JP4258741B2 - Zinc cadmium sulfide nanotubes and method for producing the same - Google Patents

Zinc cadmium sulfide nanotubes and method for producing the same Download PDF

Info

Publication number
JP4258741B2
JP4258741B2 JP2006200651A JP2006200651A JP4258741B2 JP 4258741 B2 JP4258741 B2 JP 4258741B2 JP 2006200651 A JP2006200651 A JP 2006200651A JP 2006200651 A JP2006200651 A JP 2006200651A JP 4258741 B2 JP4258741 B2 JP 4258741B2
Authority
JP
Japan
Prior art keywords
cadmium
zinc
crucible
sulfide
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006200651A
Other languages
Japanese (ja)
Other versions
JP2006347877A (en
Inventor
義雄 板東
ウィンチェン ズウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006200651A priority Critical patent/JP4258741B2/en
Publication of JP2006347877A publication Critical patent/JP2006347877A/en
Application granted granted Critical
Publication of JP4258741B2 publication Critical patent/JP4258741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、三成分系の半導体材料であるカドミウム内含硫化亜鉛カドミウムナノチューブおよび硫化亜鉛カドミウムナノチューブとその製造方法に関する。さらに詳しくは、太陽電池、低電圧陰極線ルミネッセンス、高密度光記録材料、青色あるいは紫外線レーザーダイオードなどの分野で広く応用されている硫化亜鉛カドミウム系ナノ構造物とその製造方法に関する。
The present invention, ternary cadmium entailment zinc sulfide cadmium nanotubes and zinc sulfide cadmium nanotube is a semiconductor material and a method for manufacturing the same. More specifically, the present invention relates to a zinc cadmium sulfide-based nanostructure widely applied in the fields of solar cells, low voltage cathodoluminescence, high density optical recording materials, blue or ultraviolet laser diodes, and the production method thereof.

従来の技術Conventional technology

二次元の硫化亜鉛カドミウムの薄膜は、CVD法、分子線エピタキシー、ゾル−ゲル法、加熱蒸発法などの種々の方法によって製造されている(たとえば、非特許文献1〜4参照。)。また、ゼロ次元の硫化亜鉛ナノ粒子は、高温反応や化学的還元法等により製造されている(たとえば、非特許文献5、6参照。)。
「A.M.Salem,アプライド・フィジックスA」(Appl.Phys.A)74巻、205頁、2002年 J.Torres,ほか、「シン・ソリッド・フィルムス」(Thin Solid Films)207巻、231頁、1992年 D.S.Boyle,ほか、「ジャーナル・オブ・マテリアル・ケミストリー」(J.Mater.Chem.)10巻、2439頁、2000年 T.Edamura,ほか、「ジャーナル・オブ・マテリアル・サイエンス・レターズ」(J.Mater.Sci.Lett.)14巻、889頁、1995年 P.J.Sebastian,ほか、「シン・ソリッド・フィルムス」(Thin Solid Films)287巻、130頁、1996年 W.Wang,ほか、「ケミストリー・オブ・マテリアルズ」(Chem.Mater.)14巻、3028頁、2002年
Two-dimensional zinc cadmium sulfide thin films are manufactured by various methods such as CVD, molecular beam epitaxy, sol-gel method, and heat evaporation method (for example, see Non-Patent Documents 1 to 4). Zero-dimensional zinc sulfide nanoparticles are produced by a high temperature reaction, a chemical reduction method, or the like (for example, see Non-Patent Documents 5 and 6).
“AM Salem, Applied Physics A” (Appl. Phys. A), 74, 205, 2002 J. et al. Torres, et al., “Thin Solid Films” 207, 231 1992 D. S. Boyle, et al., “Journal of Material Chemistry” (J. Mater. Chem.), 10, 2439, 2000 T.A. Edamura, et al., "Journal of Material Science Letters" (J. Mater. Sci. Lett.), 14: 889, 1995 P. J. et al. Sebastian, et al., “Thin Solid Films” 287, 130, 1996 W. Wang, et al., “Chemistry of Materials” (Chem. Mater.), 14, 3028, 2002.

一次元のナノ構造物は、色々なナノデバイスを作製するのに有用であるため、その研究は年々、活発になってきている。しかし、一次元の硫化亜鉛カドミウムナノ構造物に関しては、まだ知られていない。本発明は、一次元のカドミウム内含硫化亜鉛カドミウムナノチューブおよび硫化亜鉛カドミウムナノチューブ並びにその製造方法を提供することを解決すべき課題としている。
Since one-dimensional nanostructures are useful for fabricating various nanodevices, their research has become active year by year. However, one-dimensional zinc cadmium sulfide nanostructures are not yet known. The present invention has an object to be achieved by providing a method for producing a one-dimensional cadmium entailment zinc sulfide cadmium nanotubes and zinc sulfide cadmium nanotubes Narabiniso.

発明1の硫化亜鉛カドミウムナノチューブは、チューブ状に形成された六方晶構造の、化学組成が亜鉛、カドミウム、硫黄からなる単結晶硫化亜鉛カドミウムからなることを特徴とする構成を有する。
発明2の硫化亜鉛カドミウムナノチューブは、その内部にコアを構成する六方晶構造の単結晶カドミウムを内包してなることを特徴とする構成を有する。
発明3は、前記発明1又は2の硫化亜鉛カドミウムナノチューブの製造方法であって、グラファイト粉末とグラファイト繊維を第一るつぼに入れ、硫化亜鉛粉末と硫化カドミウム粉末の混合物を前記第一るつぼとは別の第二るつぼに入れ、前記第一るつぼの上方に第二るつぼが位置するように高周波誘導加熱炉中に配置し、蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流を通じながら、前記第一るつぼを1300〜1700℃に、前記第二るつぼを1000〜1300℃に加熱することを特徴とする構成を採用した。
発明4の硫化亜鉛カドミウムナノチューブの製造方法は、前記発明3において、加熱時間が0.5〜3時間であることを特徴とする構成を採用した。
The zinc cadmium sulfide nanotube of the invention 1 has a structure characterized in that it has a hexagonal crystal structure formed in a tube shape and is composed of single crystal zinc cadmium sulfide composed of zinc, cadmium, and sulfur.
Zinc sulfide cadmium nanotubes invention 2 has a structure characterized by comprising the enclosing single crystals of cadmium hexagonal structure constituting the core to the inside of it.
Invention 3 is the method for producing zinc cadmium sulfide nanotubes of Invention 1 or 2, wherein graphite powder and graphite fiber are placed in a first crucible, and a mixture of zinc sulfide powder and cadmium sulfide powder is separated from the first crucible. And placed in a high frequency induction heating furnace so that the second crucible is located above the first crucible, while passing a nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water The first crucible was heated to 1300 to 1700 ° C, and the second crucible was heated to 1000 to 1300 ° C.
The method for producing zinc cadmium sulfide nanotubes of the invention 4 employs a configuration characterized in that, in the invention 3, the heating time is 0.5 to 3 hours.

本発明により、太陽電池、陰極線ルミネッセンス、高密度光記録材料、レーザーダイオードなどへの応用が期待されるカドミウム内含硫化亜鉛カドミウムナノチューブおよび硫化亜鉛カドミウムナノチューブを提供することができ、またその製造が可能となった。
The present invention, a solar cell, cathode ray luminescence, high-density optical recording materials, application to a laser diode can provide the cadmium entailment zinc sulfide cadmium nanotubes and zinc sulfide cadmium nanotubes are expected, also its manufacturing It has become possible.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

グラファイト粉末とグラファイト繊維を、蒸留水に窒素ガスを吹き込んで生じる窒素ガスと水蒸気の混合気流中で、1300〜1700℃に加熱する。このとき、流量は窒素ガスが、1.5L/minで、水蒸気は0.3L/min程度である。一方、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1000〜1300℃に加熱する。上記の化合物の加熱温度は、上記記載の範囲が好ましい。これ以上の温度に上げても反応速度の著しい向上はない。また、これ以下の温度では、反応が十分に進行しない。反応時間は0.5〜3時間が望ましい。反応性の点からこれ以上の時間は必要ない。30分以下だと、反応が完結しない。 The graphite powder and graphite fiber are heated to 1300-1700 ° C. in a mixed gas stream of nitrogen gas and water vapor generated by blowing nitrogen gas into distilled water. At this time, the flow rate is about 1.5 L / min for nitrogen gas and about 0.3 L / min for water vapor. On the other hand, a mixture of zinc sulfide powder and cadmium sulfide powder is heated to 1000 to 1300 ° C. The heating temperature of the compound is preferably in the range described above. There is no significant improvement in the reaction rate even when the temperature is raised beyond this. In addition, at a temperature below this, the reaction does not proceed sufficiently. The reaction time is preferably 0.5 to 3 hours. No further time is required from the point of reactivity. If it is 30 minutes or less, the reaction is not completed.

上記原料であるグラファイト粉末とグラファイト繊維の重量比は1:1〜2:1程度であり、硫化亜鉛粉末と硫化カドミウム粉末の重量比は1:1〜1:2程度である。硫化カドミウムの重量が硫化亜鉛と同じかあるいは多く用いる理由は硫化カドミウムのほうが硫化亜鉛よりも蒸発速度が早いためである。上記の反応は高周波誘導加熱炉の中で行われるが、生成物は石英管壁に灰色の粉末として堆積する。 The weight ratio of the graphite powder and the graphite fiber as the raw material is about 1: 1 to 2: 1, and the weight ratio of the zinc sulfide powder and the cadmium sulfide powder is about 1: 1 to 1: 2. The reason why the weight of cadmium sulfide is the same or larger than that of zinc sulfide is that cadmium sulfide has a higher evaporation rate than zinc sulfide. The above reaction takes place in a high frequency induction furnace, but the product is deposited as a gray powder on the quartz tube wall.

次に、実施例を示して、さらに詳しく本発明について説明する。
和光純薬(株)製のグラファイト粉末(純度99.99%)1.0gと同社製のグラファイト繊維(純度99.99%)1.0gをグラファイト製のるつぼに入れ、グラファイト製のサセプターに取り付けて、高周波誘導加熱炉中に設置した。
一方、シグマ・アルドリッチ社製の硫化亜鉛粉末(純度99.9%)0.5gと同社製の硫化カドミウム(純度99.9%)0.5gの混合物をグラファイト製のるつぼに入れて、上記のグラファイト粉末とグラファイト繊維の入ったるつぼの上方に離して配置した。
蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流を1.5L/minの流速で、グラファイト粉末およびグラファイト繊維に通じた。
グラファイト粉末とグラファイト繊維を1600℃に、硫化亜鉛粉末と硫化カドミウム粉末の混合物を1200℃に加熱した。この温度で2時間加熱を続けた後、室温に冷却した。生成物として石英管壁に灰色の粉末が堆積した。
Next, the present invention will be described in more detail with reference to examples.
Place 1.0 g of graphite powder (purity: 99.99%) manufactured by Wako Pure Chemical Industries, Ltd. and 1.0 g of graphite fiber (purity: 99.99%) manufactured by Wako Pure Chemical Industries, Ltd. into a graphite crucible and attach to a graphite susceptor. And installed in a high-frequency induction heating furnace.
On the other hand, a mixture of 0.5 g of zinc sulfide powder (purity 99.9%) manufactured by Sigma Aldrich and 0.5 g of cadmium sulfide (purity 99.9%) manufactured by Sigma Aldrich was put into a graphite crucible, It was placed above the crucible containing graphite powder and graphite fiber.
A nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water was passed through graphite powder and graphite fiber at a flow rate of 1.5 L / min.
The graphite powder and graphite fiber were heated to 1600 ° C., and the mixture of zinc sulfide powder and cadmium sulfide powder was heated to 1200 ° C. Heating was continued at this temperature for 2 hours and then cooled to room temperature. Gray powder deposited on the quartz tube wall as product.

図1aに、生成物のうちの1本を透過型電子顕微鏡を用いて観察した写真を示した。生成した充填物が内含されたナノチューブは長さが数マイクロメートルで、直径が約100ナノメートルで、そのうちのコアの直径は約90ナノメートルで、鞘の厚さは約8ナノメートルであることが確認された。
FIG. 1a shows a photograph of one of the products observed using a transmission electron microscope. In the generated nano-tube filling is entailed in several micrometers long, with about 100 nanometers in diameter, with core diameter of about 90 nm of which the thickness of the sheath is about 8 nanometers It was confirmed that there was.

図1bに、充填物が内含されたナノチューブの半径方向の中心部を測定したX線エネルギー拡散スペクトルを示したが、その化学組成はカドミウムからなることが分かった。なお、この図で亜鉛と硫黄のピークが少量見られるが、これは外側の鞘の部分からのピークに由来している。図1bの挿入図には、カドミウムが内含されたナノチューブの鞘の部分のX線エネルギー拡散スペクトルを示したが、その化学組成は亜鉛、カドミウム、硫黄からなることが分かった。
In 1b, the showed X-ray energy dispersion spectrum the center in the radial direction was measured in nano-tube filling is entailment, its chemical composition was found to consist of cadmium. In this figure, a small amount of zinc and sulfur peaks are observed, which are derived from the peak from the outer sheath. The inset of 1b, the showed X-ray energy dispersion spectrum of the sheath portion of the nanotube cadmium is entailment, its chemical composition was found to be zinc, cadmium, sulfur.

カドミウムが内含された硫化亜鉛カドミウムナノチューブの高分解能透過型電子顕微鏡像と電子線回折パターンを調べた結果、コアを構成するカドミウムも、鞘を構成する硫化亜鉛カドミウムもいずれも単結晶であり、コアの部分は、格子定数a=0.30nm、c=0.56nmを有する六方晶であった。また、鞘の部分の格子定数はa=0.39nm、c=0.64nmで、同じく六方晶構造であり、その化学組成の原子比は、Zn 0.78 Cd 0.22 Sからなっていることが確認された。
Results cadmium was examined high resolution transmission electron microscope image and an electron diffraction pattern of the entailment zinc sulfide cadmium nanotubes, cadmium constituting the cores, is also both zinc sulfide cadmium constituting the sheath single crystal, The core part was hexagonal with lattice constants a = 0.30 nm and c = 0.56 nm. In addition, the lattice constants of the sheath part were a = 0.39 nm and c = 0.64 nm, which was also a hexagonal structure, and the atomic ratio of the chemical composition was confirmed to be Zn 0.78 Cd 0.22 S.

生成物の一端が開口しているチューブ状物の透過型電子顕微鏡像を調べた結果、直径が約80ナノメートルで、壁の厚さが約8ナノメートルであることが分かった。このナノチューブは、カドミウム内含硫化亜鉛カドミウムナノチューブからコアの構成成分であるカドミウムが蒸発して形成されたものと考えられる。このナノチューブは電子線回折パターンから六方晶系のZn 0.78 Cd 0.22 Sであることが分かった。
As a result of examining a transmission electron microscope image of a tube-like product having an open end of the product, it was found that the diameter was about 80 nanometers and the wall thickness was about 8 nanometers. The nanotubes, cadmium is a component of the core cadmium entailment zinc sulfide cadmium nanotubes is believed to have been formed by evaporation. This nanotube was found to be hexagonal Zn 0.78 Cd 0.22 S from the electron diffraction pattern.

このカドミウム内含硫化亜鉛カドミウムナノチューブの陰極線ルミネッセンスを20Kで測定した結果を図2に示した。この結果から、このナノチューブは約490nmに発光ピークがあることが分かった。
The results of measurement at 20K cathode lines luminescence of cadmium entailment zinc sulfide cadmium nanotube shown in FIG. From the results, the nanotubes were found to be emission peak at about 490 nm.

図1aは、カドミウム内含硫化亜鉛カドミウムナノチューブの透過型電子顕微鏡像の図面代用写真である。図1bは、カドミウム内含硫化亜鉛カドミウムナノチューブのコア部のカドミウムのX線エネルギー拡散スペクトルの図である。図1bの挿入図は、カドミウム内含硫化亜鉛カドミウムナノチューブの鞘の部分の硫化亜鉛カドミウムのX線エネルギー拡散スペクトルの図である。Figure 1a is a photograph substituted for drawing of the transmission electron microscope image of cadmium entailment zinc sulfide cadmium nanotubes. Figure 1b is a diagram of X-ray energy dispersion spectrum of cadmium core portion cadmium entailment zinc sulfide cadmium nanotubes. Inset of Figure 1b is a diagram of X-ray energy dispersion spectrum of zinc sulfide cadmium sheath portion of cadmium entailment zinc sulfide cadmium nanotubes. カドミウム内含硫化亜鉛カドミウムナノチューブの陰極線ルミネッセンスを測定した図である。It is a diagram of measurement of the cathode ray luminescence cadmium entailment zinc sulfide cadmium nanotubes.

Claims (4)

チューブ状に形成された六方晶構造の、化学組成が亜鉛、カドミウム、硫黄からなる単結晶硫化亜鉛カドミウムからなることを特徴とする硫化亜鉛カドミウムナノチューブ。   A zinc cadmium sulfide nanotube characterized by comprising a single crystal zinc cadmium sulfide having a hexagonal structure formed in a tube shape and having a chemical composition of zinc, cadmium and sulfur. 請求項1に記載の硫化亜鉛カドミウムナノチューブにおいて、その内部にコアを構成する六方晶構造の単結晶カドミウムを内包してなることを特徴とする硫化亜鉛カドミウムナノチューブ。 In zinc sulfide cadmium nanotube according to claim 1, zinc sulfide cadmium nano tube characterized by being obtained by encapsulating a single crystal cadmium hexagonal structure constituting the core therein. グラファイト粉末とグラファイト繊維を第一るつぼに入れ、硫化亜鉛粉末と硫化カドミウム粉末の混合物を前記第一るつぼとは別の第二るつぼに入れ、前記第一るつぼの上方に第二るつぼが位置するように高周波誘導加熱炉中に配置し、蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガス気流を通じながら、前記第一るつぼを1300〜1700℃に、前記第二るつぼを1000〜1300℃に加熱することを特徴とする請求項1又は2に記載の硫化亜鉛カドミウムナノチューブの製造方法。 Graphite powder and graphite fiber are put in a first crucible, and a mixture of zinc sulfide powder and cadmium sulfide powder is put in a second crucible different from the first crucible so that the second crucible is located above the first crucible. The first crucible is set to 1300 to 1700 ° C and the second crucible is set to 1000 to 1300 ° C while passing through a nitrogen gas stream containing water vapor generated by blowing nitrogen gas into distilled water. method for producing a zinc sulfide cadmium nano tube according to claim 1 or 2, characterized in that heating to. 加熱時間が0.5〜3時間であることを特徴とする請求項3に記載の硫化亜鉛カドミウムナノチューブの製造方法。 Method for producing a zinc sulfide cadmium nano tube according to claim 3, wherein the heating time is 0.5 to 3 hours.
JP2006200651A 2006-07-24 2006-07-24 Zinc cadmium sulfide nanotubes and method for producing the same Expired - Fee Related JP4258741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200651A JP4258741B2 (en) 2006-07-24 2006-07-24 Zinc cadmium sulfide nanotubes and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200651A JP4258741B2 (en) 2006-07-24 2006-07-24 Zinc cadmium sulfide nanotubes and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003203818A Division JP2005046927A (en) 2003-07-30 2003-07-30 Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium

Publications (2)

Publication Number Publication Date
JP2006347877A JP2006347877A (en) 2006-12-28
JP4258741B2 true JP4258741B2 (en) 2009-04-30

Family

ID=37644087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200651A Expired - Fee Related JP4258741B2 (en) 2006-07-24 2006-07-24 Zinc cadmium sulfide nanotubes and method for producing the same

Country Status (1)

Country Link
JP (1) JP4258741B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007658B (en) * 2020-08-07 2023-02-03 西安工程大学 Preparation method of cadmium zinc sulfide-titanic acid nanotube composite photocatalyst

Also Published As

Publication number Publication date
JP2006347877A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
Kong et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach
Li et al. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation
Zou et al. Noninjection synthesis of CdS and alloyed CdS x Se 1− x nanocrystals without nucleation initiators
Jana et al. Negative Thermal Quenching and Size‐Dependent Optical Characteristics of Highly Luminescent Phosphorene Nanocrystals
Bin et al. Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays
Khan et al. From Zn microspheres to hollow ZnO microspheres: A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres
Soomro et al. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable‐Flexible Paper Substrates by Low‐Temperature Chemical Method
Li-Hong et al. Synthesis and photoluminescence property of boron carbide nanowires
JP4258741B2 (en) Zinc cadmium sulfide nanotubes and method for producing the same
Bompilwar et al. Thermal stability of CdS/ZnS nanoparticles embedded conducting polyaniline nanocomposites
Zhou et al. Synthesis and optical properties of Pb‐doped ZnO nanowires
Fu et al. Preparation and characterization of CdS/Si coaxial nanowires
Dai et al. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires
Kharkwal et al. Novel synthesis of selective phase-shape orientation of AgInS 2 nanoparticles at low temperature
Shen et al. One-step construction of ZnS/C and CdS/C one-dimensional core–shell nanostructures
Aydin et al. Colloidal synthesis and characterization of CdSe quantum dots: role of Cd: Se molar ratio and temperature
JP2005046927A (en) Manufacturing method for zinc sulfide cadmium nanocable and zinc sulfide cadmium nanotube containing cadmium
Zou et al. Single step synthesis of CdSeS nanorods with chemical composition gradients
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
Cai et al. A facile single-source route to CdS nanorods
Wei et al. Synthesis, characterization and growth mechanism of β-Ga 2 O 3 nano-and micrometer particles by catalyzed chemical vapor deposition
Guo et al. Effects of Mg-contents and substrate parameters on structure and optical properties of Mg-doped ZnO nanorods fabricated by hydrothermal method
JP4009729B2 (en) Zinc sulfide nanostructure coated with boron nitride film and method for producing the same
Vatankhah et al. Quantum dots growing of Mn/ZnO nanowires and optimizing the optical properties
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees