JP4004318B2 - Method and agent for removing organic coating - Google Patents

Method and agent for removing organic coating Download PDF

Info

Publication number
JP4004318B2
JP4004318B2 JP2002083001A JP2002083001A JP4004318B2 JP 4004318 B2 JP4004318 B2 JP 4004318B2 JP 2002083001 A JP2002083001 A JP 2002083001A JP 2002083001 A JP2002083001 A JP 2002083001A JP 4004318 B2 JP4004318 B2 JP 4004318B2
Authority
JP
Japan
Prior art keywords
ozone
organic film
component
organic
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002083001A
Other languages
Japanese (ja)
Other versions
JP2003282518A (en
Inventor
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2002083001A priority Critical patent/JP4004318B2/en
Publication of JP2003282518A publication Critical patent/JP2003282518A/en
Application granted granted Critical
Publication of JP4004318B2 publication Critical patent/JP4004318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子デバイス用基板等の表面清浄化のため、基体上に付着する有機物被膜の除去方法に関するものである。具体的には、特に半導体用ウェハーまたは液晶用基板などの加工に際して使用するフォトレジスト被膜の除去や、それら基体上の有機汚染被膜の除去に関するものである。さらに、本発明は、基体上の油膜や塗膜等の一般的な有機被膜の除去に適用できるものである。
【0002】
【従来の技術】
酸化膜やポリシリコン膜の微細加工用に使用したフォトレジストの除去には、通常硫酸(3容または4容):過酸化水素(1容)の混合液(ピラニアと呼ばれている)で11O〜140℃に加熱して1O〜20分浸漬する方法が広く使われている。ピラニア処理ではレジストが分解するので同一液で繰返し処理できるが、過酸化水素が迅速に分解して水となり、また濃硫酸は吸湿性が強いことから、液の水分が徐々に増加して、希釈されるため、剥離能力が低下し十数回程度しか繰返し使用ができない。希釈された廃液を蒸留して高濃度化しリサイクルする装置も登場しているが経済性に問題があり、硫酸は半導体工業で最も使用量の多い薬品となっている。更に、高温処理に供するため酸性ガスの排出も多く、排気排水ともに環境へ及ぼす影響が大きい。
【0003】
配線金属膜加工の場合のレジスト除去には、n-メチルピロリドン(NMP)やジメチルスルホキシド(DMSO)あるいはアミン類のような有機溶剤による加熱処理がなされている。これらの薬品はレジストを単に溶解するだけで分解しないので、同じ液を繰り返し使うと溶解分の濃度が急速に増え、5〜6回程度しか使用できない。また、これらの薬品が水を含むと金属膜にダメージを与える危険を生じるので、純水リンスの前にイソプロピルアルコールのような溶剤による置換が必要になる。従って有機溶剤の所要量は更に増える。従って排気排水の対策が厄介なばかりでなく、有機溶剤は一般に高価なので経済性にも問題がある。
【0004】
そこで、最近高濃度のオゾンを含むガス(以下、オゾンガスという)と水を用いた環境にやさしいレジスト除去が試みられている。しかし、このようなオゾン水処理では、LSI製造で広く使われているI線用ノボラック樹脂系ポジ型レジスト膜の場合、剥離速度が1μm/分程度で剥離能力に余裕がなく、適用が限定される。
オゾン水処理の剥離速度の遅さを抜本的に解決するため、本発明者は、オゾンを溶解する能力の高い有機溶剤、例えば酢酸を用い、オゾンの強い有機物分解力と溶剤がもつレジスト溶解能力とが相乗的に作用するオゾン有機溶剤レジスト除去法を既に提供した(特開2001−340817)。I線用ノボラック樹脂系レジストに対し、オゾンを 300 ppm程度溶解したオゾン酢酸はオゾン水の最高剥離速度の数倍、即ち、5〜6μm/分での除去が可能となる。
【0005】
酢酸のようにオゾンと反応し難い溶剤は、オゾン処理により溶剤に溶解したレジスト成分のみが分解され、溶剤は影響を受けない。従って、このような溶剤をレジスト除去剤とすると繰返し使用ができ、即ち寿命が長く、経済性でも節資源の点でも、また環境負荷の点でも望ましい。
しかし、オゾンをよく溶かすがオゾンと反応せず、レジストのような高分子をよく溶かす有機溶剤は限られており、環境や毒性に関して問題が少なく実用性があるのは酢酸、プロピオン酸、酪酸のような分子量の小さいカルボン酸だけである。一方、前記カルボン酸が特に優れた溶解能を示す有機高分子材料の範囲は広いものではない。例えば、氷酢酸は、ノボラック樹脂や環化ポリイソプレン等のレジスト材料を溶解するうえで好適であるが、他のプラスチック膜では酢酸ビニール樹脂やセルロースエステル等に適用できるのみで、狭い範囲に限られる。レジストでもLSIの超微細化に伴い新たな材料が登場しており、オゾン酢酸処理では剥離速度が低下する場合もありうる。また、微細加工がリアクティブイオンエッチングでなされて表面が硬化変質したレジストに対しては、単なるオゾン酢酸液の接触だけではその除去が難しい。
【0006】
しかも、有機被膜の下地が微細に加工されており、極めて狭い凹部の中に生じた有機被膜を除去しようとする場合、あるいは下地が酢酸等の低分子量カルボン酸で損傷しやすい材料の場合には、低分子量カルボン酸にオゾンを高濃度で添加した処理液では、液の濡れ性の不足あるいは剥離速度の不足により、満足な除去効果が得られないことも起こりうるという問題がある。
【0007】
【発明が解決しようとする課題】
そこで、本発明の課題は、特に、オゾンガスを溶解させた処理液の除去対象となる有機被膜の範囲の拡大を図る点にあり、また、レジスト膜についてはオゾン添加カルボン酸を用いる場合よりも剥離速度や濡れ性を向上させる方法、更に、レジストのみならず、塗膜、油膜等に対してもレジストの場合と同様の有効な除去方法、および処理液の再生方法の提供、並びに、有機被膜除去剤の提供を目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明は、第一に、
表面にオゾン分解性有機被膜を有する基体に、オゾンガスを溶解させた処理液を接触させて前記有機被膜を除去する方法において、前記処理液が、(a)前記有機被膜を溶解することができ、かつ、オゾンによって分解され難い有機物質と、(b)気体中のオゾンとの分配係数が室温で 0.6以上であり、かつ、オゾンによって分解され難い1種または複数種混合の有機溶剤との溶液(ただし、前記有機物質および/または前記有機溶剤の少なくとも1種は水混和性である)にオゾンを溶解させてなるものであることを特徴とする有機被膜の除去方法を提供する。
【0009】
また、本発明は、第二に、
表面にオゾン分解性有機被膜を有する基体に接触させて前記有機被膜を除去するために、オゾンガスを溶解させて用いられる有機被膜除去剤であって、(a)前記有機被膜を溶解することができ、かつ、オゾンによって分解され難い有機物質、および(b)気体中のオゾンとの分配係数が室温で 0.6以上であり、かつ、オゾンによって分解され難い1種または複数種混合の有機溶剤を含むこと(ただし、前記有機物質および/または前記有機溶剤の少なくとも1種は水混和性である)を特徴とする有機被膜除去剤(以下、「除去剤」と略す)を提供する。
【0010】
【発明の実施の形態】
以下、本発明について詳述する。
[概要]
本発明は、基体表面のオゾン分解性有機被膜を除去する際に用いられる処理液の組成に特徴を有するものである。即ち、上記(a)成分であるオゾン分解性有機被膜を溶解することができ、かつ、オゾンによって分解され難い有機物質と、上記(b)成分である気体中のオゾンとの分配係数が室温で 0.6以上であり、かつ、オゾンによって分解され難い有機溶剤とを混合した溶液(即ち、除去剤)にオゾンを溶解させたものである本発明の処理液は、下記の特性を有し、該処理液の採用により、各種有機被膜の除去能力を著しく向上させると同時に、上記(a)成分の特有の性能も活用することができる。
1.本処理液が各種のオゾン分解性有機被膜に対して優れた溶解力を持つことから、対象となる有機被膜の範囲が広いこと。
2.本処理液に溶解させたオゾンが前記有機被膜をよく分解すること。この分解により生じた分解反応生成物は低分子量のもので、(1)本処理液によく溶解し、(2)基体を汚染することなく、(3)後続させる処理(オゾンガスによる再生処理)で除去性能に支障を与えないものであること。
3.本除去剤に溶解したオゾンが高濃度になっても除去剤自体がオゾンと反応しにくく、オゾンにより分解され難いこと。
4.オゾンによる分解力を高めるために、本除去剤に高濃度にオゾンを溶解させることができること。
特に、上記1.の点は、すでに本発明者が提供した酢酸等の低分子量カルボン酸にオゾンを溶解させて行うレジスト等の除去法によっては、不十分なものであった。
【0011】
[(a)成分]
本発明で用いる(a)成分であるオゾン分解性有機被膜を溶解することができ、かつ、オゾンによって分解され難い有機物質としては、例えば、エステル化合物の一部;第三アルコール;式:Cn2n+1COOH(式中、n=1〜3の整数)で表される脂肪酸;式:Cm2m+2(式中、m=10〜12の整数)で表されるパラフィン系飽和炭化水素を挙げることができる。
【0012】
上記エステル化合物としては、炭酸エチレン、炭酸プロピレンなどの炭酸アルキレンや酢酸ブチル等の酢酸エステルが挙げられる。特に、炭酸エチレンおよび炭酸プロピレンは、各種高分子化合物の溶解能が大きいので、好ましい。殆ど全てのアルコールはオゾンと反応しやすいが、第三アルコールのtert-ブチルアルコールだけが反応がおそいので、本発明で用いることができる。上記脂肪酸としては、酢酸、プロピオン酸、酪酸等が挙げられる。当該脂肪酸は、後記(b)成分として用いることもできる。上記パラフィン系飽和炭化水素としては、デカン、ドデカン等が挙げられ、これらは、特に油膜に対する溶解能が大きいが、引火性の点で問題があるので、後述のHFEとの組合せで使用する。
【0013】
[(b)成分]
本発明で用いる(b)成分である気体中のオゾンとの分配係数が室温で 0.6以上であり、かつ、オゾンによって分解され難い有機溶剤について、説明する。
気体中のオゾンとの分配係数Dは、オゾン濃度C[mg/L]のオゾンガスを飽和させた液のオゾン濃度がC[mg/L]であったときのC/Cの比を示すものである。該D値が高いほどオゾンをよく溶解する溶剤であることを意味し、本発明では、室温における該D値が 0.6以上、好ましくは 1.3以上のものを用いる。
【0014】
該(b)成分としては、例えば、式:Cn2n+1COOH(式中、n=1〜3の整数)で表される脂肪酸;C49OCHおよびC49OC25から成る群から選ばれる少なくとも1種のハイドロフルオロエーテル(以下、「HFE」ということがある)等が挙げられ、これらは1種単独でも2種以上混合しても使用することができる。
【0015】
上記脂肪酸としては、(a)成分について例示したと同様のものが挙げられる。例えば、25℃における酢酸(純度:97%)のD値は 1.7、プロピオン酸のD値は 1.8、および酪酸のD値は 1.5である。また、20%程度の水を混和すると、必要なオゾン溶解力を維持しつつ、消防法における危険物に該当しなくなるので、安全面に重点をおいた有機被膜除去も可能となる。なお、酢酸に水を混和した場合、D値は 80重量%酢酸で約 0.8、70重量%酢酸で約 0.6である。
【0016】
上記ハイドロフルオロエーテルとして用いられるC49OCH3(25℃のD値=1.6以上、沸点61℃、商品名:HFE−7100、3M社製)とC49OC25(25℃のD値=1.6以上、沸点76℃、商品名:HFE−7200、3M社製)の2者では、後者の方が、他の溶剤との混合溶剤とする場合に、混合できる他の溶剤の範囲が広い。例えば、ドデカンはHFE−7200だけが混合可能である。なお、ハイドロフルオロエーテルは、オゾン層破壊係数が0であり、大気寿命も短く、塩素系およびフレオン系溶剤のような環境問題がないので本発明における使用に適している。
【0017】
[除去剤の組成]
本発明の除去剤は、上記(a)成分と(b)成分との混合溶液である。その組合せについては、上記(a)成分として用いるものと、上記(b)成分として用いるものとが同一ではなく、かつ、上記(a)成分および/または上記(b)成分の少なくとも1種が水混和性のものであればよく、他に特段の制限はない。
上記(a)成分と(b)成分との組成割合は、各成分の種類によって異なり、一概に定められないが、少なくとも(b)成分を(a)成分よりも(重量割合で)多く用いる。即ち、(a)成分/(b)成分(重量比)は、0.1/99.9 以上であるが、50/50 よりも小さい。
【0018】
オゾンの酸化力による有機皮膜由来の分解生成物は、最終的には、大部分がグリオキシル酸、蓚酸、ギ酸、酢酸等のカルボン酸類並びに水である。これらの生成物は水混和性の処理液成分(本発明では水と自由に混ざるものを意味する)には溶解しやすい。この点からみると、分解液を均一な液相とするためには、上記(a)成分または(b)成分として、上記脂肪酸を用いることが最適である。
上記分解生成物はハイドロフルオロエーテルには溶けないものが多い。したがって、(b)成分がハイドロフルオロエーテルを含む場合、脂肪酸等の他の水混和性成分と併用することが必要となる。
【0019】
また、上記(a)成分として、例えば極性の強い炭酸エチレンを用いる場合、脂肪酸との混合溶液とすることが好ましい。炭酸エチレン等はハイドロフルオロエーテルには溶解しないが、上記と同様に、ハイドロフルオロエーテルと上記脂肪酸との混合溶剤として用いることができる。炭酸アルキレン以外のエステル化合物を用いる場合も同様である。
上記(a)成分として、例えば、tert-ブチルアルコールを用いる場合、このものは水混和性であるので、ハイドロフルオロエーテルと組み合わせて用いることができる。また、例えば、デカン等のパラフィン系飽和炭化水素を用いる場合、これと組み合わせる(b)成分としては、脂肪酸等を含む必要がある。
【0020】
[オゾン分解性有機被膜]
本発明の除去方法および除去剤の対象となる有機被膜は、単に処理液(又は除去剤)に溶けるだけでなく、オゾンで十分に低分子量物質に分解されるものである。
オゾンによる有機物の酸化機構では、通常、炭素−炭素二重結合が最も反応性が高い。オレフィン系化合物の二重結合は容易にオゾノリシスと呼ばれる分解反応で開裂する。芳香族では分解速度の遅いものもあるが、一般的には単環、多環を問わず開裂や側鎖の酸化等で分解が起こる。また、カルボキシル基を除いて酸素を含む基のある化合物は分解しやすい。高分子化合物では、モノマーユニットの中に二重結合を有するものが、オゾンにより極めて速く分解する。
【0021】
従って、代表的なネガ型レジスト材料の環化ポリイソプレンは非常に分解が速く、また、ポジ型レジスト材料の主流であったノボラック樹脂も容易に分解する。化学増幅型ポジレジスト材料のポリビニル・フェノール誘導体もやや遅いが十分に分解する。このように、本発明の除去対象の有機被膜としてレジスト膜は最も好ましいものである。また、イオン注入で硬化処理されたレジスト膜に対しても効果的な除去が可能である。
【0022】
油脂では分子内に二重結合のある不飽和脂肪酸の膜が本発明の対象である。したがって、乾性油を使う油性塗料の塗膜が適する。また、フラックス用のロジンは3環テルペン類なのでオゾンで分解が可能である。合成樹脂系塗料ではモノマーユニットに酸素を含むアクリル樹脂系や酢酸ビニル樹脂エナメル等がオゾンで分解できるので、前記塗膜は本発明の除去の対象となる。
【0023】
処理液の有機被膜除去性能]
本発明の上記(a)成分と(b)成分とを混合した除去剤の有機被膜除去性能の向上を明確に示すために、レジスト剥離速度の観点から、従来の有機被膜除去法と比較する。例えば、化学増幅型ポリビニルフェノール誘導体レジストで、オゾン添加酢酸が3μm/分の剥離速度を示す場合、同じ条件でオゾンを添加すると酢酸/炭酸エチレン=60/40(重量比)の処理液では、9μm/分以上の剥離速度が得られる。また、オゾン添加酢酸がノボラック型I線用レジストに対して5μm/分の剥離速度を示すとき、該オゾン添加酢酸に代えて前記オゾン添加した酢酸/炭酸エチレン=60/40(重量比)の処理液を用いると18μm/分の剥離速度が得られる。これらは炭酸エチレンが少量でもレジストに対し強い溶解作用をもつため、酢酸成分の減少によるオゾン濃度の低下の影響を補って余りある(剥離速度が3倍になる)結果となったものである。これが本発明の特長を明確に示している。
【0024】
また、炭酸エチレン(1〜3重量%)、酢酸(10〜20重量%)およびハイドロフルオロエーテル(残部)の3者を混合したオゾン添加した処理液は、ノボラック型I線用レジストに対して、ほとんどオゾン添加酢酸と同程度の剥離速度が得られ、しかも表面張力や粘性率はほとんどフレオン系洗浄剤並みであった。従って、極めて微細な加工をしたホール内面に付着したレジストでも除去できる高剥離性能処理剤が得られた。このように混合物である処理液は、十分なレジスト剥離性能の他に、オゾン添加酢酸では発揮できない新たな特別の性能を付加することが可能となる。
【0025】
[処理液の循環再生使用]
本発明の除去方法において、本発明の除去剤自体はオゾンによりほとんど反応しないという特色があり、一方、有機被膜由来の成分はオゾンにより低分子量のものに分解されるので、有機被膜除去処理後の処理液を別の槽に移してオゾンガスバブリングを行い、基体から剥離して処理液に移行し、まだ分解の不十分なレジスト等の成分に対し、分解処理を追加すれば、この処理液を別の基体の除去処理液として再使用できる。実験では数十回の再使用が可能であった。この循環使用により、薬液の使用量を従来の方式の1/3及至1/5に低減することができる。
【0026】
【実施例】
本発明に係る有機被膜除去方法および除去剤について、下記実施例により更に詳細に説明するが、本発明が下記実施例に限定されるものではない。
なお、下記実施例で使用したオゾンガスは、放電方式のオゾン発生装置に 0.4%のチッ素を含む酸素を 0.3〜2L/分程度流して得たオゾン濃度が約 250mg/Lのものである。使用した薬品は、いずれも試薬特級の純度のものである。
【0027】
また、米国半導体工業会によるロードマップから、有機被膜除去後の面の有機炭素濃度は、3.5×1013原子/cm2以下であれば、100nmデバイスにおいても十分と考えられる。そこで、特に炭素の少ないSiウェハー(1×1015原子/cm3以下)で作成した1000Å酸化膜ウェハーを用い、レジスト膜あるいは塗布膜を形成して除去性能評価用試料とした。除去処理後、特開2000-39410号公報に記載された試料作成法を適用して、サイクロトロン照射用ホルダーに収納し、荷電粒子放射化分析を実施し、残存する表面有機炭素の絶対量を求めた。
分析法は、12C(d,n)13Nの核反応で生成した13Nを化学分離してβ+壊変の消滅放射線の計測で定量するものである。分析結果が上記の 3.5×1013原子/cm2以下であれば、特に断ることなくレジストが剥離除去できたものと評価し、それを基準として剥離速度を求めた。レジスト塗布試料に低炭素濃度のSiウェハーを用いたのは、分析でのバックグランドを1×1012原子/cm2以下にするためである。
【0028】
実施例1
液状の炭酸エチレンにオゾンガスをバブリングさせると、オゾンガスに特有の青色着色の程度が水でのバブリングの場合と同程度でごく淡く、炭酸エチレンはオゾンをよく溶解するとはいえないことが分かる。しかし、後述するように、炭酸エチレン液単独でもレジストをよく溶解する。そこで、炭酸エチレンと酢酸との混合溶液を除去剤として用い、これにオゾンを添加して、ポリビニル・フェノール誘導体と酸発生剤で構成された化学増幅型レジスト膜の除去を試みた。試料は、膜厚 0.8μmのM20G(商品名、JSR(株)製)が塗布され 140℃で 90秒間ベークしたウェハーを2cm×2cmのチップに切断したものである。
【0029】
除去剤へのオゾンの添加は、内容 100mLの石英ガラス製インピンジャーに 25℃の上記混合溶液あるいは単独の酢酸を満たし、濃度 250mg/Lのオゾンガスを 0.3L/分の流速で5分間バブリングさせて行い、直ちに液を内径 2.2cmの石英ガラス製小ビーカに移して、上記ウェハーを処理液に浸し、上記試料チップのレジスト除去処理を実施し、目視でレジスト剥離が確認されたら、別の容器の酢酸で約2秒間リンスしてオーバーフローする超純水槽に移し、3分間浸漬して十分リンスした後、活性炭フィルター付のクリーンベンチ内で風乾して、荷電粒子放射化分析のためのホルダーに収納した。
【0030】
図1に、酢酸/炭酸エチレンの混合比(重量)が、100/0、80/20、60/40、40/60、および 20/80の場合の組成とレジスト剥離速度との関係を示す。
室温では酢酸単独でオゾンが添加された場合、この化学増幅型レジストは剥離速度がノボラック型レジストの約半分の3μm/分程度であった。しかし溶質の炭酸エチレンの比率が増すと共に剥離速度が増し、酢酸/炭酸エチレン=60/40の組成で剥離速度が最大を示し、10μm/分近い値が得られて、除去性能が著しく向上する。更に、炭酸エチレン成分が増すと剥離速度は減少傾向を示す。炭酸エチレンは融点が 36℃なので、40℃に加熱して液状とすると、オゾンの添加がなくても6μm/分で、このレジスト膜を溶解して着色液をつくる。即ちこのレジストに対して大きな溶解性を持っている。しかし、オゾンに対する溶解能は小さい。一方、酢酸はオゾンに対する溶解能が大きい。図1で、剥離速度に関して酢酸/炭酸エチレン=60/40の組成で最大部ができたのは、この二つの作用が相乗的に作用した結果である。
【0031】
実施例2
実施例1で最も剥離性能の優れていた酢酸/炭酸エチレン=60/40(重量比)の組成の除去剤を 40℃に加熱してオゾンを添加し、イオン注入で硬化したI線用ノボラック型レジスト膜付のウェハーに対して浸漬処理でのレジスト除去効果を調べた。この膜は厚さ 1.5μmのIX555(商品名、JSR(株)製)を 130℃で 300秒間ベークした後、B+を 30KeVで1×1014/cm2注入したものである。炭酸エチレンは酢酸に較べるとオゾンによって若干分解しやすいので、除去剤をオゾンで繰返し再生して循環使用する場合の液の繰返し可使回数も推定できるように、実験器具が作られている。図2に、その概念を示す剥離器具列と液供給器具列を示す。評価のみを目的とした枚葉の実験機構であるが、浸漬槽内の処理枚数を増やしてバッチ式にすれば、実用的な生産用にも応用できる。
【0032】
剥離処理槽1と処理液リンス槽2と超純水リンス槽3はそれぞれ6゛ウェハー1枚が液量 300mLに浸漬する石英ガラス製角槽で、ウェハー4は石英ガラス製支持具(図示せず)に保持され、手動により浸漬処理が施される。槽1では除去剤供給管8(以下、液の配管は図において太線で示す)により、40℃に加熱された除去剤がタンク7(当初は新しい除去剤 600mLを充填しておく)からポンプPと精密微粒子フィルターF経由で供給され、加熱器9で液温が 40℃に保持される。加熱器上には石英ガラス製オゾン発散器10があり、オゾン発生装置(図示せず)から配管11(以下、ガス配管は図上で太い点線で示す)とバルブ12とで 0.5L/分の流速でオゾンガスを送ってバブリングさせる。5分間の浸漬処理経過後ウェハーはリンス槽2に移される。6枚分の処理が終ったら、バルブ13と配管14で 50mLをタンク6に排出し、タンク7から 50mLを補充して、1分経過後、同様にウェハー6枚分の除去処理を行なう。このようにして、液の排出、補充、およびウェハー6枚処理を繰返す。
【0033】
リンス槽2は処理槽1とまったく同じ構造で、当初槽1の液充填の際、同時に40℃に加熱されたリンス液が加熱器15を具備したタンク5からポンプPと精密微粒子フィルターFを経由してリンス液供給管16で充填される。槽1と同時にオゾンガスバブリングを開始して、除去処理を終えたウェハーが浸されたら所定時間リンスする。6枚分のリンス処理が終わる毎にバルブ17と配管18で 15mLをタンク6に排出し、タンク5から 15mLを補充する。オゾンバブリングリンスを終えたウェハーは槽3で室温の超純水によるオーバーフローリンス(機構図示せず)を行い、スピンドライヤー(図示せず)で乾燥した。
【0034】
それぞれの槽での浸漬時間を2分とすると、乾燥直後、目視でレジストの残存はまったく見られず、未分解の硬化レジスト微細片の表面付着を顕微鏡で調べたが観察されなかった。また、最初に処理を行なったウェハーからチップを切出して荷電粒子放射化分析の試料とした。表面の残存有機炭素量は、2.7×1013原子/cm2で、硬化レジストは十分に除去できていた。
【0035】
槽1の処理でレジスト膜は剥離するが、液中に未分解の硬化レジスト微細片の浮遊を生じる。タンク6内の排出液のこの微細片を十分に分解するために、液量が 100mLに達したところで、バルブ19、20とガス配管21によりガス発散器22から1L/分の流速でオゾンガスをバブリングさせる。液量が 200mLとなって5分経過後、高純度窒素ガス配管23、バルブ24とバルブ20を介して発散器22から窒素ガスを5分間バブリングし、タンク内の液から溶解しているオゾンを脱気して、連結管25によりバルブ26と送液ポンプPで該液をタンク7に移す。なお、タンク6および7は加熱器27、28を具備し、内部の液の温度をほぼ 40℃に保持する。またタンク5および7は新除去剤導入管29とそれに付属したバルブ30を具備しており、また液の廃棄は廃棄管31と付属したバルブ32で行なう。
【0036】
液供給器具系において、オゾンで分解できなかった硬化レジスト微細片は、硬化が1×1014/cm2のイオン注入によるものでもその量はごく僅かで、除去剤供給管8に付属するフィルターに大きな負担を強いることはない。従って、処理液の性能劣化が生じるとすれば、それは、レジスト並びに除去剤自体のオゾンとの反応生成物増加に起因する剥離性能の低下に基づくと考えられる。そこで、最初の6枚処理に引続いて、イオン注入していないレジスト膜のウェハーにより上記の循環液供給を6枚×19回、即ち 114枚実施し、最後の1枚をイオン注入した試料ウェハーによって行なった。その乾燥直後に当初の試料と同様のレジスト除去状態の評価を行い、目視による表面の観察および荷電粒子放射化分析結果(残存炭素量:3.4×1013原子/cm2)の評価により、硬化レジスト膜を除去する能力が当初の液と差が無いことを確認した。
【0037】
処理 120枚に対し使用した除去剤は 1.2Lで、1Lあたり 100枚処理できたことになる。従来の方式ならば、通常、6枚ごとに 300mL使うので1Lあたり 20枚の処理であり、この混合溶液ではオゾンによるレジスト分解で液の寿命を従来方式の5倍にできた。これは炭酸エチレンが酢酸と同様にオゾンによって分解を受け難いからである。
【0038】
実施例3
細かい隙間のある表面の有機被膜を除く処理では、隙間の中の側面や底に付着している被膜が除去できずに残る場合があり、精密な除去処理の追加が必要となる。超LSIの微細化で高アスペクト比のドライエッチングによる微細孔の側壁にはレジスト由来の変質膜が生じている。マスクしたレジストは一般に酸素プラズマアッシングで除去されているが、この変質膜は残るので剥離液による湿式除去を後続させている。微細化が進むと微細孔内の処理のために表面張力と粘性率のできるだけ小さいレジスト除去液が必要になる。そこで、オゾンをよく溶かす溶媒としてHFE−7100を用い、酢酸との混合溶液として、そのレジスト剥離作用を調べた。
【0039】
除去対象の膜は厚さ 1.5μmのIX500(商品名、JSR(株)製)を 140℃で 60秒間ベークしたものである。枚葉の実験系を実施例2の除去処理槽1とリンス槽2とHFE液が入った小型のHFE蒸気乾燥槽(図示せず)で構成した。ウェハーは同実施例の支持具で保持し各槽で順に処理を行なった。槽1と槽2とは混合溶液を満たして 40℃に加熱し、オゾンガスのバブリングは槽1のみにおいて、実施例2と同様に行なった。除去剤の混合比(重量)が、HFE/酢酸=90/10、80/20、および 60/40のものについて検討したが、混合比 90/10では2分浸漬しても除去できなかった。混合比 80/20では目視で確認したところ除去に1分を要した。槽2で1分リンスした後、HFE−7100の蒸気で乾燥し顕微鏡で除去面を観察したが、剥離残りはまったく無かった。混合比 60/40では槽1での除去所要時間は 45秒で剥離速度は約2μm/分となり、この種の除去目的には一応十分な除去性能が得られた。表面張力と粘性率は、混合比 80/20で 16dyn/cmおよび 0.6cPとなり、また混合比 60/40でも 18dyn/cmおよび 0.7cPであり、オゾン酢酸処理の場合の 27dyn/cmおよび 1.0cPに比較し、微小間隙への濡れ性が著しく改善された。
【0040】
実施例4
実施例3では表面張力と粘性率の小さいレジスト除去液が示されたが、剥離速度も満足できるように、炭酸エチレン(濃度1重量%)およびHFE−7200と酢酸との混液から成る混合溶液で、実施例3と同様のレジスト除去実験を行なった。蒸気乾燥槽の液はHFE−7200である。HFE/酢酸=90/10(重量比)の場合でも剥離速度3μm/分が得られ、この場合、処理液の表面張力と粘性率は殆どHFEと同じである。混合比 80/20では剥離速度が 4.5μm/分となり、オゾン添加酢酸の剥離速度にかなり近づく。
【0041】
実施例5
表面形状が複雑な部品類の精密洗浄には表面張力および粘性率の小さいフッ素系洗浄剤が最も効果的であった。そこで、オゾンとの反応が比較的少ないtert-ブチルアルコール(濃度:10重量%)とHFE−7100溶剤から成る混合溶液を用いて本発明のオゾンによる有機被膜除去液の除去効果と再生効果を調べた。アルコールを添加したフッ素系洗浄剤がロジン系フラックスを溶かすことは知られている。このフラックスを除去対象とし、各実施例で用いた酸化ウェハー上に塗布して除去試料とした。実験器具は実施例3のものを用い、オゾンバブリングでの除去処理1分以降、一連の処理を実施例3と同様に行なった。目視ではフラックスが除去されていたが、荷電粒子放射化分析でさらに除去を確認した。槽1で20枚処理したが、槽内の液にはフラックス溶解による着色変化はみられず、フラックスは分解したものと考えられる。
【0042】
環境問題が解決されたフッ素系洗浄剤は他の溶剤に比し高価であるが、溶かした有機被膜がオゾンにより分解して洗浄剤の寿命が延びれば、経済性の難点を緩和でき、フッ素系の特長を活かした被膜除去の適用分野を拡大できる。そこで銅板上のポリビニルブチラール塗膜を、HFE−7200 70重量%、酢酸 20重量%、および酢酸ブチル 10重量%の混合剤で、実施例3の実験器具により、各処理時間を5分として塗膜の剥離を試みた。目視では被膜除去が確認された。
同様の処理を乾性油の油膜の残った塩化ビニル樹脂板状試料に対して施し、油膜の除去を試みた。除去剤の組成は、HFE−7200 70重量%、酢酸 20重量%、デカン 10重量%である。各処理時間を2分としたが、目視では被膜の残存は見られず、溶解オゾンに由来する液の青い着色状態は処理時間経過後回復した。
【0043】
実施例6
実施例2の剥離処理槽1とオゾン発散器10を利用して、この槽を投込み式の28KC超音波振動子の入った水槽内の振動子の真上にセットし、塗膜の除去を検討した。剥離対象は 10cm角のステンレス鋼板上のポリメチルメタクリレート塗膜とポリ酢酸ビニル塗膜であり、除去剤の組成はプロピオン酸 70重量%および酢酸ブチル 30重量%の混合溶液である。処理は 20℃で行った。実施例2と同様にオゾンをバブリングさせ、5分経過後試料を浸漬し、超音波は 30秒停止、10秒稼動の反復とした。塗膜の厚さは計測しなかったが、ポリメチルメタクリレート塗膜の場合は約5分で、また、ポリ酢酸ビニル塗膜の場合は約3分で、目視的に剥離が確認された。
【0044】
【発明の効果】
本発明は、特定の混合溶液からなる有機被膜に対して優れた溶解力を持つ除去剤を用い、これにオゾンを溶解させて有機被膜の除去を行うものであって、各種のオゾン分解性有機被膜の除去が可能となった。また、除去剤自体がオゾンと反応しにくいことから、オゾンの分解力を高めるために、本除去剤に高濃度にオゾンを溶解させることができ、更に、分解後の反応生成物は低分子量のもので、処理液によく溶け、基体を汚染することなく、また、前記除去処理後の処理液に溶解した前記有機被膜由来の成分は、処理区域とは異なる区域において、オゾンガスで処理することにより分解することができ、処理液の再生・再使用を可能とすることができるため、有機被膜の除去性能を著しく向上させると同時に環境面において問題がなく、省資源化も図ることができる。
【図面の簡単な説明】
【図1】 実施例1において得られた、酢酸:炭酸エチレンの組成比とレジスト剥離速度との相関関係を示す図である。
【図2】 実施例2において用いられた、枚葉の実験機構のための剥離器具列と液供給器具列の概要を示す図である。
【符号の説明】
1.剥離処理槽 2.処理液リンス槽
3.超純水リンス槽 4.ウェハー
5,6,7.タンク 8.処理液供給管
9.加熱器 10.オゾン発散器
11.配管 12,13.バルブ
14.配管 15.加熱器
16.リンス液供給管 17.バルブ
18.配管 19,20.バルブ
21.ガス配管 22.発散器
23.窒素ガス配管 25.連結管
26.バルブ 27,28.加熱器
29.新除去剤導入管 30.バルブ
31.廃棄管 32.バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing an organic film adhering to a substrate for cleaning the surface of an electronic device substrate or the like. Specifically, the present invention relates to removal of a photoresist film used for processing a semiconductor wafer or a liquid crystal substrate, and removal of an organic contamination film on the substrate. Furthermore, the present invention can be applied to the removal of a general organic film such as an oil film or a coating film on a substrate.
[0002]
[Prior art]
Removal of photoresist used for microfabrication of oxide and polysilicon films is usually done with a mixture of sulfuric acid (3 or 4 volumes): hydrogen peroxide (1 volume) (called piranha) with 11O A method of heating to ˜140 ° C. and immersing for 10 minutes for 20 minutes is widely used. In piranha treatment, the resist is decomposed and can be processed repeatedly in the same solution. However, hydrogen peroxide decomposes rapidly into water, and concentrated sulfuric acid is highly hygroscopic. As a result, the peeling ability is reduced, and it can be repeatedly used only about ten times. An apparatus that distills diluted waste liquid to a high concentration and recycles has also appeared, but there is a problem with economic efficiency, and sulfuric acid is the most used chemical in the semiconductor industry. Furthermore, since it is subjected to high-temperature treatment, acid gas is often discharged, and both exhaust and drainage have a great impact on the environment.
[0003]
In the case of wiring metal film processing, the resist is removed by heat treatment with an organic solvent such as n-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO) or amines. Since these chemicals simply dissolve the resist and do not decompose it, if the same solution is used repeatedly, the concentration of the dissolved component increases rapidly, and can only be used about 5 to 6 times. In addition, if these chemicals contain water, there is a risk of damaging the metal film, and therefore, replacement with a solvent such as isopropyl alcohol is necessary before rinsing with pure water. Accordingly, the required amount of organic solvent is further increased. Therefore, not only is it difficult to take measures against exhaust and drainage, but organic solvents are generally expensive, so there is a problem in terms of economy.
[0004]
Therefore, recently, an environment-friendly resist removal using a gas containing high-concentration ozone (hereinafter referred to as ozone gas) and water has been attempted. However, in such ozone water treatment, in the case of an I-line novolak resin-based positive resist film widely used in LSI manufacturing, the stripping rate is about 1 μm / min, and there is no margin for stripping capability, so the application is limited. The
In order to drastically solve the slow removal rate of ozone water treatment, the present inventor uses an organic solvent having a high ability to dissolve ozone, for example, acetic acid. Has already provided a method for removing an ozone organic solvent resist that synergistically acts (Japanese Patent Laid-Open No. 2001-340817). Ozone acetic acid in which about 300 ppm of ozone is dissolved with respect to the I-line novolak resin-based resist can be removed several times the maximum stripping rate of ozone water, that is, 5 to 6 μm / min.
[0005]
For a solvent that does not easily react with ozone, such as acetic acid, only the resist component dissolved in the solvent is decomposed by the ozone treatment, and the solvent is not affected. Therefore, when such a solvent is used as a resist remover, it can be used repeatedly, that is, it has a long life, and is desirable in terms of economy, saving resources, and environmental load.
However, organic solvents that dissolve ozone well but do not react with ozone and dissolve polymers such as resist are limited, and there are few problems regarding the environment and toxicity, and there are practicality of acetic acid, propionic acid and butyric acid. Only such low molecular weight carboxylic acids. On the other hand, the range of the organic polymer material in which the carboxylic acid exhibits particularly excellent solubility is not wide. For example, glacial acetic acid is suitable for dissolving resist materials such as novolak resin and cyclized polyisoprene, but other plastic films can only be applied to vinyl acetate resin, cellulose ester, etc. and are limited to a narrow range. . Even in resists, new materials have appeared along with the ultra-miniaturization of LSIs, and the stripping rate may be reduced by ozone acetic acid treatment. Further, it is difficult to remove a resist whose surface has been hardened and changed by reactive ion etching by simple contact with an ozone acetic acid solution.
[0006]
Moreover, when the base of the organic coating is finely processed and it is intended to remove the organic coating generated in a very narrow recess, or when the base is a material that is easily damaged by a low molecular weight carboxylic acid such as acetic acid. However, a treatment liquid in which ozone is added at a high concentration to a low molecular weight carboxylic acid has a problem that a satisfactory removal effect may not be obtained due to insufficient wettability of the liquid or insufficient peeling speed.
[0007]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to increase the range of the organic film that is a target for removal of the treatment liquid in which ozone gas is dissolved, and the resist film is peeled more than when ozone-added carboxylic acid is used. A method for improving speed and wettability, as well as a resist, an effective removal method similar to the case of a resist, a coating solution, an oil film, etc. The purpose is to provide an agent.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention firstly
In the method of removing the organic coating by contacting a substrate having an ozone-decomposable organic coating on the surface with a processing solution in which ozone gas is dissolved, the processing solution can (a) dissolve the organic coating, And (b) a solution of one or more organic solvents that have a partition coefficient of 0.6 or more at room temperature and that are difficult to be decomposed by ozone and that are difficult to be decomposed by ozone. However, at least one of the organic substance and / or the organic solvent is miscible with water) Dissolved ozone in A method for removing an organic film is provided.
[0009]
In addition, the present invention secondly,
An organic coating remover used by dissolving ozone gas to remove the organic coating by contacting with a substrate having an ozone decomposable organic coating on the surface, wherein (a) the organic coating can be dissolved And an organic substance that is difficult to be decomposed by ozone, and (b) one or more organic solvents that have a partition coefficient of 0.6 or more at room temperature and that are difficult to be decomposed by ozone. (However, at least one of the organic substance and / or the organic solvent is miscible with water) (Hereafter, abbreviated as “removing agent”) I will provide a.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[Overview]
The present invention is characterized by the composition of the treatment liquid used when removing the ozone decomposable organic coating on the substrate surface. That is, the partition coefficient between the organic substance that can dissolve the ozone-decomposable organic film as the component (a) and is difficult to be decomposed by ozone and the ozone in the gas as the component (b) is room temperature. A solution mixed with an organic solvent that is 0.6 or more and is not easily decomposed by ozone. (Ie remover) with ozone dissolved The treatment liquid of the present invention has the following characteristics, and by adopting the treatment liquid, the ability to remove various organic coatings can be remarkably improved, and at the same time, the characteristic performance of the component (a) can be utilized. it can.
1. Since this treatment solution has an excellent dissolving power for various ozone-decomposable organic coatings, the target organic coating has a wide range.
2. The ozone dissolved in the treatment solution should decompose the organic coating well. The decomposition reaction product produced by this decomposition is of low molecular weight, (1) It dissolves well in this treatment solution, (2) Without contaminating the substrate (3) The removal process should not interfere with the subsequent treatment (regeneration treatment with ozone gas).
3. Book Removal Even if the ozone dissolved in the agent becomes high concentration Removal The agent itself does not react easily with ozone and is not easily decomposed by ozone.
4). In order to increase the decomposition power by ozone, Removal It must be able to dissolve ozone in the agent at a high concentration.
In particular, the above 1. This point was insufficient by the method for removing a resist or the like which was performed by dissolving ozone in a low molecular weight carboxylic acid such as acetic acid already provided by the present inventors.
[0011]
[(A) component]
Examples of organic substances that can dissolve the ozone-decomposable organic coating (a) component used in the present invention and are not easily decomposed by ozone include, for example, a part of ester compounds; tertiary alcohols; n H 2n + 1 Fatty acid represented by COOH (where n is an integer of 1 to 3); Formula: C m H 2m + 2 Paraffinic saturated hydrocarbons represented by the formula (wherein m is an integer of 10 to 12) can be exemplified.
[0012]
Examples of the ester compound include alkylene carbonates such as ethylene carbonate and propylene carbonate, and acetate esters such as butyl acetate. In particular, ethylene carbonate and propylene carbonate are preferable because they have a high solubility for various polymer compounds. Almost all alcohols easily react with ozone, but only the tertiary alcohol tert-butyl alcohol reacts slowly and can be used in the present invention. Examples of the fatty acid include acetic acid, propionic acid, butyric acid, and the like. The fatty acid can also be used as a component (b) described later. Examples of the paraffinic saturated hydrocarbon include decane, dodecane, and the like, and these have a particularly high ability to dissolve in an oil film, but have a problem in terms of flammability, and are used in combination with HFE described later.
[0013]
[Component (b)]
The organic solvent which has a partition coefficient of 0.6 or more at room temperature with ozone as the component (b) used in the present invention and is hardly decomposed by ozone will be described.
The distribution coefficient D with ozone in the gas is the ozone concentration C G The ozone concentration of the liquid saturated with [mg / L] ozone gas is C L C when [mg / L] L / C G The ratio is shown. A higher D value means a solvent that dissolves ozone better. In the present invention, a solvent having a D value of 0.6 or more, preferably 1.3 or more at room temperature is used.
[0014]
Examples of the component (b) include the formula: C n H 2n + 1 Fatty acid represented by COOH (wherein n is an integer of 1 to 3); C Four F 9 OCH 3 And C Four F 9 OC 2 H Five And at least one hydrofluoroether selected from the group consisting of (hereinafter sometimes referred to as “HFE”) and the like. These may be used alone or in combination of two or more.
[0015]
Examples of the fatty acid include those exemplified for the component (a). For example, the D value of acetic acid (purity: 97%) at 25 ° C. is 1.7, the D value of propionic acid is 1.8, and the D value of butyric acid is 1.5. In addition, when about 20% of water is mixed, while maintaining the required ozone dissolving power, it is no longer a hazardous material under the Fire Service Act, so it is possible to remove the organic film with an emphasis on safety. When water is mixed with acetic acid, the D value is about 0.8 for 80% by weight acetic acid and about 0.6 for 70% by weight acetic acid.
[0016]
C used as the hydrofluoroether Four F 9 OCH Three (D value at 25 ° C. = 1.6 or more, boiling point 61 ° C., trade name: HFE-7100, manufactured by 3M Company) and C Four F 9 OC 2 H Five (The D value at 25 ° C. = 1.6 or more, the boiling point 76 ° C., trade name: HFE-7200, manufactured by 3M Company), the latter can be mixed when other solvents are used as mixed solvents A wide range of solvents. For example, dodecane can only be mixed with HFE-7200. Hydrofluoroether is suitable for use in the present invention because it has an ozone depletion coefficient of 0, has a short atmospheric life, and does not have environmental problems such as chlorine and freon solvents.
[0017]
[Removal agent composition]
The present invention Remover A mixed solution of the component (a) and the component (b). Regarding the combination, those used as the component (a) are not the same as those used as the component (b), and at least one of the component (a) and / or the component (b) is water. There is no particular limitation as long as it is miscible.
The composition ratio of the component (a) and the component (b) varies depending on the type of each component and is not generally determined, but at least the component (b) is used more than the component (a) (by weight). That is, (a) component / (b) component (weight ratio) is 0.1 / 99.9 or more, but smaller than 50/50.
[0018]
The decomposition products derived from the organic film by the oxidizing power of ozone are finally mostly carboxylic acids such as glyoxylic acid, oxalic acid, formic acid, acetic acid, and water. These products are easily soluble in water miscible processing solution components (meaning those that are freely mixed with water in the present invention). From this point of view, it is optimal to use the fatty acid as the component (a) or (b) in order to make the decomposition solution into a uniform liquid phase.
Many of the decomposition products are insoluble in hydrofluoroether. Therefore, when the component (b) contains a hydrofluoroether, it is necessary to use it together with other water-miscible components such as fatty acids.
[0019]
For example, when ethylene carbonate having a strong polarity is used as the component (a), a mixed solution with a fatty acid is preferable. Ethylene carbonate or the like does not dissolve in the hydrofluoroether, but can be used as a mixed solvent of the hydrofluoroether and the fatty acid as described above. The same applies when an ester compound other than alkylene carbonate is used.
For example, when tert-butyl alcohol is used as the component (a), it can be used in combination with hydrofluoroether because it is miscible with water. For example, when using paraffin type saturated hydrocarbons such as decane, the component (b) to be combined with this must contain a fatty acid or the like.
[0020]
[Ozone-degrading organic coating]
The organic film that is the target of the removal method and the removal agent of the present invention is simply a treatment liquid ( Or In addition to being dissolved in the removal agent, it is sufficiently decomposed into low molecular weight substances by ozone.
In the mechanism of organic matter oxidation by ozone, carbon-carbon double bonds are usually the most reactive. The double bond of an olefin compound is easily cleaved by a decomposition reaction called ozonolysis. Some aromatics have a slow decomposition rate, but in general, decomposition occurs by cleavage or oxidation of side chains regardless of whether they are monocyclic or polycyclic. In addition, a compound having a group containing oxygen except for a carboxyl group is easily decomposed. Among polymer compounds, those having a double bond in the monomer unit are decomposed extremely rapidly by ozone.
[0021]
Therefore, the cyclized polyisoprene of a typical negative resist material decomposes very quickly, and the novolak resin that has been the mainstream of the positive resist material easily decomposes. Chemically amplified positive resist materials such as polyvinyl-phenol derivatives are also slightly slow, but they decompose sufficiently. Thus, the resist film is most preferable as the organic film to be removed in the present invention. Further, it is possible to effectively remove the resist film cured by ion implantation.
[0022]
In the case of fats and oils, a film of unsaturated fatty acid having a double bond in the molecule is an object of the present invention. Therefore, an oil-based paint film using a drying oil is suitable. Moreover, since the rosin for flux is a tricyclic terpene, it can be decomposed with ozone. In the synthetic resin-based paint, the acrylic resin-based resin containing oxygen in the monomer unit, the vinyl acetate resin enamel, and the like can be decomposed by ozone, so that the coating film is an object of removal of the present invention.
[0023]
[ Treatment liquid Organic film removal performance]
The above component (a) and component (b) of the present invention are mixed. Remover In order to clearly show the improvement of the organic film removal performance, it is compared with the conventional organic film removal method from the viewpoint of the resist peeling speed. For example, in a chemically amplified polyvinylphenol derivative resist, when ozone-added acetic acid shows a stripping rate of 3 μm / min, acetic acid / ethylene carbonate = 60/40 (weight ratio) when ozone is added under the same conditions With treatment liquid Can obtain a peeling rate of 9 μm / min or more. Further, when the ozone-added acetic acid exhibits a peeling rate of 5 μm / min with respect to the novolak type I-line resist, the ozone-added acetic acid is replaced with the ozone-added acetic acid. Added ozone Acetic acid / ethylene carbonate = 60/40 (weight ratio) Treatment liquid When used, a peel rate of 18 μm / min is obtained. Since these have a strong dissolving action on the resist even with a small amount of ethylene carbonate, they are more than compensated for the decrease in ozone concentration due to the decrease in the acetic acid component (tripping rate is tripled). This clearly shows the features of the present invention.
[0024]
Also, ethylene carbonate (1 to 3% by weight), acetic acid (10 to 20% by weight) and hydrofluoroether (remainder) were mixed. The treatment liquid added with ozone With respect to the novolak type I-line resist, a peeling rate almost the same as that of ozone-added acetic acid was obtained, and the surface tension and viscosity were almost the same as those of the freon cleaning agent. Therefore, high peeling performance that can remove even the resist adhering to the inner surface of the hole which has been processed extremely finely processing An agent was obtained. Like this is a mixture Treatment liquid In addition to sufficient resist stripping performance, it is possible to add new special performance that cannot be achieved with ozone-added acetic acid.
[0025]
[Use of recycled processing solution]
In the removal method of the present invention, Remover In itself, there is a feature that it hardly reacts with ozone. On the other hand, components derived from organic coating are decomposed into low molecular weight components by ozone, so the processing liquid after organic coating removal processing is transferred to another tank and ozone gas bubbling is performed. If the substrate is peeled off from the substrate and transferred to the treatment liquid, and a decomposition treatment is added to a component such as a resist that is still insufficiently decomposed, the treatment liquid can be reused as a removal treatment liquid for another substrate. In the experiment, it could be reused several tens of times. By this circulation use, the amount of the chemical used can be reduced from 1/3 to 1/5 of the conventional method.
[0026]
【Example】
The organic film removing method and the removing agent according to the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
The ozone gas used in the following examples has an ozone concentration of about 250 mg / L obtained by flowing 0.3% to 2 L / min of oxygen containing 0.4% nitrogen in a discharge type ozone generator. The chemicals used are of reagent-grade purity.
[0027]
Also, from the road map by the American Semiconductor Industry Association, the organic carbon concentration on the surface after removing the organic coating is 3.5 x 10 13 Atom / cm 2 The following is considered sufficient for a 100 nm device. Therefore, especially Si wafers with low carbon (1 × 10 15 Atom / cm Three Using the 1000 Å oxide film wafer prepared in the following, a resist film or a coating film was formed and used as a sample for removal performance evaluation. After the removal treatment, the sample preparation method described in JP-A-2000-39410 is applied, and the sample is stored in a cyclotron irradiation holder, charged particle activation analysis is performed, and the absolute amount of remaining surface organic carbon is obtained. It was.
The analytical method is 12 C (d, n) 13 Produced by N nuclear reaction 13 Chemical separation of N and β + It is quantified by measuring the annihilation radiation of decay. The analysis result is 3.5 × 10 above 13 Atom / cm 2 Below, it was evaluated that the resist could be removed without any particular notice, and the removal rate was determined based on that. The reason for using a low-carbon Si wafer as the resist coating sample is that the analysis background is 1 × 10 12 Atom / cm 2 This is to make the following.
[0028]
Example 1
When ozone gas is bubbled into liquid ethylene carbonate, the degree of blue coloring peculiar to ozone gas is as light as in the case of bubbling with water, and it can be seen that ethylene carbonate does not dissolve ozone well. However, as will be described later, the ethylene carbonate solution alone can dissolve the resist well. Therefore, mixed solution of ethylene carbonate and acetic acid Remover In this case, ozone was added thereto, and an attempt was made to remove a chemically amplified resist film composed of a polyvinyl / phenol derivative and an acid generator. The sample was obtained by cutting a wafer coated with M20G (trade name, manufactured by JSR Corporation) with a thickness of 0.8 μm and baked at 140 ° C. for 90 seconds into 2 cm × 2 cm chips.
[0029]
Remover Ozone was added to the impregnated 100 mL quartz glass impinger filled with the above mixed solution at 25 ° C or single acetic acid, and ozone gas with a concentration of 250 mg / L was bubbled for 5 minutes at a flow rate of 0.3 L / min. Immediately transfer the solution to a small 2.2 cm internal quartz glass beaker, immerse the wafer in the processing solution, perform resist removal processing on the sample chip, and visually confirm resist removal, use acetic acid in another container. After rinsing for about 2 seconds and transferring to an ultrapure water tank that overflowed and immersed for 3 minutes and thoroughly rinsed, it was air-dried in a clean bench equipped with an activated carbon filter and stored in a holder for charged particle activation analysis.
[0030]
FIG. 1 shows the relationship between the composition and the resist stripping rate when the mixing ratio (weight) of acetic acid / ethylene carbonate is 100/0, 80/20, 60/40, 40/60, and 20/80.
At room temperature, when ozone was added with acetic acid alone, this chemically amplified resist had a peeling rate of about 3 μm / min, which is about half that of the novolak resist. However, as the ratio of ethylene carbonate in the solute increases, the peeling rate increases, and the maximum peeling rate is obtained with a composition of acetic acid / ethylene carbonate = 60/40. A value close to 10 μm / min is obtained, and the removal performance is remarkably improved. Furthermore, as the ethylene carbonate component increases, the peeling rate tends to decrease. Since ethylene carbonate has a melting point of 36 ° C., when heated to 40 ° C. to form a liquid, the resist film is dissolved at 6 μm / min even when ozone is not added to form a colored liquid. That is, it has a large solubility in this resist. However, its ability to dissolve ozone is small. On the other hand, acetic acid has a large solubility in ozone. In FIG. 1, the maximum portion was formed with the composition of acetic acid / ethylene carbonate = 60/40 with respect to the peeling rate, as a result of the synergistic action of these two actions.
[0031]
Example 2
Composition of acetic acid / ethylene carbonate = 60/40 (weight ratio) that had the best peeling performance in Example 1 Remover The wafer was heated to 40 ° C., ozone was added, and the resist removal effect by the immersion treatment was examined on the wafer with the I-line novolak resist film cured by ion implantation. This film was baked at 130 ° C. for 300 seconds with IX555 (trade name, manufactured by JSR Corporation) having a thickness of 1.5 μm, and then B + 1 × 10 at 30 KeV 14 / cm 2 Injected. Ethylene carbonate is slightly more decomposed by ozone than acetic acid. , Remover Experimental equipment has been made so that the number of times the liquid can be reused can be estimated when it is repeatedly recycled with ozone. In FIG. 2, the peeling instrument row | line | column and liquid supply instrument row | line | column which show the concept are shown. Although this is an experimental mechanism for single wafers for the purpose of evaluation only, it can be applied to practical production if the number of treatments in the immersion tank is increased to make it a batch type.
[0032]
The peeling treatment tank 1, the treatment liquid rinsing tank 2 and the ultrapure water rinsing tank 3 are each a quartz glass square tank in which one 6-wafer is immersed in a liquid volume of 300 mL, and the wafer 4 is a quartz glass support (not shown). ) And is subjected to a dipping process manually. In tank 1 Remover Heated to 40 ° C. by a supply pipe 8 (hereinafter, the liquid pipe is indicated by a bold line in the figure) Remover Tank 7 (initially new Remover The liquid is kept at 40 ° C. by the heater 9 through the pump P and the fine particulate filter F. There is an ozone diffuser 10 made of quartz glass on the heater, and 0.5 L / min from an ozone generator (not shown) to a pipe 11 (hereinafter, the gas pipe is indicated by a thick dotted line in the figure) and a valve 12. Ozone gas is sent and bubbled at a flow rate. The wafer is transferred to the rinsing tank 2 after 5 minutes of immersion treatment. When the processing for 6 sheets is completed, 50 mL is discharged to the tank 6 by the valve 13 and the pipe 14, 50 mL is replenished from the tank 7, and after 1 minute, the removal process for 6 wafers is similarly performed. In this manner, liquid discharge, replenishment, and processing of six wafers are repeated.
[0033]
The rinsing tank 2 has exactly the same structure as the processing tank 1, and the rinsing liquid heated to 40 ° C. at the same time when filling the liquid in the initial tank 1 from the tank 5 equipped with the heater 15 via the pump P and the fine particulate filter F. Then, the rinsing liquid supply pipe 16 is filled. Ozone gas bubbling is started at the same time as the tank 1, and when the removed wafer is immersed, it is rinsed for a predetermined time. Every time 6 sheets are rinsed, 15 mL is discharged to the tank 6 by the valve 17 and the pipe 18, and 15 mL is replenished from the tank 5. The wafer after the ozone bubbling rinsing was subjected to overflow rinsing (mechanism not shown) with ultrapure water at room temperature in the tank 3, and dried with a spin dryer (not shown).
[0034]
When the immersion time in each tank was 2 minutes, no resist residue was visually observed immediately after drying, and surface adhesion of undecomposed cured resist fine pieces was examined with a microscope, but was not observed. Further, a chip was cut out from the first processed wafer and used as a sample for charged particle activation analysis. The amount of residual organic carbon on the surface is 2.7 x 10 13 Atom / cm 2 Thus, the cured resist was sufficiently removed.
[0035]
Although the resist film is peeled off by the treatment in the tank 1, floating of undecomposed hardened resist fine pieces occurs in the liquid. In order to sufficiently decompose the fine pieces of the discharged liquid in the tank 6, ozone gas was bubbled from the gas diffuser 22 at a flow rate of 1 L / min by the valves 19 and 20 and the gas pipe 21 when the liquid volume reached 100 mL. Let After 5 minutes when the liquid volume becomes 200 mL, nitrogen gas is bubbled from the diffuser 22 through the high purity nitrogen gas pipe 23, the valve 24 and the valve 20 for 5 minutes, and ozone dissolved from the liquid in the tank is removed. After deaeration, the liquid is transferred to the tank 7 through the connecting pipe 25 by the valve 26 and the liquid feed pump P. The tanks 6 and 7 are provided with heaters 27 and 28, and the temperature of the liquid inside is kept at about 40 ° C. Tanks 5 and 7 are new Remover An introduction pipe 29 and a valve 30 attached thereto are provided, and disposal of the liquid is performed by a waste pipe 31 and an attached valve 32.
[0036]
In the liquid supply system, the hardened resist fine pieces that could not be decomposed by ozone were cured 1 × 10 14 / cm 2 The amount of ion implantation is very small, Remover A large burden is not imposed on the filter attached to the supply pipe 8. Therefore, if the performance degradation of the processing liquid occurs, Remover This is thought to be based on a decrease in peeling performance due to an increase in reaction products with ozone itself. Therefore, following the first 6 wafer processing, the above circulating fluid is supplied 6 times × 19 times, that is, 114 wafers using a resist film wafer that is not ion-implanted, and the last wafer is ion-implanted. It was done by. Immediately after the drying, the resist removal state is evaluated in the same way as the original sample, and the surface is visually observed and the result of charged particle activation analysis (residual carbon content: 3.4 × 10 13 Atom / cm 2 ), It was confirmed that the ability to remove the cured resist film was not different from the original solution.
[0037]
Used for 120 sheets processed Remover Is 1.2L, and 100 sheets can be processed per 1L. In the case of the conventional method, since 300 mL is usually used for every six sheets, 20 sheets are processed per liter. With this mixed solution, the life of the liquid can be increased to five times that of the conventional method by resist decomposition with ozone. This is because ethylene carbonate is not easily decomposed by ozone like acetic acid.
[0038]
Example 3
In the process of removing the organic film on the surface having a fine gap, the film adhering to the side surface and the bottom in the gap may remain unremoved, and it is necessary to add a precise removal process. Due to the miniaturization of VLSI, a resist-modified film is formed on the sidewalls of the fine holes by dry etching with a high aspect ratio. The masked resist is generally removed by oxygen plasma ashing, but since this altered film remains, wet removal with a stripping solution is followed. As miniaturization progresses, a resist removal solution having as small a surface tension and viscosity as possible is required for processing inside the micropores. Then, HFE-7100 was used as a solvent that dissolves ozone well, and the resist stripping action was examined as a mixed solution with acetic acid.
[0039]
The film to be removed is IX500 (trade name, manufactured by JSR Corporation) with a thickness of 1.5 μm, which is baked at 140 ° C. for 60 seconds. The single-wafer experimental system was configured with the removal treatment tank 1, the rinsing tank 2, and a small HFE vapor drying tank (not shown) containing the HFE liquid in Example 2. The wafer was held by the support of the same example and processed in each tank in order. Tank 1 and tank 2 were filled with the mixed solution and heated to 40 ° C., and bubbling of ozone gas was carried out in the same manner as in Example 2 in tank 1 alone. Remover The mixing ratio (weight) of HFE / acetic acid was 90/10, 80/20, and 60/40. However, at a mixing ratio of 90/10, it could not be removed even after being immersed for 2 minutes. When the mixing ratio was 80/20, it took 1 minute to remove it. After rinsing in tank 2 for 1 minute, it was dried with HFE-7100 vapor and the removal surface was observed with a microscope. When the mixing ratio was 60/40, the time required for removal in the tank 1 was 45 seconds and the peeling speed was about 2 μm / min. Sufficient removal performance was obtained for this kind of removal purpose. The surface tension and viscosity are 16 dyn / cm and 0.6 cP at a mixing ratio of 80/20, and are 18 dyn / cm and 0.7 cP at a mixing ratio of 60/40, and 27 dyn / cm and 1.0 cP in the case of ozone acetic acid treatment. Compared to the above, the wettability to the minute gap was remarkably improved.
[0040]
Example 4
In Example 3, a resist removal solution having a small surface tension and a low viscosity was shown. However, in order to satisfy the peeling speed, a mixed solution composed of ethylene carbonate (concentration 1% by weight) and a mixture of HFE-7200 and acetic acid was used. The same resist removal experiment as in Example 3 was performed. The liquid in the steam drying tank is HFE-7200. Even when HFE / acetic acid = 90/10 (weight ratio), a peeling speed of 3 μm / min is obtained. In this case, the surface tension and viscosity of the treatment liquid are almost the same as those of HFE. When the mixing ratio is 80/20, the peeling rate is 4.5 μm / min, which is quite close to the peeling rate of ozone-added acetic acid.
[0041]
Example 5
Fluorine detergents with low surface tension and low viscosity are the most effective for precision cleaning of parts with complex surface shapes. Therefore, the removal effect and regeneration effect of the organic film removing liquid by ozone of the present invention were investigated using a mixed solution composed of tert-butyl alcohol (concentration: 10% by weight) and HFE-7100 solvent, which has relatively little reaction with ozone. It was. It is known that a fluorine-based detergent added with alcohol dissolves rosin-based flux. This flux was to be removed, and was applied onto the oxidized wafer used in each example to obtain a removed sample. The experimental apparatus was the same as that of Example 3, and a series of treatments were performed in the same manner as in Example 3 after 1 minute of removal treatment by ozone bubbling. Although the flux was removed visually, the removal was further confirmed by charged particle activation analysis. Although 20 sheets were processed in the tank 1, the color in the liquid in the tank was not changed due to flux dissolution, and it is considered that the flux was decomposed.
[0042]
Fluorine-based cleaning agents that have solved environmental problems are more expensive than other solvents, but if the dissolved organic coating is decomposed by ozone and the life of the cleaning agent is extended, the economic difficulty can be alleviated, and fluorine The application field of film removal that takes advantage of the system can be expanded. Therefore, the polyvinyl butyral coating on the copper plate was coated with a mixture of 70% by weight of HFE-7200, 20% by weight of acetic acid, and 10% by weight of butyl acetate, using the experimental apparatus of Example 3 for each treatment time of 5 minutes. I tried to peel off. The film removal was confirmed visually.
The same treatment was applied to the vinyl chloride resin plate-like sample in which the oil film of the drying oil remained, and an attempt was made to remove the oil film. Remover The composition of HFE-7200 is 70% by weight, acetic acid 20% by weight, and decane 10% by weight. Although each treatment time was 2 minutes, no film remained visually, and the blue colored state of the liquid derived from dissolved ozone recovered after the treatment time had elapsed.
[0043]
Example 6
Using the exfoliation treatment tank 1 and the ozone diffuser 10 of Example 2, this tank is set directly above the vibrator in the water tank containing the throw-in type 28 KC ultrasonic vibrator, and the coating film is removed. investigated. The objects to be peeled off are a polymethyl methacrylate coating and a polyvinyl acetate coating on a 10 cm square stainless steel plate. Remover The composition is a mixed solution of 70% by weight of propionic acid and 30% by weight of butyl acetate. Treatment was at 20 ° C. In the same manner as in Example 2, ozone was bubbled, the sample was immersed after 5 minutes, and the ultrasonic wave was stopped for 30 seconds and repeated for 10 seconds. Although the thickness of the coating was not measured, peeling was confirmed visually in about 5 minutes in the case of a polymethylmethacrylate coating and in about 3 minutes in the case of a polyvinyl acetate coating.
[0044]
【The invention's effect】
The present invention has an excellent dissolving power for an organic film composed of a specific mixed solution. Remover The organic coating is removed by dissolving ozone in this, and various ozone-decomposable organic coatings can be removed. Also, Remover In order to increase the decomposition power of ozone, it is difficult to react with ozone. Remover In addition, ozone can be dissolved at a high concentration, and the reaction product after decomposition has a low molecular weight, dissolves well in the processing solution, does not contaminate the substrate, and does not contaminate the substrate. The dissolved organic film-derived component can be decomposed by treatment with ozone gas in a different area from the treatment area, and the treatment liquid can be regenerated and reused. At the same time, the performance is remarkably improved and there are no environmental problems and resource saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the correlation between the composition ratio of acetic acid: ethylene carbonate obtained in Example 1 and the resist stripping rate.
FIG. 2 is a diagram showing an outline of a stripping instrument array and a liquid supply instrument array for a single-wafer experimental mechanism used in Example 2;
[Explanation of symbols]
1. Stripping treatment tank Treatment liquid rinse tank
3. Ultra pure water rinsing tank 4. Wafer
5,6,7. Tank 8 Treatment liquid supply pipe
9. Heater 10. Ozone diffuser
11. Piping 12,13. valve
14 Piping 15. Heater
16. Rinse solution supply pipe 17. valve
18. Piping 19,20. valve
21. Gas piping 22. Diffuser
23. Nitrogen gas piping 25. Connecting pipe
26. Valve 27,28. Heater
29. new Remover Introducing pipe 30. valve
31. Waste pipe 32. valve

Claims (11)

表面にオゾン分解性有機被膜を有する基体に、オゾンガスを溶解させた処理液を接触させて前記有機被膜を除去する方法において、前記処理液が、
(a)炭酸アルキレン、酢酸アルキルエステル、 tert- ブチルアルコール、および式:C m 2m+2 (式中、m= 10 12 の整数)で表されるパラフィン系飽和炭化水素から選ばれる有機物質と、
(b)式:C n 2n+1 COOH(式中、n=1〜3の整数)で表される脂肪酸、並びに/あるいはC 4 9 OCH およびC 4 9 OC 2 5 から成る群から選ばれる少なくとも1種のハイドロフルオロエーテルとの溶液(ただし、前記(a)成分および/または前記(b)成分として少なくとも1種の水混和性成分を含む)
にオゾンを溶解させてなるものであることを特徴とする有機被膜の除去方法。
In the method of removing the organic film by bringing a treatment liquid in which ozone gas is dissolved into contact with a substrate having an ozone decomposable organic film on the surface, the treatment liquid comprises:
(a) Organic substance selected from alkylene carbonate, acetic acid alkyl ester, tert- butyl alcohol, and paraffinic saturated hydrocarbon represented by the formula: C m H 2m + 2 (where m = an integer of 10 to 12 ) When,
(b) Formula: consisting C n H 2n + 1 COOH fatty acid represented by (wherein, n = 1 to 3 integer), and / or C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5 Solution with at least one hydrofluoroether selected from the group (provided that the component (a) and / or the component (b) includes at least one water-miscible component)
A method for removing an organic film, wherein ozone is dissolved in the organic film.
前記(a)成分炭酸アルキレンおよび酢酸アルキルエステルから選ばれる少なくとも1種であり、かつ、前記(b)成分前記の脂肪酸、または、前記脂肪酸と前記のハイドロフルオロエーテルとの混合物であることを特徴とする請求項1に記載の方法。The component (a) is at least one selected from alkylene carbonate and alkyl acetate , and the component (b) is the fatty acid or a mixture of the fatty acid and the hydrofluoroether. The method of claim 1, characterized in that: 前記(a)成分がtert-ブチルアルコールであり、かつ、前記(b)成分が前記のハイドロフルオロエーテルであることを特徴とする請求項1に記載の方法。Wherein component (a) is a tert- butyl alcohol, and The method of claim 1, wherein the component (b) characterized in that it is a Hydro fluoroether said. 表面にオゾン分解性有機被膜を有する基体に、オゾンガスを溶解させた処理液を接触させて前記有機被膜を除去する方法において、前記処理液が、
(a)式:C n 2n+1 COOH(式中、n=1〜3の整数)で表される脂肪酸と、
(b) 4 9 OCH およびC 4 9 OC 2 5 から成る群から選ばれる少なくとも1種のハイドロフルオロエーテルとの溶液
にオゾンを溶解させてなるものであることを特徴とする有機被膜の除去方法。
In the method of removing the organic film by bringing a treatment liquid in which ozone gas is dissolved into contact with a substrate having an ozone decomposable organic film on the surface, the treatment liquid comprises:
(a) a fatty acid represented by the formula: C n H 2n + 1 COOH (where n is an integer of 1 to 3) ;
(b) a solution with at least one hydrofluoroether selected from the group consisting of C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5
A method for removing an organic film, wherein ozone is dissolved in the organic film.
請求項1〜のいずれか1項に記載の方法であって、有機被膜除去処理後の処理液を前記処理を施す区域とは異なる区域に移送して、オゾンガスで処理した後、前記処理を施す区域に復帰させ、別の基体を処理するための処理液として再使用することを特徴とする方法。It is a method of any one of Claims 1-4 , Comprising: The process liquid after an organic film removal process is transferred to the area different from the area which performs the said process, and after processing with ozone gas, the said process is performed. Returning to the application area and reusing it as a processing liquid for processing another substrate. 請求項1〜記載のいずれか1項に記載の方法であって、前記有機被膜がレジスト膜であることを特徴とする方法。6. The method according to any one of claims 1 to 5 , wherein the organic coating is a resist film. オゾンを溶解させて、表面にオゾン分解性有機被膜を有する基体に接触させて前記有機被膜を除去するために用いられる有機被膜除去剤であって、
(a)炭酸アルキレン、酢酸アルキルエステル、 tert- ブチルアルコール、および式:C m 2m+2 (式中、m= 10 12 の整数)で表されるパラフィン系飽和炭化水素から選ばれる有機物質、並びに
(b)式:C n 2n+1 COOH(式中、n=1〜3の整数)で表される脂肪酸、および/またはC 4 9 OCH およびC 4 9 OC 2 5 から成る群から選ばれる少なくとも1種のハイドロフルオロエーテルを含むこと(ただし、前記(a) 成分および/または前記(b) 成分として少なくとも1種水混和性成分を含む
を特徴とする有機被膜除去剤。
An organic film removing agent used for dissolving ozone and bringing it into contact with a substrate having an ozone decomposable organic film on its surface to remove the organic film,
(a) Organic substance selected from alkylene carbonate, acetic acid alkyl ester, tert- butyl alcohol, and paraffinic saturated hydrocarbon represented by the formula: C m H 2m + 2 (where m = an integer of 10 to 12 ) , And
(b) Formula: consisting C n H 2n + 1 COOH (wherein, n = 1 to 3 integer) fatty acid represented by, and / or C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5 comprise at least one hydrofluoroether selected from the group (provided that the (a) component and / or said (b) at least one water miscible component as component)
Organic film remover characterized by
前記(a)成分炭酸アルキレンおよび酢酸アルキルエステルから選ばれる少なくとも1種であり、かつ、前記(b)成分前記の脂肪酸、または、前記脂肪酸と前記のハイドロフルオロエーテルとの混合物であることを特徴とする請求項に記載の有機被膜除去剤。The component (a) is at least one selected from alkylene carbonate and alkyl acetate , and the component (b) is the fatty acid or a mixture of the fatty acid and the hydrofluoroether. The organic film removing agent according to claim 7, which is characterized by: 前記(a)成分がtert-ブチルアルコールであり、かつ、前記(b)成分が前記のハイドロフルオロエーテルであることを特徴とする請求項に記載の有機被膜除去剤。Wherein component (a) is a tert- butyl alcohol, and the organic film removing agent according to claim 7, wherein the component (b) is a Hydro fluoroether said. オゾンを溶解させて、表面にオゾン分解性有機被膜を有する基体に接触させて前記有機被膜を除去するために用いられる有機被膜除去剤であって、
(a)式:C n 2n+1 COOH(式中、n=1〜3の整数)で表される脂肪酸と、
(b) 4 9 OCH およびC 4 9 OC 2 5 から成る群から選ばれる少なくとも1種のハイドロフルオロエーテル
を含むことを特徴とする有機被膜除去剤。
An organic film removing agent used for dissolving ozone and bringing it into contact with a substrate having an ozone decomposable organic film on its surface to remove the organic film,
(a) a fatty acid represented by the formula: C n H 2n + 1 COOH (where n is an integer of 1 to 3) ;
(b) at least one hydrofluoroether selected from the group consisting of C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5
The organic film removing agent which comprises a.
レジスト膜除去用である請求項10のいずれか1項に記載の有機被膜除去剤。The organic film removing agent according to any one of claims 7 to 10 , which is used for removing a resist film.
JP2002083001A 2002-03-25 2002-03-25 Method and agent for removing organic coating Expired - Fee Related JP4004318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083001A JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083001A JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Publications (2)

Publication Number Publication Date
JP2003282518A JP2003282518A (en) 2003-10-03
JP4004318B2 true JP4004318B2 (en) 2007-11-07

Family

ID=29230965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083001A Expired - Fee Related JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Country Status (1)

Country Link
JP (1) JP4004318B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050120914A (en) * 2004-06-21 2005-12-26 주식회사 동진쎄미켐 Composition for removing a (photo)resist
JP2006024823A (en) * 2004-07-09 2006-01-26 Casio Comput Co Ltd Method for removing resist
JP4613535B2 (en) * 2004-07-09 2011-01-19 カシオ計算機株式会社 Resist removal method
JP4555729B2 (en) * 2005-05-17 2010-10-06 積水化学工業株式会社 Resist removing method and resist removing apparatus
JP4986565B2 (en) * 2005-12-02 2012-07-25 大日本スクリーン製造株式会社 Substrate processing method and substrate processing apparatus
SG170760A1 (en) 2006-04-05 2011-05-30 Asahi Glass Co Ltd Method for washing device substrate
EP2166564B1 (en) * 2008-09-19 2017-04-12 Imec Method for removing a hardened photoresist from a semiconductor substrate
JP5543633B2 (en) 2012-11-26 2014-07-09 東京エレクトロン株式会社 Substrate cleaning system, substrate cleaning method, and storage medium
JP5677603B2 (en) * 2012-11-26 2015-02-25 東京エレクトロン株式会社 Substrate cleaning system, substrate cleaning method, and storage medium
JP6038623B2 (en) * 2012-12-07 2016-12-07 株式会社Screenホールディングス Substrate processing equipment

Also Published As

Publication number Publication date
JP2003282518A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
TW584893B (en) Method and apparatus for removing organic films
US20040011386A1 (en) Composition and method for removing photoresist and/or resist residue using supercritical fluids
KR100368193B1 (en) Aqueous rinsing composition
US7326673B2 (en) Treatment of semiconductor substrates using long-chain organothiols or long-chain acetates
US6509141B2 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US20090120457A1 (en) Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
US20040050406A1 (en) Compositions and method for removing photoresist and/or resist residue at pressures ranging from ambient to supercritical
US6274296B1 (en) Stripper pretreatment
JP2007535697A (en) Non-fluoride-containing supercritical fluid composition for removing ion-implanted photoresist
JPH1027771A (en) Cleaning method and device
JP2006505010A (en) Supercritical carbon dioxide / chemical formulation for removing photoresist
JP4004318B2 (en) Method and agent for removing organic coating
JP2007044660A (en) Polymer removing composition
JP2005340668A (en) Method and apparatus for removing organic substance
KR20180088452A (en) Process liquid, substrate cleaning method, and semiconductor device manufacturing method
US7402213B2 (en) Stripping and removal of organic-containing materials from electronic device substrate surfaces
TWI261290B (en) Removal of contaminants using supercritical processing
JP2003203856A (en) Removal method for organic coated film
JP2003045842A (en) Method and apparatus of removing foreign matters deposited on surface
JP2007536730A (en) Compositions and methods for drying patterned wafers during the manufacture of integrated circuit products
JPWO2006132008A1 (en) Organic film remover, organic film removal method and remover using the remover
KR20090025689A (en) Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide
KR100690347B1 (en) Stripper composition, stripping method using the same and stripper systems
WO2009017484A1 (en) Stripping and removal of organic-containing materials from electronic device substrate surfaces
US20020104550A1 (en) Solution for cleaning metallized microelectronic workpieces and methods of using same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees