KR20090025689A - Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide - Google Patents

Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide Download PDF

Info

Publication number
KR20090025689A
KR20090025689A KR1020070090730A KR20070090730A KR20090025689A KR 20090025689 A KR20090025689 A KR 20090025689A KR 1020070090730 A KR1020070090730 A KR 1020070090730A KR 20070090730 A KR20070090730 A KR 20070090730A KR 20090025689 A KR20090025689 A KR 20090025689A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
photoresist
supercritical carbon
additive
cosolvent
Prior art date
Application number
KR1020070090730A
Other languages
Korean (ko)
Inventor
임권택
김준호
김승호
이민영
조중근
김현효
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020070090730A priority Critical patent/KR20090025689A/en
Publication of KR20090025689A publication Critical patent/KR20090025689A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts
    • G03F7/063Additives or means to improve the lithographic properties; Processing solutions characterised by such additives; Treatment after development or transfer, e.g. finishing, washing; Correction or deletion fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A method for removing photoresist is provided to remove the photoresist injected with high ion from a substrate in supercritical carbon dioxide by using co-solvent and additives without an oxygen plasma ashing process. A method for removing photoresist injected with high ion from a substrate in supercritical carbon dioxide by using co-solvent and additives comprises the steps of (i) mounting a wafer having photoresist injected with high ion on a reaction container; (ii) after adding carbon dioxide, co-solvent and additives which have the temperature of 30-150 °C and the pressure of 2000-5000 psi to the reaction container, and removing the photoresist injected with high ion by contacting the materials with a wafer; (iii) separating carbon dioxide, co-solvent and additive from the reaction container; (iv) rinsing the top of wafer by using pure supercritical carbon dioxide; and (v) removing the pure supercritical carbon dioxide from the reaction container of high pressure and separating the wafer from which the photoresist injected with high ion is removed.

Description

초임계이산화탄소 내에서 공용매와 첨가제를 이용하여 고이온주입된 포토레지스트의 제거방법 {Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide}Removal of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide

본 발명은 초임계이산화탄소 내에서 공용매 및 첨가제를 이용하여 기판으로부터 고이온주입된 포토레지스트를 제거하는 방법에 관한 것이다. The present invention relates to a method of removing high ion implanted photoresist from a substrate using cosolvents and additives in supercritical carbon dioxide.

반도체 디바이스 제조공정은 증착, 포토리소그래피, 식각 공정이 반복적으로 진행되며, 포토레지스트는 포토리소그래피 공정을 통해 회로 패턴의 다양한 미세구조 형성을 위해 사용되고 있다. In the semiconductor device manufacturing process, deposition, photolithography, and etching processes are repeatedly performed, and photoresist is used to form various microstructures of a circuit pattern through a photolithography process.

이러한 포토레지스트는 미세구조 형성 후 다음 공정 전에 반드시 제거되어야 하며 완벽하게 제거되지 않을 경우 불순물로 남게 되어 최종제품의 성능저하 및 불량의 원인이 된다. Such photoresist must be removed after the formation of the microstructure and before the next process. If the photoresist is not completely removed, the photoresist remains as an impurity, which causes deterioration and failure of the final product.

포토레지스트는 광활성 화합물인 감광제를 포함하는 고분자 물질로서 패턴 이미지를 기판 위에 형상화하기 위해 사용된다. 디바이스의 전기적 특성변화를 위해 이온을 주입하는 공정에서 포토레지스트는 원하지 않은 영역에 이온의 주입을 막기 위한 마스크로 사용된다. 이때 포토레지스트의 표면에는 주입된 이온들에 의해 포토레지스트 내에 존재하는 수소 등의 원자가 방출되어 탄화층이 형성된다. 주 로 포토레지스트의 상부와 측면 표면 위에 형성되는 탄화층은 비 다공성 구조로 변화되어 용매의 침투가 불가능하여 일반적인 습식 방법으로는 제거가 어렵다. Photoresist is a polymeric material comprising a photosensitive agent that is a photoactive compound and is used to shape a pattern image onto a substrate. In the process of implanting ions to change the electrical characteristics of the device, photoresists are used as masks to prevent the implantation of ions into unwanted areas. At this time, atoms such as hydrogen present in the photoresist are released on the surface of the photoresist to form a carbonized layer. In general, the carbonized layer formed on the upper and side surfaces of the photoresist is changed to a non-porous structure, which makes it impossible to penetrate the solvent, which is difficult to remove by a general wet method.

이러한 탄화층을 가지는 포토레지스트를 제거하는 통상적인 방법은 산소플라즈마 에싱 후 잔존하는 잔류물을 제거하기 위하여 화학약품 또는 희석된 산을 사용하는 습식 세정단계를 거쳐 제거하고 있으나, 플라즈마의 형성을 위해 주변 온도가 고온으로 상승하여 포토레지스트 내에 존재하는 용매 또는 저분자량의 휘발 물질들이 포토레지스트의 탄화층에 의해 쉽게 빠져나가지 못하고 포토레지스트에 팽윤 또는 파열을 일으켜 미세패턴의 손상을 야기시킨다. Conventional methods for removing the photoresist having such a carbonized layer are removed through a wet scrubbing step using chemicals or diluted acids to remove residual residues after oxygen plasma ashing. The temperature rises to a high temperature so that solvents or low molecular weight volatiles present in the photoresist are not easily escaped by the carbonized layer of the photoresist and cause swelling or rupture in the photoresist, causing damage to the micropattern.

또한 생성된 파열 잔류물 입자들은 공정장비에 축적되어 다른 기판에 재 흡착 될 수도 있다. 이를 제거하기 위하여 많은 횟수의 세정 공정을 필요하게 되어 다량의 화학약품 및 희석된 산이 사용되며, 이를 처리하기 위한 또 다른 비용을 발생시킨다. The resulting burst residue particles can also accumulate in process equipment and be resorbed to other substrates. In order to remove this, a large number of cleaning processes are required, and a large amount of chemicals and diluted acids are used, which incurs another cost for treating them.

최근 상기와 같은 문제점을 해결하기 위하여 초임계이산화탄소를 이용한 연구로 대한민국 특허 0597656호와 특허 0559017호에서는 일반적인 포토레지스트 및 포트레지스트 잔사의 제거 방법에 대해 설명하고 있지만, 이러한 방법으로 고이온주입 후 경화된 표면 탄화층을 가지는 기판의 포토레지스트를 제거시키기에는 어려움이 있다. Recently, in order to solve the problems described above, Korean Patent No. 0597656 and Patent No. 0559017 describe a general method of removing photoresist and fortresist residues. It is difficult to remove the photoresist of the substrate having the surface carbide layer.

이에 대한민국 특허 0525855호에서는 산소플라즈마 에싱 후 초임계 이산화탄소 내에서 고이온주입된 포토레지스트 제거에 관한 기술을 제시하였다. Accordingly, Korean Patent 0525855 proposes a technique for removing photoresist injected with high ions in supercritical carbon dioxide after oxygen plasma ashing.

상기 특허는 산소플라즈마로 에싱한 후 이산화탄소를 이용하여 고이온주입된 포토레지스트 잔류물을 제거하지만, 이 공정 후에도 완전히 제거되지 않기 때문에 웨이퍼 상부에 잔류하는 공용매와 포토레지스트 잔사 등의 잔류물을 알코올 및 물을 사용하여 별도의 헹굼 공정을 실시하고 있다. The patent removes high ion implanted photoresist residues using carbon dioxide after ashing with oxygen plasma, but the residues such as cosolvents and photoresist residues remaining on the wafer are not completely removed even after this process. And water are used to separate rinse steps.

이러한 공정은 산소플라즈마 에싱 처리에서 생성되는 문제점 및 이산화탄소 처리에서도 제거되지 못한 잔사를 처리하기 위하여 또 하나의 헹굼 공정이 부과되어 생산효율을 저하시키고 부대비용 및 또 다른 환경적인 문제를 유발시킬 수 있다. This process imposes another rinsing process to treat the problems generated in the oxygen plasma ashing process and the residues not removed even in the carbon dioxide treatment, which may lower the production efficiency and cause additional costs and other environmental problems.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 산소플라즈마 에싱 공정 없이 초임계이산화탄소 내에서 공용매 및 첨가제를 이용하여 기판으로부터 단시간 내에 고이온주입된 포토레지스트를 완전히 제거하는 것을 목적으로 한다. The present invention is to solve the above problems, an object of the present invention is to completely remove the high ion implanted photoresist from the substrate in a short time using a co-solvent and additives in supercritical carbon dioxide without oxygen plasma ashing process The purpose.

초임계 이산화탄소는 빠른 물질전달 특성과 낮은 표면장력을 가지므로 공용매 및 첨가제와 함께 고이온주입된 포토레지스트의 표면 탄화층에 빠른 침투가 가능하여 플라즈마 에싱 시 발생하는 고열에 의한 포토레지스트의 파열 현상이 발생되지 않는다. Since supercritical carbon dioxide has fast material transfer characteristics and low surface tension, it is possible to rapidly penetrate into the surface carbide layer of the photoresist injected with high ion together with cosolvents and additives, resulting in photoresist rupture due to high heat generated during plasma ashing. This does not occur.

또한 초임계이산화탄소와 함께 사용된 공용매 및 첨가제가 포토레지스트 성분을 적절하게 용해시켜 기판으로부터 제거시키는 역할을 수행하여, 기판으로부터 고이온주입된 포토레지스트를 빠른 시간 안에 제거시킬 수 있다. In addition, cosolvents and additives used in conjunction with supercritical carbon dioxide serve to dissolve the photoresist components appropriately and remove them from the substrate, thereby quickly removing the high ion implanted photoresist from the substrate.

상기의 기술적 과제를 달성하기 위한 본 발명은 초임계이산화탄소 내에서 공용매 및 첨가제를 이용하여 기판으로부터 고이온주입된 포토레지스트를 제거하는 방법을 제공하는 것이다. The present invention for achieving the above technical problem is to provide a method for removing a high ion implanted photoresist from a substrate using a co-solvent and an additive in supercritical carbon dioxide.

초임계 이산화탄소는 기체처럼 빠르게 확산되며, 극히 낮은 표면장력을 가지므로 비교적 쉽게 이온주입 포토레지스트의 탄화층 속으로 침투하고, 액체처럼 습식 매질로서의 흐름도 동시에 가진다. Supercritical carbon dioxide diffuses rapidly like gas, has a very low surface tension, and therefore relatively easily penetrates into the carbonized layer of the ion implanted photoresist and simultaneously flows as a liquid wet medium.

그러나 무극성의 초임계 이산화탄소는 극성 물질을 포함하고 있는 포토레지스트 성분들을 효과적으로 용해 시키지 못하므로 효율적인 제거를 위하여 공용매 및 첨가제의 적절하게 사용하여 상기의 단점을 극복할 수 있다.However, since the non-polar supercritical carbon dioxide does not effectively dissolve the photoresist components containing the polar material, it is possible to overcome the above disadvantages by using a cosolvent and an additive properly for efficient removal.

본 발명의 초임계 이산화탄소 내에서 공용매 및 첨가제를 첨가하는 이유는 기판으로부터 고이온주입된 포토레지스트의 용해도를 증가시켜 제거효율을 향상시키기 위함이다.The reason for adding the cosolvent and the additive in the supercritical carbon dioxide of the present invention is to increase the solubility of the photoresist implanted with high ions from the substrate to improve the removal efficiency.

상기 공용매는 메탄올, 에탄올, 이소프로판올, 벤조일알코올을 포함하는 알코올류, 모노에탄올아민, 다이에탄올아민, 트리에탄올아민, 카본테트라클로라이드, 아세톤, 메틸에틸케톤, 테트라하이드로퓨란 중에서 1종 단독물이나 또는 2종 이상의 혼합물로 사용된다. The cosolvent may be used alone or in combination of alcohols including methanol, ethanol, isopropanol, benzoyl alcohol, monoethanolamine, diethanolamine, triethanolamine, carbon tetrachloride, acetone, methyl ethyl ketone and tetrahydrofuran. It is used as a mixture above.

상기 첨가제는 테트라알킬암모늄하이드록사이드, 포르말린, 포름산, 아세트산, 인산, 황산 중에서 1종 단독물이나 또는 2종 이상의 혼합물로 사용된다. The additive is used alone or in a mixture of two or more of tetraalkylammonium hydroxide, formalin, formic acid, acetic acid, phosphoric acid and sulfuric acid.

상기 기판은 반도체 웨이퍼, 알루미늄-알루미늄 산화막 기판, 갈륨 비소 기판, 세라믹 기판, 구리 기판 등이 사용된다.The substrate may be a semiconductor wafer, an aluminum-aluminum oxide substrate, a gallium arsenide substrate, a ceramic substrate, a copper substrate, or the like.

바람직한 구체예에서, 사용되는 초임계이산화탄소 함량은 60 내지 95 중량%, 공용매의 함량은 4 내지 30 중량%, 첨가제의 함량은 1 내지 10 중량% 범위인 것이 적당하다. In a preferred embodiment, the supercritical carbon dioxide content used is in the range of 60 to 95% by weight, the content of the cosolvent is 4 to 30% by weight, and the content of the additive is in the range of 1 to 10% by weight.

초임계 이산화탄소 내에서 공용매 및 첨가제에 의해 제거되어야 할 물질은 고이온주입된 포토레지스트이다. The material to be removed by cosolvents and additives in supercritical carbon dioxide is a high ion implanted photoresist.

상기 포토레지스트는 I-line 포토레지스트, KrF 엑시머 레이져용 포토레지스 트, ArF 엑시머 레이저용 포토레지스트 등 다양한 포토레지스트가 1×1015 atoms/㎠ 도우즈 이상으로 이온 주입되어 있다. In the photoresist, various photoresists such as I-line photoresist, KrF excimer laser photoresist, and ArF excimer laser photoresist are ion-implanted with 1 × 10 15 atoms / cm 2 dose or more.

효과적인 이산화탄소 내에서 고이온주입된 포토레지스트의 제거 방법을 위하여 상기 웨이퍼를 100 내지 10000 RPM으로 회전시켜 초임계이산화탄소와의 접촉효과를 상승시킬 수 있다. The wafer may be rotated at 100 to 10000 RPM to increase the contact effect with supercritical carbon dioxide in order to effectively remove the photoresist implanted with high ions in carbon dioxide.

본 발명의 실시예에 있어서 포토레지스트는 KrF 엑시머 레이져용 포토레지스트이며, 1×1015 atoms/㎠ 도우즈 이상으로 이온 주입된 포토레지스트이고, 기판은 반도체용 웨이퍼이다.In an embodiment of the present invention, the photoresist is a photoresist for KrF excimer laser, a photoresist ion-implanted with 1 × 10 15 atoms / cm 2 dose or more, and the substrate is a semiconductor wafer.

초임계 이산화탄소 내에서 공용매 및 첨가제를 사용한 포토레지스트의 제거효율은 공용매의 종류 및 농도, 첨가제의 종류 및 농도 조건의 변화에 따라 향상시킬 수 있으며, 초임계 이산화탄소와 공용매 및 첨가제들과 제거될 포토레지스트의 접촉단계에서의 온도, 압력, 접촉시간의 변화에 따라서 향상시킬 수 있다. Removal efficiency of photoresist using cosolvent and additive in supercritical carbon dioxide can be improved by changing cosolvent type and concentration, type of additive and concentration condition. It can be improved according to the change of temperature, pressure and contact time in the contacting step of the photoresist to be made.

본 발명의 공용매 및 첨가제의 성분과 농도를 최적화하고 적은 양의 사용으로 완벽한 제거가 이루어지도록 하였다. 또한 포토레지스트와 접촉 제거 단계 후, 웨이퍼 상부에 포토레지스트 잔여물, 공용매 및 첨가제의 잔여물이 존재하지 않아 별도의 용제를 이용한 헹굼 처리공정이나 건조 공정을 필요로 하지 않는다.The components and concentrations of the cosolvents and additives of the present invention were optimized and complete removal was achieved with small amounts of use. In addition, after the step of removing the contact with the photoresist, there is no residue of photoresist residue, cosolvent and additives on the wafer, so that no rinse treatment or drying process using a separate solvent is required.

도 1에 나타낸 것과 같이 본 발명에 의한 고이온주입된 포토레지스트를 가지는 웨이퍼로부터 고이온주입된 포토레지스트를 제거를 위한 장치는, 이산화탄소공급원(11)으로부터 초기에 고압용 반응용기(16)에 이산화탄소를 공급하고 헹굼 시 이산화탄소를 공급하기 위한 공급관(12)을 통하여 연결되는 되어있다. 상기 이산화탄소를 고압의 상태로 주입하기 위한 고압펌프(14), 상기 공급관(12)에 연결되어 공용매 및 첨가제 공급원(15), 상기 고압용 반응용기에 부착되어 소정의 반응온도를 조절 하기 위한 가열기(17), 가열된 유체를 반응기 외부를 순환시키는 순환펌프(18), 순환관(19), 상기 고압용 반응용기(16)에 부착되어 제거된 포토레지스트 성분 및 초임계이산화탄소, 공용매 및 첨가제는 배출관(20)을 통하여 제거된다.As shown in FIG. 1, an apparatus for removing a high ion implanted photoresist from a wafer having a high ion implanted photoresist according to the present invention is characterized in that the carbon dioxide is initially supplied from the carbon dioxide source 11 to the high pressure reaction vessel 16. It is connected through a supply pipe 12 for supplying and supplying carbon dioxide during rinsing. A high pressure pump 14 for injecting the carbon dioxide in a high pressure state, the supply pipe 12 is connected to the co-solvent and additive supply source 15, the high pressure reaction vessel is a heater for controlling a predetermined reaction temperature (17), a circulating pump 18 for circulating the heated fluid outside the reactor, a circulation tube 19, a photoresist component and supercritical carbon dioxide, co-solvent and additives attached to and removed from the high pressure reaction vessel 16; Is removed through the discharge pipe (20).

본 발명의 공용매 및 첨가제를 이용한 고이온주입된 포토레지스트의 바람직한 제거방법은 (1) 반응용기에 고이온주입된 포토레지스트를 가지는 웨이퍼를 장착하는 단계; (2) 상기 반응용기에 30 내지 150 ℃의 온도와 2000 내지 5000 psi의 압력의 이산화탄소, 공용매, 및 첨가제를 첨가하여 상기의 웨이퍼에 접촉시켜 고이온주입된 포토레지스트를 제거하는 단계; (3) 상기 반응용기로부터 이산화탄소와 공용매 및 첨가제를 분리하는 단계; (4) 순수한 초임계이산화탄소를 사용하여 웨이퍼 상부를 헹구는 단계; (5) 상기 고압의 반응용기로부터 순수한 초임계이산화탄소를 제거하고, 고이온주입된 포토레지스트가 제거된 웨이퍼를 분리하는 단계; 상기 일련의 공정을 거치면서 웨이퍼에서 고이온주입된 포토레지스트가 제거된다.A preferred method of removing a high ion implanted photoresist using a cosolvent and an additive of the present invention comprises the steps of: (1) mounting a wafer having a high ion implanted photoresist in a reaction vessel; (2) adding carbon dioxide, a co-solvent, and an additive at a temperature of 30 to 150 ° C. and a pressure of 2000 to 5000 psi to the reaction container to remove the high ion implanted photoresist; (3) separating carbon dioxide and cosolvent and additives from the reaction vessel; (4) rinsing the top of the wafer using pure supercritical carbon dioxide; (5) removing the pure supercritical carbon dioxide from the high pressure reaction vessel, and separating the wafer from which the high ion implanted photoresist has been removed; The high ion implanted photoresist is removed from the wafer through this series of processes.

본 발명은 빠른 물질전달 특성과 낮은 표면 장력을 가지는 초임계이산화탄소를 사용하여 공용매 및 첨가제와 함께 고이온주입된 포토레지스트의 표면 탄화층에 빠른 침투가 가능하여 플라즈마 에싱 시 발생하는 고열에 의한 포토레지스트의 파열 현상이 발생되지 않고, 초임계이산화탄소와 함께 사용된 공용매 및 첨가제가 포 토레지스트 성분을 적절하게 용해시켜 기판으로부터 빠른시간 안에 완벽하게 제거하므로, 공정의 단축 및 폐기물의 발생을 현저하게 감소시켜 반도체 제조공정에서의 생산성을 향상시키는 효과가 있다. The present invention enables the rapid penetration of the surface carbonized layer of the photoresist implanted with a high ion with a cosolvent and an additive using supercritical carbon dioxide having fast material transfer characteristics and low surface tension, resulting in high heat generated during plasma ashing. There is no rupture of the resist, and the cosolvent and additives used with supercritical carbon dioxide dissolve the photoresist component properly and completely remove it from the substrate in a short time, thereby significantly reducing the process and generating waste. There is an effect of reducing the productivity in the semiconductor manufacturing process.

이하에서 본 발명을 예증하기 위한 바람직한 비교예 및 실시예들을 기술한다. Hereinafter, preferred comparative examples and examples for illustrating the present invention are described.

비교예 1 내지 비교예 4Comparative Examples 1 to 4

공용매 종류의 변화 및 첨가제 농도의 변화에 따른 포토레지스트의 제거효율을 실험 하였다. 여기에서 사용된 웨이퍼는 상부에 화학증폭형 폴리히드록시스티렌이 주성분인 KrF 엑시머 레이저용 포토레지스트를 스핀코팅하여 두께를 1.6㎛ 형성 시켰으며, 질소와 비소 이온을 30 KeV의 가속도와 1×1015 atoms/㎠ 농도로 주입하여 제작하였다. 도 2a에 제시된 바와 같이 포토레지스트 상부에 0.3㎛의 탄화층이 형성되었다. 공용매로는 THF(테트라하이드로퓨란)/모노에탄올아민(1:1 혼합용액)을 사용하였으며 이산화탄소 내에서 15% 농도로 첨가하였다. 압력 3000 psi와 온도 40 내지 70 ℃에서의 초임계이산화탄소를 이용하여 120 초동안 접촉시킨 포토레지스트의 제거 실험 결과를 표 1에 나타내었으며, 온도가 증가함에 따라 제거효율이 향상되는 것을 알 수 있었다. The removal efficiency of the photoresist was investigated by changing the type of cosolvent and the concentration of additive. The wafer used here was spin-coated with a photoresist for KrF excimer laser, the main component of which is chemically amplified polyhydroxystyrene, to form a thickness of 1.6 μm, and nitrogen and arsenic ions were accelerated to 30 KeV and 1 × 10 15. It produced by injecting in atom / cm <2> concentration. As shown in FIG. 2A, a carbide layer of 0.3 μm was formed on the photoresist. THF (tetrahydrofuran) / monoethanolamine (1: 1 mixed solution) was used as a cosolvent and was added at a concentration of 15% in carbon dioxide. The results of removing the photoresist contacted for 120 seconds using supercritical carbon dioxide at a pressure of 3000 psi and a temperature of 40 to 70 ° C. are shown in Table 1, and the removal efficiency was improved as the temperature was increased.

<표 1> 온도에 따른 포토레지스트 제거 실험 TABLE 1 Photoresist Removal Experiments by Temperature

Figure 112007065016964-PAT00002
Figure 112007065016964-PAT00002

실시예 1 내지 실시예 4Examples 1-4

상기 비교예 1 에서 사용된 웨이퍼와 동일하게 제작된 웨이퍼를 사용하였으며, 공용매로는 THF/아세톤/모노에탄올아민 혼합 용액에 첨가제 포름산/아세트산 혼합용액을 사용하였다. 압력 3000 psi와 온도 70 ℃에서의 초임계이산화탄소를 이용하여 120 초동안 접촉시킨 포토레지스트의 제거 실험 결과를 표 2에 나타내었으며, 공용매에서 극성용매의 양이 증가할수록, 첨가제의 양이 증가할수록 제거효율이 향상되는 것을 알 수 있었다. A wafer manufactured in the same manner as the wafer used in Comparative Example 1 was used, and an additive formic acid / acetic acid mixed solution was used as a cosolvent in a THF / acetone / monoethanolamine mixed solution. Table 2 shows the results of the removal of photoresist for 120 seconds using supercritical carbon dioxide at 3000 psi pressure and 70 ° C. As the amount of polar solvent in the cosolvent increases, the amount of additive increases It was found that the removal efficiency was improved.

<표 2> 공용매 및 첨가제 양에 따른 포토레지스트 제거 실험<Table 2> Photoresist removal experiment according to the amount of cosolvent and additive

Figure 112007065016964-PAT00003
Figure 112007065016964-PAT00003

실시예 5 내지 실시예 7Examples 5-7

상기 비교예 1 에서 사용된 웨이퍼와 동일하게 제작된 웨이퍼를 사용하였으며, 공용매로 THF/아세톤/모노에탄올아민 (2:2:1) 혼합용액 15 wt%와 첨가제 포름산/아세트산 (1:1) 혼합용액 2 wt%를 사용하였다. 압력 3000 psi와 온도 70 ℃에서의 초임계이산화탄소를 이용하여 접촉 시간 변화에 따른 제거효율을 표 3에 나타내었으며, 30초에서는 포토레지스트가 95% 제거 되었고, 60초 이상에서는 100% 제거 되었음을 알 수 있었다.A wafer manufactured in the same manner as the wafer used in Comparative Example 1 was used, and 15 wt% of a mixed solution of THF / acetone / monoethanolamine (2: 2: 1) and additive formic acid / acetic acid (1: 1) were used as cosolvents. 2 wt% of the mixed solution was used. The removal efficiency according to the change of contact time using supercritical carbon dioxide at 3000 psi pressure and temperature 70 ℃ is shown in Table 3. The photoresist was removed 95% in 30 seconds and 100% in 60 seconds or more. there was.

화학증폭형 폴리히드록시스티렌이 주성분인 KrF 엑시머 레이저용 포토레지스트를 스핀코팅하여 두께를 1.6㎛ 형성시켰으며, 질소와 비소 이온을 30 KeV의 가속도와 1×1015 atoms/㎠ 농도로 주입하여 제작된 웨이퍼 표면을 주사전자 현미경으로 촬영한 결과(도3a)와 상기 웨이퍼 표면의 원소를 EDS 분석 결과(도3b)를 기판으로 사용된 실리콘웨이퍼 자체의 주사전자현미경 사진(도4a) 과 표면원소 분석 결과(도4b )의 차이에서 알 수 있듯이, 실시예 5의 결과(도5)는 포토레지스트가 일부 남아 있는 형태이고, 실시예 6의 결과(도6)에서는 포토레지스트가 완벽하게 제거 되었음을 알 수 있었다.Chemically amplified polyhydroxystyrene was spin-coated with a photoresist for KrF excimer laser, the main component of which was formed to a thickness of 1.6㎛, and prepared by injecting nitrogen and arsenic ions at an acceleration of 30 KeV and a concentration of 1 × 10 15 atoms / ㎠ Scanning electron micrograph (FIG. 3A) and surface element analysis of the silicon wafer itself using a scanning electron microscope (FIG. 3A) and an element of the wafer surface as an EDS analysis result (FIG. 3B) as a substrate. As can be seen from the difference in the result (Fig. 4b), the result of Example 5 (Fig. 5) is a form in which some photoresist remains, and the result of Example 6 (Fig. 6) shows that the photoresist is completely removed. there was.

<표 3> 반응시간에 따른 포토레지스트 제거 실험<Table 3> Photoresist removal experiment according to reaction time

Figure 112007065016964-PAT00004
Figure 112007065016964-PAT00004

실시예 8 내지 실시예 9Examples 8-9

상부에 화학증폭형 폴리히드록시스티렌이 주성분인 KrF 엑시머 레이저용 포토레지스트를 스핀코팅하여 두께를 1.6㎛ 형성 시켰으며, 질소와 비소 이온을 30 KeV의 가속도와 1×1015 atoms/㎠ 농도로 주입하여 제작하였다. 또 다른 두께의 레지스트로 두께를 2.1㎛ 형성 시켰으며 질소와 비소 이온을 30 KeV의 가속도와 1×1016 atoms/㎠ 농도로 주입하여 제작하여 포토레지스트 상부에 0.3㎛의 탄화층이 형성되었다. (도2a)A photoresist for KrF excimer laser, the main component of which is chemically amplified polyhydroxystyrene, was spin-coated to form a thickness of 1.6 μm. Nitrogen and arsenic ions were injected at an acceleration of 30 KeV and a concentration of 1 × 10 15 atoms / cm 2. It was produced by. Another thickness of resist was formed to a thickness of 2.1 mu m. Nitrogen and arsenic ions were implanted at an acceleration of 30 KeV at a concentration of 1 x 10 16 atoms / cm 2 to form a 0.3 mu m carbide layer on top of the photoresist. (Figure 2a)

압력변화에 따른 포토레지스트의 제거효율에 대한 실험으로 압력 3000 psi와 온도 70 ℃에서의 초임계이산화탄소를 이용하여 120 초동안 접촉하였다. 공용매로 THF/아세톤/모노에탄올아민 (2:2:1) 혼합용액을 사용하였고, 첨가제로 포름산/아세트산 (1:1) 혼합용액을 사용하여 압력변화에 따른 제거효율을 표 4에 나타내었으며, 압력이 증가 할수록 제거효율이 증가 하는 것으로 나타났다.As an experiment on the removal efficiency of the photoresist according to the pressure change, it was contacted for 120 seconds using supercritical carbon dioxide at 3000 psi pressure and a temperature of 70 ℃. Using THF / acetone / monoethanolamine (2: 2: 1) mixed solution as cosolvent and formic acid / acetic acid (1: 1) mixed solution as additives, the removal efficiency according to pressure change is shown in Table 4. As the pressure increases, the removal efficiency increases.

<표 4> 압력변화에 따른 포토레지스트 제거 실험<Table 4> Experiment of Photoresist Removal with Pressure Change

Figure 112007065016964-PAT00005
Figure 112007065016964-PAT00005

실시예 10 내지 실시예 12Examples 10-12

실시예 9에 사용된 웨이퍼를 이용하여 웨이퍼 회전속도 변화에 따른 포토레지스트의 제거효율을 실험하였다. 그 결과를 표 5에 나타내었으며, 웨이퍼의 회전속도가 증가할수록 초임계유체 조성물과 웨이퍼 상부의 포토레지스트 층과의 접촉이 원활하여 제거효율이 증가 하였다.Using the wafer used in Example 9 was tested the removal efficiency of the photoresist according to the change in the wafer rotation speed. The results are shown in Table 5, and as the rotational speed of the wafer increases, the contact efficiency between the supercritical fluid composition and the photoresist layer on the top of the wafer is increased, and the removal efficiency is increased.

<표 5> 회전속도에 따른 포토레지스트 제거 실험<Table 5> Photoresist removal experiment according to rotation speed

Figure 112007065016964-PAT00006
Figure 112007065016964-PAT00006

도 1은 초임계이산화탄소 내에서 공용매와 첨가제를 이용하여 고이온주입된 포토레지스트를 기판으로부터 제거하는 공정의 개략도이다.1 is a schematic diagram of a process of removing a photoresist implanted with a high ion from a substrate using a cosolvent and an additive in supercritical carbon dioxide.

도 2a 및 2b는 고이온주입에 의해 탄화층이 형성된 포토레지스트의 단면 SEM 사진이다.2A and 2B are cross-sectional SEM photographs of a photoresist in which a carbonized layer is formed by high ion implantation.

도 3a 및 3b는 고이온주입된 포토레지스트의 표면 SEM 및 EDS 분석결과이다.3A and 3B show surface SEM and EDS analysis results of a high ion implanted photoresist.

도 4a 및 4b는 포토레지스트가 없는 웨이퍼의 표면 SEM 및 EDS 분석결과이다.4A and 4B show surface SEM and EDS analysis results of a photoresist-free wafer.

도 5a 및 5b는 처리 후 잔류 포토레지스트의 표면 SEM 및 EDS 분석결과이다.5A and 5B show SEM and EDS analysis results of residual photoresist after treatment.

도 6a 및 6b는 처리 후 포토레지스트가 완전히 제거된 기판 표면의 SEM 및 EDS 분석결과이다.6A and 6B show SEM and EDS analysis results of a substrate surface from which photoresist is completely removed after treatment.

Claims (7)

초임계이산화탄소 내에서 공용매 및 첨가제를 사용하여 기판으로부터 고이온주입된 포토레지스트를 제거하는 방법에 있어서, (1) 반응용기에 고이온주입된 포토레지스트를 가지는 웨이퍼를 장착하는 단계; (2) 상기 반응용기에 30 내지 150 ℃의 온도와 2000 내지 5000 psi의 압력의 이산화탄소, 공용매, 및 첨가제를 첨가하여 상기의 웨이퍼에 접촉시켜 고이온주입된 포토레지스트를 제거하는 단계; (3) 상기 반응용기로부터 이산화탄소와 공용매 및 첨가제를 분리하는 단계; (4) 순수한 초임계이산화탄소를 사용하여 웨이퍼 상부를 헹구는 단계; (5) 상기 고압의 반응용기로부터 순수한 초임계이산화탄소를 제거하고, 고이온주입된 포토레지스트가 제거된 웨이퍼를 분리하는 단계;를 포함하는 것을 특징으로 하는 제거 방법CLAIMS 1. A method for removing a high ion implanted photoresist from a substrate using a cosolvent and an additive in supercritical carbon dioxide, comprising the steps of: (1) mounting a wafer having a high ion implanted photoresist in a reaction vessel; (2) adding carbon dioxide, a co-solvent, and an additive at a temperature of 30 to 150 ° C. and a pressure of 2000 to 5000 psi to the reaction container to remove the high ion implanted photoresist; (3) separating carbon dioxide and cosolvent and additives from the reaction vessel; (4) rinsing the top of the wafer using pure supercritical carbon dioxide; (5) removing the pure supercritical carbon dioxide from the high pressure reaction vessel and separating the wafer from which the high ion implanted photoresist has been removed; 제1항에 있어서, 공용매는 메탄올, 에탄올, 이소프로판올, 벤조일알코올을 포함하는 알코올류, 모노에탄올아민, 다이에탄올아민, 트리에탄올아민, 카본테트라클로라이드, 아세톤, 메틸에틸케톤, 테트라하이드로퓨란 등의 물질에서 1종 단독물이나 또는 2종 이상의 혼합물로 사용되는 것을 특징으로 하는 제거 방법.The method of claim 1, wherein the cosolvent is selected from substances such as methanol, ethanol, isopropanol, benzoyl alcohol, monoethanolamine, diethanolamine, triethanolamine, carbon tetrachloride, acetone, methyl ethyl ketone, tetrahydrofuran and the like. A removal method characterized by being used alone or in a mixture of two or more. 제1항에 있어서, 첨가제는 테트라알킬암모늄하이드록사이드, 포르말린, 포름산, 아세트산, 인산, 황산 등의 물질에서 1종 단독물이나 또는 2종 이상의 혼합물로 사용되는 것을 특징으로 하는 제거 방법.The method according to claim 1, wherein the additive is used alone or in a mixture of two or more kinds of substances such as tetraalkylammonium hydroxide, formalin, formic acid, acetic acid, phosphoric acid and sulfuric acid. 제1항에 있어서, 기판은 반도체 웨이퍼, 알루미늄-알루미늄 산화막 기판, 갈륨 비소 기판, 세라믹 기판, 구리 기판을 포함하는 것을 특징으로 하는 제거 방법.The method of claim 1, wherein the substrate comprises a semiconductor wafer, an aluminum-aluminum oxide substrate, a gallium arsenide substrate, a ceramic substrate, and a copper substrate. 제1항에 있어서, 사용되는 초임계이산화탄소 함량은 60 내지 95 중량%, 공용매의 함량은 4 내지 30 중량%, 첨가제의 함량은 1 내지 10 중량% 범위인 것을 특징으로 하는 제거 방법.The method of claim 1, wherein the supercritical carbon dioxide content used is 60 to 95% by weight, the content of the cosolvent is 4 to 30% by weight, and the content of the additive is in the range of 1 to 10% by weight. 제1항에 있어서, 웨이퍼를 100 내지 10000 RPM으로 회전시켜 초임계이산화탄소와의 접촉효과를 상승시키는 것을 특징으로 하는 제거 방법.2. The method of claim 1, wherein the wafer is rotated at 100 to 10000 RPM to increase the contact effect with supercritical carbon dioxide. 제 1항에 있어서, 초임계 이산화탄소 내에서 공용매 및 첨가제를 사용한 포토레지스트의 제거효율은 공용매와 첨가제의 종류 및 농도의 변화, 온도, 압력 및 접촉시간의 변화에 따라서 향상시킬 수 있는 것을 특징으로 하는 제거 방법. The method of claim 1, wherein the removal efficiency of the photoresist using the cosolvent and the additive in the supercritical carbon dioxide can be improved according to the change of the type and concentration of the cosolvent and the additive, the temperature, the pressure, and the contact time. Removal method.
KR1020070090730A 2007-09-07 2007-09-07 Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide KR20090025689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070090730A KR20090025689A (en) 2007-09-07 2007-09-07 Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070090730A KR20090025689A (en) 2007-09-07 2007-09-07 Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide

Publications (1)

Publication Number Publication Date
KR20090025689A true KR20090025689A (en) 2009-03-11

Family

ID=40693975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070090730A KR20090025689A (en) 2007-09-07 2007-09-07 Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide

Country Status (1)

Country Link
KR (1) KR20090025689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387906A1 (en) * 2011-01-27 2012-10-03 Universidad Autónoma de Madrid Supercritical fluid and its employment in supercritical fractioning procedures for the purification of lisofosfol¿pidos. (Machine-translation by Google Translate, not legally binding)
WO2015172510A1 (en) * 2014-05-15 2015-11-19 京东方科技集团股份有限公司 Method for removing photoresist
CN111253344A (en) * 2020-02-27 2020-06-09 东北林业大学 Method for extracting paclitaxel from branches and leaves of taxus chinensis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387906A1 (en) * 2011-01-27 2012-10-03 Universidad Autónoma de Madrid Supercritical fluid and its employment in supercritical fractioning procedures for the purification of lisofosfol¿pidos. (Machine-translation by Google Translate, not legally binding)
WO2015172510A1 (en) * 2014-05-15 2015-11-19 京东方科技集团股份有限公司 Method for removing photoresist
CN111253344A (en) * 2020-02-27 2020-06-09 东北林业大学 Method for extracting paclitaxel from branches and leaves of taxus chinensis

Similar Documents

Publication Publication Date Title
KR100591220B1 (en) Method of high pressure treatment
US20040050406A1 (en) Compositions and method for removing photoresist and/or resist residue at pressures ranging from ambient to supercritical
KR100559017B1 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
JP5876948B2 (en) Effective stripper solution for wiring process operation
KR20060135037A (en) Non fluoride containing supercritical fluid composition for removal of ion-implant photoresist
US6379875B2 (en) Stripper pretreatment
JP2006251491A (en) Photoresist stripper composition and method for stripping photoresist
KR100505693B1 (en) Cleaning method of photoresist or organic material from microelectronic device substrate
KR100720249B1 (en) Method for cleaning microstructure
KR100793241B1 (en) Composition for removing a silicon polymer and a photoresist, a method of removing layers and a method of forming a pattern using the composition
De Gendt et al. A novel resist and post-etch residue removal process using ozonated chemistries
KR20050032943A (en) Cleaning method and apparatus for manufacturing semiconductor device
KR20090025689A (en) Stripping of high dose ion-implanted photoresist using cosolvent and additive in supercritical carbon dioxide
US6905556B1 (en) Method and apparatus for using surfactants in supercritical fluid processing of wafers
US8449681B2 (en) Composition and method for removing photoresist and bottom anti-reflective coating for a semiconductor substrate
KR100807234B1 (en) Method of removing photoresist and method of manufacturing a semiconductor device
JP4004318B2 (en) Method and agent for removing organic coating
KR101003206B1 (en) Power ultrasonic waves cleaning system for removing of high dose ion-implanted photoresist in supercritical carbon dioxide
JP2007536730A (en) Compositions and methods for drying patterned wafers during the manufacture of integrated circuit products
US20080060682A1 (en) High temperature spm treatment for photoresist stripping
CN1271475C (en) Resist remover composition
US6887793B2 (en) Method for plasma etching a wafer after backside grinding
US6652666B2 (en) Wet dip method for photoresist and polymer stripping without buffer treatment step
TW520470B (en) Photoresist remover composition
CN1248057C (en) Resist remover compsn.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J501 Disposition of invalidation of trial
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090915

Effective date: 20100831