructure coated with boron nitride film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005247597A JP2005247597A (en) 2005-09-15
JP4009729B2 true JP4009729B2 (en) 2007-11-21

Family

ID=35028459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056403A Expired - Lifetime JP4009729B2 (en) 2004-03-01 2004-03-01 Zinc sulfide nanostructure coated with boron nitride film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4009729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299978C (en) * 2002-12-12 2007-02-14 四川大学 Double-action reinforced diammonium phosphate tail washing technology with triphase gas-powder-fog system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610209B (en) * 2019-02-25 2021-03-19 浙江大学 Method for preparing nano twin crystal metal sample with determined twin crystal orientation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299978C (en) * 2002-12-12 2007-02-14 四川大学 Double-action reinforced diammonium phosphate tail washing technology with triphase gas-powder-fog system

Also Published As

Publication number Publication date
JP2005247597A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Kong et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach
Geng et al. Well‐Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates
Rao et al. Carbon-assisted synthesis of inorganic nanowires
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
Shariati The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties
JP4009729B2 (en) Zinc sulfide nanostructure coated with boron nitride film and method for producing the same
An et al. Controllable growth of single crystalline CdS nanotubes by thermal evaporation
KR101348728B1 (en) Method of manufacturing Gallium oxide nanowire comprising noble metal discontinously and Gallium oxide nanowire using the same method
Peng et al. Blue-light emission from amorphous SiOx nanoropes
WO2003000965A1 (en) 3c-sic nanowhisker synthesizing method and 3c-sic nanowhisker
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
Hu et al. Triangular ZnO nanosheets: Synthesis, crystallography and cathodoluminescence
JP4258741B2 (en) Zinc cadmium sulfide nanotubes and method for producing the same
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
Khongwong et al. Influence of raw powder size, reaction temperature, and soaking time on synthesis of SiC/SiO2 coaxial nanowires via thermal evaporation
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
CN109179422A (en) A kind of preparation method of extensive amorphous silicon particle
JP4930952B2 (en) Aluminum nitride nanoribbon
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
Chen et al. Improved physical properties of ZnO nanostructures by In inclusion
JP2005046927A (en) Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350