JP2005046927A - Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium - Google Patents

Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium Download PDF

Info

Publication number
JP2005046927A
JP2005046927A JP2003203818A JP2003203818A JP2005046927A JP 2005046927 A JP2005046927 A JP 2005046927A JP 2003203818 A JP2003203818 A JP 2003203818A JP 2003203818 A JP2003203818 A JP 2003203818A JP 2005046927 A JP2005046927 A JP 2005046927A
Authority
JP
Japan
Prior art keywords
cadmium
zinc sulfide
nanocable
zinc
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203818A
Other languages
Japanese (ja)
Inventor
Yoshio Bando
義雄 板東
Yingchun Zhu
ウィンチェン ズウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003203818A priority Critical patent/JP2005046927A/en
Publication of JP2005046927A publication Critical patent/JP2005046927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a zinc sulfide cadmium nanocable and a zinc sulfide cadmium nanotube containing cadmium anticipated to be applied to a solar battery, cathode ray luminescence, a high density photo-recording material, a laser diode, or the like. <P>SOLUTION: The zinc sulfide cadmium nanocable and the zinc sulfide cadmium nanotube containing cadmium are manufactured by heating graphite powder and graphite fiber while leading nitrogen gas containing water vapor, into them, and heating a mixture of zinc sulfide powder and cadmium sulfide powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、三成分系の半導体材料であるカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブの製造方法に関する。さらに詳しくは、太陽電池、低電圧陰極線ルミネッセンス、高密度光記録材料、青色あるいは紫外線レーザーダイオードなどの分野で広く応用されている硫化亜鉛カドミウム系ナノ構造物の製造方法に関する。
【0002】
【従来の技術】
二次元の硫化亜鉛カドミウムの薄膜は、CVD法、分子線エピタキシー、ゾル−ゲル法、加熱蒸発法などの種々の方法によって製造されている(たとえば、非特許文献1〜4参照。)。また、ゼロ次元の硫化亜鉛ナノ粒子は、高温反応や化学的還元法等により製造されている(たとえば、非特許文献5、6参照。)。
【0003】
【非特許文献1】
「A.M.Salem,アプライド・フィジックスA」(Appl.Phys.A)74巻、205頁、2002年
【非特許文献2】
J.Torres,ほか、「シン・ソリッド・フィルムス」(Thin Solid Films)207巻、231頁、1992年
【非特許文献3】
D.S.Boyle,ほか、「ジャーナル・オブ・マテリアル・ケミストリー」(J.Mater.Chem.)10巻、2439頁、2000年
【非特許文献4】
T.Edamura,ほか、「ジャーナル・オブ・マテリアル・サイエンス・レターズ」(J.Mater.Sci.Lett.)14巻、889頁、1995年
【非特許文献5】
P.J.Sebastian,ほか、「シン・ソリッド・フィルムス」(Thin Solid Films)287巻、130頁、1996年
【非特許文献6】
W.Wang,ほか、「ケミストリー・オブ・マテリアルズ」(Chem.Mater.)14巻、3028頁、2002年
【0004】
【発明が解決しようとする課題】
一次元のナノ構造物は、色々なナノデバイスを作製するのに有用であるため、その研究は年々、活発になってきている。しかし、一次元の硫化亜鉛カドミウムナノ構造物に関しては、まだ知られていない。本発明は、一次元のカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブの製造方法を提供することを解決すべき課題としている。
【0005】
【課題を解決するための手段】
蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流をグラファイト粉末とグラファイト繊維に通じながら、1300〜1700℃に加熱し、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1000〜1300℃に加熱することにより、石英基板にカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブを堆積させる。
【0006】
【発明の実施の形態】
グラファイト粉末とグラファイト繊維を、蒸留水に窒素ガスを吹き込んで生じる窒素ガスと水蒸気の混合気流中で、1300〜1700℃に加熱する。このとき、流量は窒素ガスが、1.5L/minで、水蒸気は0.3L/min程度である。一方、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1000〜1300℃に加熱する。上記の化合物の加熱温度は、上記記載の範囲が好ましい。これ以上の温度に上げても反応速度の著しい向上はない。また、これ以下の温度では、反応が十分に進行しない。反応時間は0.5〜3時間が望ましい。反応性の点からこれ以上の時間は必要ない。30分以下だと、反応が完結しない。
【0007】
上記原料であるグラファイト粉末とグラファイト繊維の重量比は1:1〜2:1程度であり、硫化亜鉛粉末と硫化カドミウム粉末の重量比は1:1〜1:2程度である。硫化カドミウムの重量が硫化亜鉛と同じかあるいは多く用いる理由は硫化カドミウムのほうが硫化亜鉛よりも蒸発速度が早いためである。上記の反応は高周波誘導加熱炉の中で行われるが、生成物は石英管壁に灰色の粉末として堆積する。
【0008】
【実施例】
次に、実施例を示して、さらに詳しく本発明について説明する。
和光純薬(株)製のグラファイト粉末(純度99.99%)1.0gと同社製のグラファイト繊維(純度99.99%)1.0gをグラファイト製のるつぼに入れ、グラファイト製のサセプターに取り付けて、高周波誘導加熱炉中に設置した。一方、シグマ・アルドリッチ社製の硫化亜鉛粉末(純度99.9%)0.5gと同社製の硫化カドミウム(純度99.9%)0.5gの混合物をグラファイト製のるつぼに入れて、上記のグラファイト粉末とグラファイト繊維の入ったるつぼの上方に離して配置した。蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流を1.5L/minの流速で、グラファイト粉末およびグラファイト繊維に通じた。グラファイト粉末とグラファイト繊維を1600℃に、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1200℃に加熱した。この温度で2時間加熱を続けた後、室温に冷却した。生成物として石英管壁に灰色の粉末が堆積した。
【0009】
図1aに、生成物のうちの1本を透過型電子顕微鏡を用いて観察した写真を示した。生成したナノケーブルは長さが数マイクロメートルで、直径が約100ナノメートルで、そのうちのコアの直径は約90ナノメートルで、鞘の厚さは約8ナノメートルであることが確認された。
【0010】
図1bに、ナノケーブルの半径方向の中心部を測定したX線エネルギー拡散スペクトルを示したが、その化学組成はカドミウムからなることが分かった。なお、この図で亜鉛と硫黄のピークが少量見られるが、これは外側の鞘の部分からのピークに由来している。図1bの挿入図には、ナノケーブルの鞘の部分のX線エネルギー拡散スペクトルを示したが、その化学組成は亜鉛、カドミウム、硫黄からなることが分かった。
【0011】
ナノケーブルの高分解能透過型電子顕微鏡像と電子線回折パターンを調べた結果、コアを構成するカドミウムも、鞘を構成する硫化亜鉛カドミウムもいずれも単結晶であり、コアの部分は、格子定数a=0.30nm、c=0.56nmを有する六方晶であった。また、鞘の部分の格子定数はa=0.39nm、c=0.64nmで、同じく六方晶構造であり、その化学組成の原子比は、Zn0.78Cd0.22Sからなっていることが確認された。
【0012】
生成物の一端が開口しているチューブ状物の透過型電子顕微鏡像を調べた結果、直径が約80ナノメートルで、壁の厚さが約8ナノメートルであることが分かった。このナノチューブは、カドミウム内含硫化亜鉛カドミウムナノケーブルからコアの構成成分であるカドミウムが蒸発して形成されたものと考えられる。このナノチューブは電子線回折パターンから六方晶系のZn0.78Cd0.22Sであることが分かった。
【0013】
このカドミウム内含硫化亜鉛カドミウムナノケーブルの陰極線ルミネッセンスを20Kで測定した結果を図2に示した。この結果から、このナノケーブルは約490nmに発光ピークがあることが分かった。
【0014】
【発明の効果】
本発明により、太陽電池、陰極線ルミネッセンス、高密度光記録材料、レーザーダイオードなどへの応用が期待されるカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブの製造が可能となった。
【図面の簡単な説明】
【図1】図1aは、カドミウム内含硫化亜鉛カドミウムナノケーブルの透過型電子顕微鏡像の図面代用写真である。図1bは、カドミウム内含硫化亜鉛カドミウムナノケーブルのコア部のカドミウムのX線エネルギー拡散スペクトルの図である。図1bの挿入図は、カドミウム内含硫化亜鉛カドミウムナノケーブルの鞘の部分の硫化亜鉛カドミウムのX線エネルギー拡散スペクトルの図である。
【図2】カドミウム内含硫化亜鉛カドミウムナノケーブルの陰極線ルミネッセンスを測定した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing cadmium-containing zinc cadmium sulfide nanocables and zinc cadmium sulfide nanotubes, which are ternary semiconductor materials. More specifically, the present invention relates to a method for producing zinc cadmium sulfide nanostructures that are widely applied in the fields of solar cells, low-voltage cathodoluminescence, high-density optical recording materials, blue or ultraviolet laser diodes, and the like.
[0002]
[Prior art]
Two-dimensional zinc cadmium sulfide thin films are manufactured by various methods such as CVD, molecular beam epitaxy, sol-gel method, and heat evaporation method (for example, see Non-Patent Documents 1 to 4). Zero-dimensional zinc sulfide nanoparticles are produced by a high temperature reaction, a chemical reduction method, or the like (for example, see Non-Patent Documents 5 and 6).
[0003]
[Non-Patent Document 1]
"AM Salem, Applied Physics A" (Appl. Phys. A), 74, 205, 2002 [Non-patent Document 2]
J. et al. Torres, et al., “Thin Solid Films” 207, 231 1992 [Non-Patent Document 3]
D. S. Boyle, et al., "Journal of Material Chemistry" (J. Mater. Chem.), 10, 2439, 2000 [Non-Patent Document 4]
T.A. Edamura, et al., “Journal of Material Science Letters” (J. Mater. Sci. Lett.), Vol. 14, p. 889, 1995 [Non-patent Document 5]
P. J. et al. Sebastian, et al., “Thin Solid Films” 287, 130, 1996 [Non-Patent Document 6]
W. Wang, et al., “Chemistry of Materials” (Chem. Mater.), 14, 3028, 2002.
[Problems to be solved by the invention]
Since one-dimensional nanostructures are useful for fabricating various nanodevices, their research has become active year by year. However, one-dimensional zinc cadmium sulfide nanostructures are not yet known. An object of the present invention is to provide a method for producing a one-dimensional cadmium-containing zinc cadmium sulfide nanocable and a zinc cadmium sulfide nanotube.
[0005]
[Means for Solving the Problems]
A nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water is heated to 1300 to 1700 ° C. while passing through the graphite powder and graphite fiber, and the mixture of zinc sulfide powder and cadmium sulfide powder is heated to 1000 to 1300 ° C. By heating, the cadmium-containing zinc cadmium sulfide nanocable and the zinc cadmium sulfide nanotube are deposited on the quartz substrate.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The graphite powder and graphite fiber are heated to 1300-1700 ° C. in a mixed gas stream of nitrogen gas and water vapor generated by blowing nitrogen gas into distilled water. At this time, the flow rate is about 1.5 L / min for nitrogen gas and about 0.3 L / min for water vapor. On the other hand, a mixture of zinc sulfide powder and cadmium sulfide powder is heated to 1000 to 1300 ° C. The heating temperature of the compound is preferably in the range described above. There is no significant improvement in the reaction rate even when the temperature is raised beyond this. In addition, at a temperature below this, the reaction does not proceed sufficiently. The reaction time is preferably 0.5 to 3 hours. No further time is required from the point of reactivity. If it is 30 minutes or less, the reaction is not completed.
[0007]
The weight ratio of the graphite powder and the graphite fiber as the raw material is about 1: 1 to 2: 1, and the weight ratio of the zinc sulfide powder and the cadmium sulfide powder is about 1: 1 to 1: 2. The reason why the weight of cadmium sulfide is the same or larger than that of zinc sulfide is that cadmium sulfide has a higher evaporation rate than zinc sulfide. The above reaction takes place in a high frequency induction furnace, but the product is deposited as a gray powder on the quartz tube wall.
[0008]
【Example】
Next, the present invention will be described in more detail with reference to examples.
Place 1.0 g of graphite powder (purity: 99.99%) manufactured by Wako Pure Chemical Industries, Ltd. and 1.0 g of graphite fiber (purity: 99.99%) manufactured by Wako Pure Chemical Industries, Ltd. into a graphite crucible and attach to a graphite susceptor. And installed in a high-frequency induction heating furnace. On the other hand, a mixture of 0.5 g of zinc sulfide powder (purity 99.9%) manufactured by Sigma Aldrich and 0.5 g of cadmium sulfide (purity 99.9%) manufactured by Sigma Aldrich was put into a graphite crucible, It was placed above the crucible containing graphite powder and graphite fiber. A nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water was passed through graphite powder and graphite fiber at a flow rate of 1.5 L / min. The graphite powder and graphite fiber were heated to 1600 ° C., and the mixture of zinc sulfide powder and cadmium sulfide powder was heated to 1200 ° C. Heating was continued at this temperature for 2 hours and then cooled to room temperature. Gray powder deposited on the quartz tube wall as product.
[0009]
FIG. 1a shows a photograph of one of the products observed using a transmission electron microscope. The resulting nanocable was confirmed to have a length of several micrometers, a diameter of about 100 nanometers, a core diameter of about 90 nanometers, and a sheath thickness of about 8 nanometers.
[0010]
FIG. 1b shows an X-ray energy diffusion spectrum obtained by measuring the radial center portion of the nanocable, and it was found that the chemical composition is composed of cadmium. In this figure, a small amount of zinc and sulfur peaks are observed, which are derived from the peak from the outer sheath. The inset of FIG. 1b shows the X-ray energy diffusion spectrum of the nanocable sheath, which was found to be composed of zinc, cadmium and sulfur.
[0011]
As a result of examining a high-resolution transmission electron microscope image and an electron diffraction pattern of the nanocable, both the cadmium constituting the core and the zinc cadmium sulfide constituting the sheath are single crystals, and the core portion has a lattice constant a = 0.30 nm, c = 0.56 nm. In addition, the lattice constants of the sheath part are a = 0.39 nm and c = 0.64 nm, which is also a hexagonal crystal structure, and the atomic ratio of the chemical composition is confirmed to be composed of Zn0.78Cd0.22S. It was.
[0012]
As a result of examining a transmission electron microscope image of a tube-like product having one end of the product opened, it was found that the diameter was about 80 nanometers and the wall thickness was about 8 nanometers. This nanotube is considered to be formed by evaporating cadmium, which is a constituent component of the core, from the cadmium-containing zinc-sulfide cadmium nanocable. This nanotube was found to be hexagonal Zn0.78Cd0.22S from the electron diffraction pattern.
[0013]
The result of measuring the cathodoluminescence of the cadmium-containing zinc sulfide-cadmium nanocable at 20K is shown in FIG. From this result, it was found that this nanocable has an emission peak at about 490 nm.
[0014]
【The invention's effect】
The present invention makes it possible to produce cadmium-containing zinc cadmium sulfide nanocables and zinc cadmium sulfide nanotubes that are expected to be applied to solar cells, cathodoluminescence, high-density optical recording materials, laser diodes, and the like.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1a is a drawing-substituting photograph of a transmission electron microscope image of a cadmium-containing zinc cadmium sulfide nanocable. FIG. 1 b is a diagram of an X-ray energy diffusion spectrum of cadmium at the core of a cadmium-containing zinc cadmium sulfide nanocable. The inset of FIG. 1b is an X-ray energy diffusion spectrum of zinc cadmium sulfide at the sheath portion of the cadmium-containing zinc cadmium sulfide nanocable.
FIG. 2 is a diagram obtained by measuring cathodoluminescence of a cadmium-containing zinc sulfide cadmium nanocable.

Claims (2)

蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流を通じながら、グラファイト粉末とグラファイト繊維を1300〜1700℃に加熱し、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1000〜1300℃に加熱することを特徴とするカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブの製造方法。While passing a nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water, the graphite powder and the graphite fiber are heated to 1300 to 1700 ° C., and the mixture of the zinc sulfide powder and the cadmium sulfide powder is heated to 1000 to 1300 ° C. A method for producing a cadmium-containing zinc sulfide cadmium nanocable and a zinc cadmium sulfide nanotube, characterized in that: 加熱時間が0.5〜3時間であることを特徴とする請求項1記載のカドミウム内含硫化亜鉛カドミウムナノケーブルおよび硫化亜鉛カドミウムナノチューブの製造方法。2. The method for producing a cadmium-containing zinc cadmium sulfide nanocable and a zinc cadmium sulfide nanotube according to claim 1, wherein the heating time is 0.5 to 3 hours.
JP2003203818A 2003-07-30 2003-07-30 Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium Pending JP2005046927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203818A JP2005046927A (en) 2003-07-30 2003-07-30 Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203818A JP2005046927A (en) 2003-07-30 2003-07-30 Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006200651A Division JP4258741B2 (en) 2006-07-24 2006-07-24 Zinc cadmium sulfide nanotubes and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005046927A true JP2005046927A (en) 2005-02-24

Family

ID=34263037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203818A Pending JP2005046927A (en) 2003-07-30 2003-07-30 Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium

Country Status (1)

Country Link
JP (1) JP2005046927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055836A (en) * 2005-08-23 2007-03-08 National Institute For Materials Science Composite nanowire and its manufacturing method
JP2007145651A (en) * 2005-11-29 2007-06-14 National Institute For Materials Science Hexagonal single crystal nanotube and method for producing the same
CN102502787A (en) * 2011-10-20 2012-06-20 南京大学 Preparation method of multi-morphology Zn-Cd-S semiconductor nano composite material based on one-step controllable synthesis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055836A (en) * 2005-08-23 2007-03-08 National Institute For Materials Science Composite nanowire and its manufacturing method
JP2007145651A (en) * 2005-11-29 2007-06-14 National Institute For Materials Science Hexagonal single crystal nanotube and method for producing the same
CN102502787A (en) * 2011-10-20 2012-06-20 南京大学 Preparation method of multi-morphology Zn-Cd-S semiconductor nano composite material based on one-step controllable synthesis

Similar Documents

Publication Publication Date Title
Wu et al. Low‐temperature growth of well‐aligned ZnO nanorods by chemical vapor deposition
Kong et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach
Xiang et al. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth
Zhang et al. Synthesis of ultrathin 2D nonlayered α‐MnSe nanosheets, MnSe/WS2 heterojunction for high‐performance photodetectors
Chelouche et al. Influence of Ag doping on structural and optical properties of ZnO thin films synthesized by the sol–gel technique
Bin et al. Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays
Khan et al. From Zn microspheres to hollow ZnO microspheres: A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres
JP2009096700A (en) Method for producing zinc oxide fine wire in large quantity
Zhou et al. Synthesis and optical properties of Pb‐doped ZnO nanowires
Dai et al. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires
Fu et al. Preparation and characterization of CdS/Si coaxial nanowires
JP2005046927A (en) Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium
WO2003000965A1 (en) 3c-sic nanowhisker synthesizing method and 3c-sic nanowhisker
JP4258741B2 (en) Zinc cadmium sulfide nanotubes and method for producing the same
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
Saxena et al. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering
Kim et al. Catalyst-free synthesis of ZnO nanorods by thermal oxidation of Zn films at various temperatures and their characterization
Wei et al. Synthesis of β-Ga 2 O 3 nanorods by catalyzed chemical vapor deposition and their characterization
Umar et al. Structural and optical properties of single-crystalline ultraviolet-emitting needle-shaped ZnO nanowires
Zhang et al. Synthesis and optical properties of single crystalline GaN nanorods with a rectangular cross-section
Wei et al. Synthesis, characterization and growth mechanism of β-Ga 2 O 3 nano-and micrometer particles by catalyzed chemical vapor deposition
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4930952B2 (en) Aluminum nitride nanoribbon
JP4009729B2 (en) Zinc sulfide nanostructure coated with boron nitride film and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829