JP2003282518A - Removal method of organic film, and remover - Google Patents

Removal method of organic film, and remover

Info

Publication number
JP2003282518A
JP2003282518A JP2002083001A JP2002083001A JP2003282518A JP 2003282518 A JP2003282518 A JP 2003282518A JP 2002083001 A JP2002083001 A JP 2002083001A JP 2002083001 A JP2002083001 A JP 2002083001A JP 2003282518 A JP2003282518 A JP 2003282518A
Authority
JP
Japan
Prior art keywords
organic
ozone
film
organic film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083001A
Other languages
Japanese (ja)
Other versions
JP4004318B2 (en
Inventor
Hisashi Muraoka
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PYUAREKKUSU KK
Nomura Micro Science Co Ltd
Nisso Engineering Co Ltd
Original Assignee
PYUAREKKUSU KK
Nomura Micro Science Co Ltd
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PYUAREKKUSU KK, Nomura Micro Science Co Ltd, Nisso Engineering Co Ltd filed Critical PYUAREKKUSU KK
Priority to JP2002083001A priority Critical patent/JP4004318B2/en
Publication of JP2003282518A publication Critical patent/JP2003282518A/en
Application granted granted Critical
Publication of JP4004318B2 publication Critical patent/JP4004318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method wherein the range of an organic film turning to an object to be removed of a treatment solution in which an ozone gas is dissolved can be enlarged and the peeling speed and wettability of a resist film can be improved, a method wherein effective removed is likewise enabled to not only a resist but also a coating film, an oil film, etc., a method for regenerating the treatment solution, and removing the agent of an ozone gas resoluble organic film. <P>SOLUTION: 1. In this removal method of an organic film, the treatment solution in which an ozone gas is dissolved is brought into contact with a base material which has an ozone gas resoluble organic film on its surface, and the organic film is removed. The treatment solution is a solution containing (a) an organic substance which can dissolve the organic film and is hard to be dissolved by ozone and (b) an organic solvent wherein one or a plurality of kinds of organic solvents whose distribution coefficient to ozone in gas is at least 0.6 at room temperature and which are hard to be dissolved by ozone are mixed (where the organic substance and/or at least one kind of the organic solvents are water-soluble). 2. The remover of the ozone gas resoluble organic film as the treatment solution used in the method is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子デバイス用基
板等の表面清浄化のため、基体上に付着する有機物被膜
の除去方法に関するものである。具体的には、特に半導
体用ウェハーまたは液晶用基板などの加工に際して使用
するフォトレジスト被膜の除去や、それら基体上の有機
汚染被膜の除去に関するものである。さらに、本発明
は、基体上の油膜や塗膜等の一般的な有機被膜の除去に
適用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing an organic film deposited on a substrate for cleaning the surface of an electronic device substrate or the like. Specifically, it relates to the removal of photoresist coatings used in the processing of semiconductor wafers or liquid crystal substrates, and the removal of organic contamination coatings on these substrates. Furthermore, the present invention can be applied to the removal of general organic coatings such as oil films and coating films on substrates.

【0002】[0002]

【従来の技術】酸化膜やポリシリコン膜の微細加工用に
使用したフォトレジストの除去には、通常硫酸(3容ま
たは4容):過酸化水素(1容)の混合液(ピラニアと呼ば
れている)で11O〜140℃に加熱して1O〜20分浸漬する方
法が広く使われている。ピラニア処理ではレジストが分
解するので同一液で繰返し処理できるが、過酸化水素が
迅速に分解して水となり、また濃硫酸は吸湿性が強いこ
とから、液の水分が徐々に増加して、希釈されるため、
剥離能力が低下し十数回程度しか繰返し使用ができな
い。希釈された廃液を蒸留して高濃度化しリサイクルす
る装置も登場しているが経済性に問題があり、硫酸は半
導体工業で最も使用量の多い薬品となっている。更に、
高温処理に供するため酸性ガスの排出も多く、排気排水
ともに環境へ及ぼす影響が大きい。
2. Description of the Related Art A photoresist used for microfabrication of an oxide film or a polysilicon film is usually removed by a mixed solution of sulfuric acid (3 or 4 volumes) and hydrogen peroxide (1 volume) (called piranha). It is widely used to heat at 11O-140 ℃ and soak for 1-20 minutes. In the piranha treatment, the resist decomposes, so it can be repeatedly treated with the same liquid, but hydrogen peroxide rapidly decomposes into water, and concentrated sulfuric acid has a strong hygroscopic property, so the water content of the liquid gradually increases and dilutes. Because
The peeling ability deteriorates and it can be used repeatedly only about a dozen times. A device for diluting the diluted waste liquid to increase the concentration and recycling has been introduced, but it has a problem in economic efficiency, and sulfuric acid is the most used chemical in the semiconductor industry. Furthermore,
Since it is subjected to high-temperature treatment, it also emits a large amount of acid gas, and both exhaust and drainage have a large impact on the environment.

【0003】配線金属膜加工の場合のレジスト除去に
は、n-メチルピロリドン(NMP)やジメチルスルホキ
シド(DMSO)あるいはアミン類のような有機溶剤によ
る加熱処理がなされている。これらの薬品はレジストを
単に溶解するだけで分解しないので、同じ液を繰り返し
使うと溶解分の濃度が急速に増え、5〜6回程度しか使
用できない。また、これらの薬品が水を含むと金属膜に
ダメージを与える危険を生じるので、純水リンスの前に
イソプロピルアルコールのような溶剤による置換が必要
になる。従って有機溶剤の所要量は更に増える。従って
排気排水の対策が厄介なばかりでなく、有機溶剤は一般
に高価なので経済性にも問題がある。
For resist removal in the case of processing a wiring metal film, heat treatment with an organic solvent such as n-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO) or amines is performed. Since these chemicals merely dissolve the resist but do not decompose it, the concentration of the dissolved component increases rapidly when the same liquid is repeatedly used, and it can be used only about 5 to 6 times. Further, if these chemicals contain water, there is a risk of damaging the metal film, and therefore, replacement with a solvent such as isopropyl alcohol is necessary before rinsing with pure water. Therefore, the required amount of organic solvent is further increased. Therefore, not only is it difficult to take measures against exhaust gas and drainage, but the organic solvent is generally expensive, so there is a problem in economical efficiency.

【0004】そこで、最近高濃度のオゾンを含むガス
(以下、オゾンガスという)と水を用いた環境にやさしい
レジスト除去が試みられている。しかし、このようなオ
ゾン水処理では、LSI製造で広く使われているI線用
ノボラック樹脂系ポジ型レジスト膜の場合、剥離速度が
1μm/分程度で剥離能力に余裕がなく、適用が限定さ
れる。オゾン水処理の剥離速度の遅さを抜本的に解決す
るため、本発明者は、オゾンを溶解する能力の高い有機
溶剤、例えば酢酸を用い、オゾンの強い有機物分解力と
溶剤がもつレジスト溶解能力とが相乗的に作用するオゾ
ン有機溶剤レジスト除去法を既に提供した(特開200
1−340817)。I線用ノボラック樹脂系レジスト
に対し、オゾンを 300 ppm程度溶解したオゾン酢酸はオ
ゾン水の最高剥離速度の数倍、即ち、5〜6μm/分で
の除去が可能となる。
Therefore, recently, a gas containing a high concentration of ozone
Environmentally friendly resist removal using (hereinafter referred to as ozone gas) and water has been attempted. However, in such ozone water treatment, in the case of a novolac resin-based positive resist film for I-line, which is widely used in LSI manufacturing, the stripping speed is about 1 μm / min, and there is no margin in stripping ability, so its application is limited. It In order to fundamentally solve the slow stripping rate of ozone water treatment, the present inventor has used an organic solvent having a high ozone dissolving ability, such as acetic acid, and has a strong ability to decompose organic substances of ozone and a resist dissolving ability of the solvent. A method for removing an ozone organic solvent resist has been already provided, in which (1) and (2) act synergistically.
1-340817). Ozone acetic acid in which ozone is dissolved by about 300 ppm can be removed at several times the maximum stripping rate of ozone water, that is, at a rate of 5 to 6 μm / min.

【0005】酢酸のようにオゾンと反応し難い溶剤は、
オゾン処理により溶剤に溶解したレジスト成分のみが分
解され、溶剤は影響を受けない。従って、このような溶
剤をレジスト除去剤とすると繰返し使用ができ、即ち寿
命が長く、経済性でも節資源の点でも、また環境負荷の
点でも望ましい。しかし、オゾンをよく溶かすがオゾン
と反応せず、レジストのような高分子をよく溶かす有機
溶剤は限られており、環境や毒性に関して問題が少なく
実用性があるのは酢酸、プロピオン酸、酪酸のような分
子量の小さいカルボン酸だけである。一方、前記カルボ
ン酸が特に優れた溶解能を示す有機高分子材料の範囲は
広いものではない。例えば、氷酢酸は、ノボラック樹脂
や環化ポリイソプレン等のレジスト材料を溶解するうえ
で好適であるが、他のプラスチック膜では酢酸ビニール
樹脂やセルロースエステル等に適用できるのみで、狭い
範囲に限られる。レジストでもLSIの超微細化に伴い
新たな材料が登場しており、オゾン酢酸処理では剥離速
度が低下する場合もありうる。また、微細加工がリアク
ティブイオンエッチングでなされて表面が硬化変質した
レジストに対しては、単なるオゾン酢酸液の接触だけで
はその除去が難しい。
Solvents such as acetic acid that are difficult to react with ozone are
Only the resist component dissolved in the solvent is decomposed by the ozone treatment, and the solvent is not affected. Therefore, if such a solvent is used as a resist removing agent, it can be repeatedly used, that is, it has a long life, and is desirable in terms of economical efficiency, resource saving, and environmental load. However, organic solvents that dissolve ozone well but do not react with ozone and dissolve polymers such as resist well are limited, and there are few problems regarding the environment and toxicity, and practicability is limited to acetic acid, propionic acid, and butyric acid. It is only a carboxylic acid having such a small molecular weight. On the other hand, the range of organic polymer materials in which the carboxylic acid has a particularly excellent solubility is not wide. For example, glacial acetic acid is suitable for dissolving resist materials such as novolac resin and cyclized polyisoprene, but other plastic films can only be applied to vinyl acetate resin, cellulose ester, etc. and are limited to a narrow range. . With respect to resists, new materials have appeared with the miniaturization of LSIs, and the ozone acetic acid treatment may reduce the stripping rate. Further, it is difficult to remove a resist whose surface has been hardened and altered by fine processing by reactive ion etching, by simply contacting it with an ozone acetic acid solution.

【0006】しかも、有機被膜の下地が微細に加工され
ており、極めて狭い凹部の中に生じた有機被膜を除去し
ようとする場合、あるいは下地が酢酸等の低分子量カル
ボン酸で損傷しやすい材料の場合には、低分子量カルボ
ン酸にオゾンを高濃度で添加した処理液では、液の濡れ
性の不足あるいは剥離速度の不足により、満足な除去効
果が得られないことも起こりうるという問題がある。
In addition, when the base of the organic coating is finely processed and the organic coating formed in the extremely narrow recess is to be removed, or the base is a material which is easily damaged by a low molecular weight carboxylic acid such as acetic acid. In this case, a treatment liquid obtained by adding ozone to a low-molecular-weight carboxylic acid at a high concentration has a problem that a sufficient removal effect may not be obtained due to insufficient wettability of the liquid or insufficient stripping rate.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の課題
は、特に、オゾンガスを溶解させた処理液の除去対象と
なる有機被膜の範囲の拡大を図る点にあり、また、レジ
スト膜についてはオゾン添加カルボン酸を用いる場合よ
りも剥離速度や濡れ性を向上させる方法、更に、レジス
トのみならず、塗膜、油膜等に対してもレジストの場合
と同様の有効な除去方法、および処理液の再生方法の提
供、並びに、有機被膜除去剤の提供を目的とするもので
ある。
Therefore, an object of the present invention is to expand the range of the organic coating film which is the target of removal of the treatment liquid in which ozone gas is dissolved, and ozone is used for the resist film. A method of improving the peeling speed and wettability as compared with the case of using an added carboxylic acid, and an effective removing method similar to the case of the resist not only for the resist but also for the coating film, oil film, etc., and regeneration of the treatment liquid. It is intended to provide a method and an organic film removing agent.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、第一に、表面にオゾン分解性有機被膜を
有する基体に、オゾンガスを溶解させた処理液を接触さ
せて前記有機被膜を除去する方法において、前記処理液
が、(a)前記有機被膜を溶解することができ、かつ、オ
ゾンによって分解され難い有機物質と、(b)気体中のオ
ゾンとの分配係数が室温で 0.6以上であり、かつ、オゾ
ンによって分解され難い1種または複数種混合の有機溶
剤との溶液(ただし、前記有機物質および/または前記
有機溶剤の少なくとも1種は水混和性である)であるこ
とを特徴とする有機被膜の除去方法を提供する。
In order to solve the above-mentioned problems, firstly, the present invention provides a substrate having an ozone-decomposable organic coating on the surface thereof by contacting a treatment liquid in which ozone gas is dissolved with the organic coating. In the method of removing the above, the treatment liquid has a partition coefficient of (a) an organic substance which can dissolve the organic coating and is hardly decomposed by ozone, and (b) ozone in a gas at room temperature. The above is a solution with one or more kinds of organic solvents that are not easily decomposed by ozone (provided that at least one of the organic substance and / or the organic solvent is water-miscible). A method for removing a characteristic organic film is provided.

【0009】また、本発明は、第二に、表面にオゾン分
解性有機被膜を有する基体に接触させて前記有機被膜を
除去するために、オゾンガスを溶解させて用いられる有
機被膜除去剤であって、(a)前記有機被膜を溶解するこ
とができ、かつ、オゾンによって分解され難い有機物
質、および(b)気体中のオゾンとの分配係数が室温で 0.
6以上であり、かつ、オゾンによって分解され難い1種
または複数種混合の有機溶剤を含むこと(ただし、前記
有機物質および/または前記有機溶剤の少なくとも1種
は水混和性である)を特徴とする有機被膜除去剤を提供
する。
Secondly, the present invention relates to an organic film removing agent which is used by dissolving ozone gas in order to remove the organic film by bringing it into contact with a substrate having an ozone decomposing organic film on the surface. , (A) an organic substance that can dissolve the organic coating and is not easily decomposed by ozone, and (b) a partition coefficient with ozone in a gas of 0 at room temperature.
It is characterized by containing 6 or more and one or more kinds of organic solvents that are not easily decomposed by ozone (provided that at least one of the organic substances and / or the organic solvents is water-miscible). An organic film removing agent is provided.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳述する。 [概要]本発明は、基体表面のオゾン分解性有機被膜を
除去する際に用いられる処理液の組成に特徴を有するも
のである。即ち、上記(a)成分であるオゾン分解性有
機被膜を溶解することができ、かつ、オゾンによって分
解され難い有機物質と、上記(b)成分である気体中の
オゾンとの分配係数が室温で 0.6以上であり、かつ、オ
ゾンによって分解され難い有機溶剤とを混合した溶液で
ある本発明の処理液は、下記の特性を有し、該処理液の
採用により、各種有機被膜の除去能力を著しく向上させ
ると同時に、上記(a)成分の特有の性能も活用すること
ができる。 1.本処理液が各種のオゾン分解性有機被膜に対して優
れた溶解力を持つことから、対象となる有機被膜の範囲
が広いこと。 2.本処理液に溶解させたオゾンが前記有機被膜をよく
分解すること。この分解により生じた分解反応生成物は
低分子量のもので、本処理液によく溶解し、基体を
汚染することなく、後続させる処理(オゾンガスによ
る再生処理)で除去性能に支障を与えないものであるこ
と。 3.本処理剤に溶解したオゾンが高濃度になっても処理
剤自体がオゾンと反応しにくく、オゾンにより分解され
難いこと。 4.オゾンによる分解力を高めるために、本処理剤に高
濃度にオゾンを溶解させることができること。特に、上
記1.の点は、すでに本発明者が提供した酢酸等の低分
子量カルボン酸にオゾンを溶解させて行うレジスト等の
除去法によっては、不十分なものであった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. [Outline] The present invention is characterized by the composition of the treatment liquid used when removing the ozone-decomposable organic coating on the surface of the substrate. That is, the partition coefficient between the organic substance that can dissolve the ozone-decomposable organic film that is the component (a) and is not easily decomposed by ozone and the ozone in the gas that is the component (b) at room temperature The treatment liquid of the present invention, which is a solution mixed with an organic solvent that is 0.6 or more and is not easily decomposed by ozone, has the following characteristics, and by adopting the treatment liquid, the ability to remove various organic coatings is significantly increased. At the same time as improving, it is possible to utilize the unique performance of the component (a). 1. Since this treatment liquid has an excellent dissolving power for various ozone-decomposable organic coatings, the range of target organic coatings is wide. 2. Ozone dissolved in the treatment liquid decomposes the organic coating well. The decomposition reaction product generated by this decomposition has a low molecular weight, dissolves well in this treatment liquid, does not contaminate the substrate, and does not interfere with the removal performance in the subsequent treatment (regeneration treatment with ozone gas). To be. 3. Even if the concentration of ozone dissolved in this treatment agent becomes high, the treatment agent itself does not easily react with ozone and is not easily decomposed by ozone. 4. To be able to dissolve ozone in high concentration in this treatment agent in order to enhance the decomposition power by ozone. In particular, the above 1. This point was insufficient by the method for removing a resist or the like, which has been already provided by the present inventor by dissolving ozone in a low molecular weight carboxylic acid such as acetic acid.

【0011】[(a)成分]本発明で用いる(a)成分で
あるオゾン分解性有機被膜を溶解することができ、か
つ、オゾンによって分解され難い有機物質としては、例
えば、エステル化合物の一部;第三アルコール;式:C
n2n+1COOH(式中、n=1〜3の整数)で表され
る脂肪酸;式:Cm2m+2(式中、m=10〜12の整数)
で表されるパラフィン系飽和炭化水素を挙げることがで
きる。
[Component (a)] As the organic substance which can dissolve the ozone-decomposable organic coating which is the component (a) used in the present invention and is hardly decomposed by ozone, for example, a part of an ester compound is used. Tertiary alcohol; formula: C
Fatty acid represented by n H 2n + 1 COOH (wherein, n is an integer of 1 to 3); Formula: C m H 2m + 2 (wherein, m is an integer of 10 to 12)
A paraffinic saturated hydrocarbon represented by

【0012】上記エステル化合物としては、炭酸エチレ
ン、炭酸プロピレンなどの炭酸アルキレンや酢酸ブチル
等の酢酸エステルが挙げられる。特に、炭酸エチレンお
よび炭酸プロピレンは、各種高分子化合物の溶解能が大
きいので、好ましい。殆ど全てのアルコールはオゾンと
反応しやすいが、第三アルコールのtert-ブチルアルコ
ールだけが反応がおそいので、本発明で用いることがで
きる。上記脂肪酸としては、酢酸、プロピオン酸、酪酸
等が挙げられる。当該脂肪酸は、後記(b)成分として
用いることもできる。上記パラフィン系飽和炭化水素と
しては、デカン、ドデカン等が挙げられ、これらは、特
に油膜に対する溶解能が大きいが、引火性の点で問題が
あるので、後述のHFEとの組合せで使用する。
Examples of the ester compound include alkylene carbonates such as ethylene carbonate and propylene carbonate, and acetic acid esters such as butyl acetate. In particular, ethylene carbonate and propylene carbonate are preferable because they have a high ability to dissolve various polymer compounds. Almost all alcohols are apt to react with ozone, but only the tertiary alcohol tert-butyl alcohol has a slow reaction, and therefore can be used in the present invention. Examples of the fatty acid include acetic acid, propionic acid, butyric acid and the like. The fatty acid can also be used as the component (b) described below. Examples of the above-mentioned paraffinic saturated hydrocarbon include decane and dodecane, which have a particularly large ability to dissolve in an oil film, but have a problem in terms of flammability, and therefore are used in combination with HFE described later.

【0013】[(b)成分]本発明で用いる(b)成分であ
る気体中のオゾンとの分配係数が室温で 0.6以上であ
り、かつ、オゾンによって分解され難い有機溶剤につい
て、説明する。気体中のオゾンとの分配係数Dは、オゾ
ン濃度C[mg/L]のオゾンガスを飽和させた液の
オゾン濃度がC[mg/L]であったときのC/C
の比を示すものである。該D値が高いほどオゾンをよく
溶解する溶剤であることを意味し、本発明では、室温に
おける該D値が 0.6以上、好ましくは 1.3以上のものを
用いる。
[Component (b)] The organic solvent which is the component (b) used in the present invention, which has a partition coefficient with respect to ozone in the gas of 0.6 or more at room temperature and is hardly decomposed by ozone will be described. The distribution coefficient D with respect to ozone in the gas is C L / C G when the ozone concentration of the liquid saturated with the ozone concentration C G [mg / L] is C L [mg / L]
It shows the ratio of. A higher D value means a solvent that dissolves ozone better. In the present invention, a solvent having a D value of 0.6 or more, preferably 1.3 or more at room temperature is used.

【0014】該(b)成分としては、例えば、式:Cn
2n+1COOH(式中、n=1〜3の整数)で表される脂
肪酸;C49OCHおよびC49OC25から成る群
から選ばれる少なくとも1種のハイドロフルオロエーテ
ル(以下、「HFE」ということがある)等が挙げら
れ、これらは1種単独でも2種以上混合しても使用する
ことができる。
Examples of the component (b) include compounds represented by the formula: C n H
Fatty acid represented by 2n + 1 COOH (wherein n is an integer of 1 to 3); at least one hydrofluoroether selected from the group consisting of C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5. (Hereinafter, it may be referred to as “HFE”) and the like. These may be used alone or in combination of two or more.

【0015】上記脂肪酸としては、(a)成分について例
示したと同様のものが挙げられる。例えば、25℃におけ
る酢酸(純度:97%)のD値は 1.7、プロピオン酸のD
値は1.8、および酪酸のD値は 1.5である。また、20%
程度の水を混和すると、必要なオゾン溶解力を維持しつ
つ、消防法における危険物に該当しなくなるので、安全
面に重点をおいた有機被膜除去も可能となる。なお、酢
酸に水を混和した場合、D値は 80重量%酢酸で約 0.
8、70重量%酢酸で約 0.6である。
As the above-mentioned fatty acid, the same ones as exemplified for the component (a) can be mentioned. For example, the D value of acetic acid (purity: 97%) at 25 ℃ is 1.7, and the D value of propionic acid is
The value is 1.8, and the D value of butyric acid is 1.5. Also, 20%
By mixing a certain amount of water, while maintaining the necessary ozone dissolving power, it no longer falls under the Hazardous Substances of the Fire Service Act, so it is possible to remove organic coatings with a focus on safety. When water was mixed with acetic acid, the D value was about 0.
It is about 0.6 at 8, 70 wt% acetic acid.

【0016】上記ハイドロフルオロエーテルとして用い
られるC49OCH3(25℃のD値=1.6以上、沸点61
℃、商品名:HFE−7100、3M社製)とC49
2 5(25℃のD値=1.6以上、沸点76℃、商品名:H
FE−7200、3M社製)の2者では、後者の方が、
他の溶剤との混合溶剤とする場合に、混合できる他の溶
剤の範囲が広い。例えば、ドデカンはHFE−7200
だけが混合可能である。なお、ハイドロフルオロエーテ
ルは、オゾン層破壊係数が0であり、大気寿命も短く、
塩素系およびフレオン系溶剤のような環境問題がないの
で本発明における使用に適している。
Used as the above hydrofluoroether
CFourF9OCH3(D value at 25 ℃ = 1.6 or more, boiling point 61
C, trade name: HFE-7100, 3M company) and CFourF9O
C2H Five(D value at 25 ℃ = 1.6 or more, boiling point 76 ℃, trade name: H
FE-7200, manufactured by 3M), the latter is
When using a mixed solvent with another solvent, another solvent that can be mixed
Wide range of agents. For example, dodecane is HFE-7200
Only can be mixed. In addition, hydrofluoroete
Has an ozone depletion potential of 0 and has a short atmospheric life,
There are no environmental problems like chlorine-based and Freon-based solvents
Suitable for use in the present invention.

【0017】[処理液(除去剤)の組成]本発明の処理
液(除去剤)は、上記(a)成分と(b)成分との混合溶液
である。その組合せについては、上記(a)成分として
用いるものと、上記(b)成分として用いるものとが同一
ではなく、かつ、上記(a)成分および/または上記(b)
成分の少なくとも1種が水混和性のものであればよく、
他に特段の制限はない。上記(a)成分と(b)成分との組
成割合は、各成分の種類によって異なり、一概に定めら
れないが、少なくとも(b)成分を(a)成分よりも(重量割
合で)多く用いる。即ち、(a)成分/(b)成分(重量
比)は、0.1/99.9 以上であるが、50/50よりも小さい。
[Composition of Treatment Liquid (Removing Agent)] The treatment liquid (removing agent) of the present invention is a mixed solution of the above-mentioned component (a) and component (b). Regarding the combination, the one used as the component (a) and the one used as the component (b) are not the same, and the component (a) and / or the component (b)
It is sufficient if at least one of the components is water-miscible,
There are no other special restrictions. The composition ratio of the component (a) and the component (b) varies depending on the type of each component and cannot be determined unconditionally, but at least the component (b) is used more (by weight ratio) than the component (a). That is, the (a) component / (b) component (weight ratio) is 0.1 / 99.9 or more, but less than 50/50.

【0018】オゾンの酸化力による有機皮膜由来の分解
生成物は、最終的には、大部分がグリオキシル酸、蓚
酸、ギ酸、酢酸等のカルボン酸類並びに水である。これ
らの生成物は水混和性の処理液成分(本発明では水と自
由に混ざるものを意味する)には溶解しやすい。この点
からみると、分解液を均一な液相とするためには、上記
(a)成分または(b)成分として、上記脂肪酸を用いること
が最適である。上記分解生成物はハイドロフルオロエー
テルには溶けないものが多い。したがって、(b)成分が
ハイドロフルオロエーテルを含む場合、脂肪酸等の他の
水混和性成分と併用することが必要となる。
Ultimately, most of the decomposition products derived from the organic film due to the oxidizing power of ozone are carboxylic acids such as glyoxylic acid, oxalic acid, formic acid and acetic acid, and water. These products are readily soluble in water-miscible treatment liquid components (which in the present invention means freely miscible with water). From this point of view, in order to make the decomposition liquid a uniform liquid phase,
It is optimal to use the above fatty acid as the component (a) or the component (b). Many of the above decomposition products are insoluble in hydrofluoroether. Therefore, when the component (b) contains hydrofluoroether, it must be used in combination with another water-miscible component such as fatty acid.

【0019】また、上記(a)成分として、例えば極性の
強い炭酸エチレンを用いる場合、脂肪酸との混合溶液と
することが好ましい。炭酸エチレン等はハイドロフルオ
ロエーテルには溶解しないが、上記と同様に、ハイドロ
フルオロエーテルと上記脂肪酸との混合溶剤として用い
ることができる。炭酸アルキレン以外のエステル化合物
を用いる場合も同様である。上記(a)成分として、例え
ば、tert-ブチルアルコールを用いる場合、このものは
水混和性であるので、ハイドロフルオロエーテルと組み
合わせて用いることができる。また、例えば、デカン等
のパラフィン系飽和炭化水素を用いる場合、これと組み
合わせる(b)成分としては、脂肪酸等を含む必要があ
る。
As the component (a), for example, when ethylene carbonate having a strong polarity is used, a mixed solution with a fatty acid is preferable. Although ethylene carbonate and the like are not dissolved in hydrofluoroether, they can be used as a mixed solvent of hydrofluoroether and the above-mentioned fatty acid as described above. The same applies when an ester compound other than alkylene carbonate is used. When, for example, tert-butyl alcohol is used as the component (a), it can be used in combination with hydrofluoroether because it is miscible with water. Further, for example, when a paraffinic saturated hydrocarbon such as decane is used, the component (b) to be combined with this must contain a fatty acid and the like.

【0020】[オゾン分解性有機被膜]本発明の除去方
法および除去剤の対象となる有機被膜は、単に処理液
(除去剤)に溶けるだけでなく、オゾンで十分に低分子
量物質に分解されるものである。オゾンによる有機物の
酸化機構では、通常、炭素−炭素二重結合が最も反応性
が高い。オレフィン系化合物の二重結合は容易にオゾノ
リシスと呼ばれる分解反応で開裂する。芳香族では分解
速度の遅いものもあるが、一般的には単環、多環を問わ
ず開裂や側鎖の酸化等で分解が起こる。また、カルボキ
シル基を除いて酸素を含む基のある化合物は分解しやす
い。高分子化合物では、モノマーユニットの中に二重結
合を有するものが、オゾンにより極めて速く分解する。
[Ozone-decomposable organic coating] The organic coating which is the object of the removing method and the removing agent of the present invention is not only dissolved in the treatment liquid (removing agent), but is also sufficiently decomposed by ozone into a low molecular weight substance. It is a thing. In the oxidation mechanism of organic substances by ozone, the carbon-carbon double bond is usually the most reactive. The double bond of an olefinic compound is easily cleaved by a decomposition reaction called ozonolysis. Some aromatics have a slow decomposition rate, but generally, decomposition occurs due to cleavage or oxidation of side chains regardless of whether they are monocyclic or polycyclic. In addition, compounds having an oxygen-containing group other than the carboxyl group are easily decomposed. Among polymer compounds, those having a double bond in the monomer unit are decomposed extremely rapidly by ozone.

【0021】従って、代表的なネガ型レジスト材料の環
化ポリイソプレンは非常に分解が速く、また、ポジ型レ
ジスト材料の主流であったノボラック樹脂も容易に分解
する。化学増幅型ポジレジスト材料のポリビニル・フェ
ノール誘導体もやや遅いが十分に分解する。このよう
に、本発明の除去対象の有機被膜としてレジスト膜は最
も好ましいものである。また、イオン注入で硬化処理さ
れたレジスト膜に対しても効果的な除去が可能である。
Therefore, cyclized polyisoprene, which is a typical negative resist material, decomposes very quickly, and the novolak resin, which has been the mainstream of positive resist materials, easily decomposes. The polyvinyl-phenol derivative, which is a chemically amplified positive resist material, is also slightly slow, but is sufficiently decomposed. As described above, the resist film is the most preferable organic film to be removed according to the present invention. Further, it is possible to effectively remove the resist film that has been cured by ion implantation.

【0022】油脂では分子内に二重結合のある不飽和脂
肪酸の膜が本発明の対象である。したがって、乾性油を
使う油性塗料の塗膜が適する。また、フラックス用のロ
ジンは3環テルペン類なのでオゾンで分解が可能であ
る。合成樹脂系塗料ではモノマーユニットに酸素を含む
アクリル樹脂系や酢酸ビニル樹脂エナメル等がオゾンで
分解できるので、前記塗膜は本発明の除去の対象とな
る。
With regard to fats and oils, a film of unsaturated fatty acid having a double bond in the molecule is the object of the present invention. Therefore, a coating film of an oil paint using a drying oil is suitable. In addition, since rosin for flux is a tricyclic terpene, it can be decomposed with ozone. In a synthetic resin coating, acrylic resin containing oxygen in the monomer unit, vinyl acetate resin enamel and the like can be decomposed by ozone, and thus the coating film is a target of the present invention.

【0023】[処理液(除去剤)の有機被膜除去性能]
本発明の上記(a)成分と(b)成分とを混合した処理液(除
去剤)の有機被膜除去性能の向上を明確に示すために、
レジスト剥離速度の観点から、従来の有機被膜除去法と
比較する。例えば、化学増幅型ポリビニルフェノール誘
導体レジストで、オゾン添加酢酸が3μm/分の剥離速
度を示す場合、同じ条件でオゾンを添加すると酢酸/炭
酸エチレン=60/40(重量比)の処理液(除去剤)で
は、9μm/分以上の剥離速度が得られる。また、オゾ
ン添加酢酸がノボラック型I線用レジストに対して5μ
m/分の剥離速度を示すとき、該オゾン添加酢酸に代え
て前記酢酸/炭酸エチレン=60/40(重量比)の処理液
(除去剤)を用いると18μm/分の剥離速度が得られ
る。これらは炭酸エチレンが少量でもレジストに対し強
い溶解作用をもつため、酢酸成分の減少によるオゾン濃
度の低下の影響を補って余りある(剥離速度が3倍にな
る)結果となったものである。これが本発明の特長を明
確に示している。
[Organic film removal performance of treatment liquid (removing agent)]
In order to clearly show the improvement of the organic film removal performance of the treatment liquid (removing agent) obtained by mixing the component (a) and the component (b) of the present invention,
From the viewpoint of resist stripping speed, comparison is made with the conventional organic film removal method. For example, in the case of chemically amplified polyvinylphenol derivative resist, if ozone added acetic acid exhibits a peeling rate of 3 μm / min, adding ozone under the same conditions will add acetic acid / ethylene carbonate = 60/40 (weight ratio) as a treatment liquid (removal agent). In (), a peeling speed of 9 μm / min or more is obtained. In addition, ozone added acetic acid is 5μ against novolak type I-line resist.
When a peeling speed of m / min is shown, a peeling speed of 18 μm / min can be obtained by using the acetic acid / ethylene carbonate = 60/40 (weight ratio) treatment liquid (removing agent) instead of the ozone-added acetic acid. Since these have a strong dissolving effect on the resist even with a small amount of ethylene carbonate, the result is that the effect of the decrease in ozone concentration due to the decrease in acetic acid component is more than compensated (the stripping rate is tripled). This clearly shows the features of the present invention.

【0024】また、炭酸エチレン(1〜3重量%)、酢
酸(10〜20重量%)およびハイドロフルオロエーテル
(残部)の3者を混合した処理液(除去剤)は、ノボラ
ック型I線用レジストに対して、ほとんどオゾン添加酢
酸と同程度の剥離速度が得られ、しかも表面張力や粘性
率はほとんどフレオン系洗浄剤並みであった。従って、
極めて微細な加工をしたホール内面に付着したレジスト
でも除去できる高剥離性能除去剤が得られた。このよう
に混合物である処理液(除去剤)は、十分なレジスト剥
離性能の他に、オゾン添加酢酸では発揮できない新たな
特別の性能を付加することが可能となる。
A treatment liquid (removal agent) obtained by mixing ethylene carbonate (1 to 3% by weight), acetic acid (10 to 20% by weight) and hydrofluoroether (the balance) is a novolak type I-line resist. On the other hand, almost the same peeling speed as that of acetic acid containing ozone was obtained, and the surface tension and the viscosity were almost the same as those of Freon-based detergents. Therefore,
It was possible to obtain a high stripping performance remover capable of removing even the resist adhering to the inner surface of the hole which was subjected to extremely fine processing. As described above, the treatment liquid (removing agent) that is a mixture can add not only sufficient resist stripping performance but also new special performance that cannot be exhibited by ozone-added acetic acid.

【0025】[処理液の循環再生使用]本発明の除去方
法において、本発明の処理液自体はオゾンによりほとん
ど反応しないという特色があり、一方、有機被膜由来の
成分はオゾンにより低分子量のものに分解されるので、
有機被膜除去処理後の処理液を別の槽に移してオゾンガ
スバブリングを行い、基体から剥離して処理液に移行
し、まだ分解の不十分なレジスト等の成分に対し、分解
処理を追加すれば、この処理液を別の基体の除去処理液
として再使用できる。実験では数十回の再使用が可能で
あった。この循環使用により、薬液の使用量を従来の方
式の1/3及至1/5に低減することができる。
[Circulation and Reuse of Treatment Liquid] In the removal method of the present invention, the treatment liquid of the present invention itself has a feature that it hardly reacts with ozone, while the components derived from the organic film are converted to low molecular weight substances with ozone. It will be disassembled,
If the treatment liquid after the organic film removal treatment is transferred to another tank and ozone gas bubbling is performed, it is peeled from the substrate and transferred to the treatment liquid, and if decomposition treatment is added to components such as resist that have not been sufficiently decomposed This treatment liquid can be reused as a treatment liquid for removing another substrate. In the experiment, it was possible to reuse several tens of times. By this circulating use, the amount of chemical solution used can be reduced to 1/3 to 1/5 of the conventional method.

【0026】[0026]

【実施例】本発明に係る有機被膜除去方法および除去剤
について、下記実施例により更に詳細に説明するが、本
発明が下記実施例に限定されるものではない。なお、下
記実施例で使用したオゾンガスは、放電方式のオゾン発
生装置に 0.4%のチッ素を含む酸素を 0.3〜2L/分程
度流して得たオゾン濃度が約 250mg/Lのものであ
る。使用した薬品は、いずれも試薬特級の純度のもので
ある。
EXAMPLES The organic film removing method and the removing agent according to the present invention will be described in more detail by the following examples, but the present invention is not limited to the following examples. The ozone gas used in the following examples has an ozone concentration of about 250 mg / L obtained by flowing 0.4% nitrogen-containing oxygen to the discharge type ozone generator at about 0.3-2 L / min. All the chemicals used were of reagent grade purity.

【0027】また、米国半導体工業会によるロードマッ
プから、有機被膜除去後の面の有機炭素濃度は、3.5×1
013原子/cm2以下であれば、100nmデバイスにおいて
も十分と考えられる。そこで、特に炭素の少ないSiウ
ェハー(1×1015原子/cm3以下)で作成した1000Å酸
化膜ウェハーを用い、レジスト膜あるいは塗布膜を形成
して除去性能評価用試料とした。除去処理後、特開2000
-39410号公報に記載された試料作成法を適用して、サイ
クロトロン照射用ホルダーに収納し、荷電粒子放射化分
析を実施し、残存する表面有機炭素の絶対量を求めた。
分析法は、12C(d,n)13Nの核反応で生成した13Nを
化学分離してβ+壊変の消滅放射線の計測で定量するも
のである。分析結果が上記の 3.5×1013原子/cm2以下
であれば、特に断ることなくレジストが剥離除去できた
ものと評価し、それを基準として剥離速度を求めた。レ
ジスト塗布試料に低炭素濃度のSiウェハーを用いたの
は、分析でのバックグランドを1×1012原子/cm2以下
にするためである。
Further, from the road map by the American Semiconductor Industry Association, the organic carbon concentration on the surface after removing the organic film is 3.5 × 1.
If it is 13 atoms / cm 2 or less, it is considered sufficient even in a 100 nm device. Therefore, a resist film or a coating film was formed using a 1000 Å oxide film wafer made of a Si wafer having a particularly low carbon content (1 × 10 15 atoms / cm 3 or less) and used as a sample for evaluation of removal performance. After the removal process, JP 2000
By applying the sample preparation method described in JP-A-39410, the sample was housed in a holder for cyclotron irradiation, charged particle activation analysis was performed, and the absolute amount of residual surface organic carbon was determined.
Analysis is to quantify at 12 C (d, n) 13 N measured 13 N generated by the nuclear reaction of annihilation radiation chemical separation to beta + disintegrations. If the analysis result was 3.5 × 10 13 atoms / cm 2 or less, it was evaluated that the resist could be removed by stripping without particular notice, and the stripping rate was determined based on that. The reason why the Si wafer having a low carbon concentration is used as the resist coating sample is to keep the background in the analysis at 1 × 10 12 atoms / cm 2 or less.

【0028】実施例1 液状の炭酸エチレンにオゾンガスをバブリングさせる
と、オゾンガスに特有の青色着色の程度が水でのバブリ
ングの場合と同程度でごく淡く、炭酸エチレンはオゾン
をよく溶解するとはいえないことが分かる。しかし、後
述するように、炭酸エチレン液単独でもレジストをよく
溶解する。そこで、炭酸エチレンと酢酸との混合溶液を
処理液として用い、これにオゾンを添加して、ポリビニ
ル・フェノール誘導体と酸発生剤で構成された化学増幅
型レジスト膜の除去を試みた。試料は、膜厚 0.8μmの
M20G(商品名、JSR(株)製)が塗布され 140℃で
90秒間ベークしたウェハーを2cm×2cmのチップに切
断したものである。
Example 1 When bubbling ozone gas into liquid ethylene carbonate, the degree of blue coloring peculiar to ozone gas was as pale as when bubbling with water, and it cannot be said that ethylene carbonate dissolves ozone well. I understand. However, as described later, the ethylene carbonate solution alone dissolves the resist well. Therefore, using a mixed solution of ethylene carbonate and acetic acid as a treatment liquid, ozone was added thereto to try to remove the chemically amplified resist film composed of the polyvinyl phenol derivative and the acid generator. The sample was coated with M20G (trade name, manufactured by JSR Corporation) with a film thickness of 0.8 μm at 140 ° C.
A wafer that has been baked for 90 seconds is cut into 2 cm × 2 cm chips.

【0029】処理液へのオゾンの添加は、内容 100mL
の石英ガラス製インピンジャーに 25℃の上記混合溶液
あるいは単独の酢酸を満たし、濃度 250mg/Lのオゾ
ンガスを 0.3L/分の流速で5分間バブリングさせて行
い、直ちに液を内径 2.2cmの石英ガラス製小ビーカに
移して、上記ウェハーを処理液に浸し、上記試料チップ
のレジスト除去処理を実施し、目視でレジスト剥離が確
認されたら、別の容器の酢酸で約2秒間リンスしてオー
バーフローする超純水槽に移し、3分間浸漬して十分リ
ンスした後、活性炭フィルター付のクリーンベンチ内で
風乾して、荷電粒子放射化分析のためのホルダーに収納
した。
The addition of ozone to the processing liquid is 100 mL in content.
Fill the quartz glass impinger with the above mixed solution at 25 ° C or single acetic acid, bubble ozone gas with a concentration of 250 mg / L for 5 minutes at a flow rate of 0.3 L / min, and immediately put the liquid into a quartz glass with an inner diameter of 2.2 cm. Transfer to a small beaker, immerse the wafer in the processing solution, perform resist removal processing on the sample chip, and if resist peeling is visually confirmed, rinse with acetic acid in another container for about 2 seconds and overflow. After transferring to a pure water tank and immersing for 3 minutes for thorough rinsing, it was air-dried in a clean bench with an activated carbon filter and stored in a holder for charged particle activation analysis.

【0030】図1に、酢酸/炭酸エチレンの混合比(重
量)が、100/0、80/20、60/40、40/60、および 20/80の
場合の組成とレジスト剥離速度との関係を示す。室温で
は酢酸単独でオゾンが添加された場合、この化学増幅型
レジストは剥離速度がノボラック型レジストの約半分の
3μm/分程度であった。しかし溶質の炭酸エチレンの
比率が増すと共に剥離速度が増し、酢酸/炭酸エチレン
=60/40の組成で剥離速度が最大を示し、10μm/分近い
値が得られて、除去性能が著しく向上する。更に、炭酸
エチレン成分が増すと剥離速度は減少傾向を示す。炭酸
エチレンは融点が 36℃なので、40℃に加熱して液状と
すると、オゾンの添加がなくても6μm/分で、このレ
ジスト膜を溶解して着色液をつくる。即ちこのレジスト
に対して大きな溶解性を持っている。しかし、オゾンに
対する溶解能は小さい。一方、酢酸はオゾンに対する溶
解能が大きい。図1で、剥離速度に関して酢酸/炭酸エ
チレン=60/40の組成で最大部ができたのは、この二つ
の作用が相乗的に作用した結果である。
FIG. 1 shows the relationship between the composition and the resist stripping rate when the mixing ratio (weight) of acetic acid / ethylene carbonate is 100/0, 80/20, 60/40, 40/60, and 20/80. Indicates. At room temperature, when ozone was added with acetic acid alone, the stripping rate of this chemically amplified resist was about 3 μm / min, which is about half that of the novolac resist. However, as the ratio of solute ethylene carbonate increases, the peeling speed increases, and the maximum peeling speed is obtained with a composition of acetic acid / ethylene carbonate = 60/40, and a value close to 10 μm / min is obtained, and the removal performance is significantly improved. Further, as the ethylene carbonate component increases, the peeling rate tends to decrease. Since ethylene carbonate has a melting point of 36 ° C., if it is heated to 40 ° C. and made into a liquid state, the resist film is dissolved at 6 μm / min without adding ozone to form a coloring liquid. That is, it has a great solubility in this resist. However, its solubility in ozone is small. On the other hand, acetic acid has a large solubility in ozone. In FIG. 1, the maximum part was formed in the composition of acetic acid / ethylene carbonate = 60/40 with respect to the peeling speed, as a result of the synergistic action of these two effects.

【0031】実施例2 実施例1で最も剥離性能の優れていた酢酸/炭酸エチレ
ン=60/40(重量比)の組成の混合除去液を 40℃に加熱
してオゾンを添加し、イオン注入で硬化したI線用ノボ
ラック型レジスト膜付のウェハーに対して浸漬処理での
レジスト除去効果を調べた。この膜は厚さ 1.5μmのI
X555(商品名、JSR(株)製)を130℃で 300秒間
ベークした後、B+を 30KeVで1×1014/cm2注入し
たものである。炭酸エチレンは酢酸に較べるとオゾンに
よって若干分解しやすいので、混合除去液をオゾンで繰
返し再生して循環使用する場合の液の繰返し可使回数も
推定できるように、実験器具が作られている。図2に、
その概念を示す剥離器具列と液供給器具列を示す。評価
のみを目的とした枚葉の実験機構であるが、浸漬槽内の
処理枚数を増やしてバッチ式にすれば、実用的な生産用
にも応用できる。
Example 2 A mixed removing solution having a composition of acetic acid / ethylene carbonate = 60/40 (weight ratio), which had the best peeling performance in Example 1, was heated to 40 ° C., ozone was added, and ion implantation was performed. The effect of removing the resist by the dipping treatment was examined for the wafer with the cured novolak-type resist film for I-line. This film has a thickness of 1.5 μm
X555 (trade name, manufactured by JSR Corporation) was baked at 130 ° C. for 300 seconds, and then B + was injected at 30 KeV at 1 × 10 14 / cm 2 . Since ethylene carbonate is slightly more likely to be decomposed by ozone than acetic acid, experimental equipment has been created so that the number of times the liquid can be reused repeatedly can be estimated when the mixed removal liquid is repeatedly regenerated with ozone and reused. In Figure 2,
A peeling tool row and a liquid supply tool row showing the concept are shown. Although this is a single-wafer experimental mechanism for the purpose of evaluation only, it can be applied to practical production by increasing the number of sheets to be processed in the dipping tank to make it into a batch system.

【0032】剥離処理槽1と処理液リンス槽2と超純水
リンス槽3はそれぞれ6゛ウェハー1枚が液量 300mL
に浸漬する石英ガラス製角槽で、ウェハー4は石英ガラ
ス製支持具(図示せず)に保持され、手動により浸漬処
理が施される。槽1では処理液供給管8(以下、液の配
管は図において太線で示す)により、40℃に加熱された
処理液がタンク7(当初は新しい処理液 600mLを充填
しておく)からポンプPと精密微粒子フィルターF経由
で供給され、加熱器9で液温が 40℃に保持される。加
熱器上には石英ガラス製オゾン発散器10があり、オゾ
ン発生装置(図示せず)から配管11(以下、ガス配管
は図上で太い点線で示す)とバルブ12とで 0.5L/分
の流速でオゾンガスを送ってバブリングさせる。5分間
の浸漬処理経過後ウェハーはリンス槽2に移される。6
枚分の処理が終ったら、バルブ13と配管14で 50m
Lをタンク6に排出し、タンク7から 50mLを補充し
て、1分経過後、同様にウェハー6枚分の除去処理を行
なう。このようにして、液の排出、補充、およびウェハ
ー6枚処理を繰返す。
The stripping processing tank 1, the processing solution rinsing tank 2, and the ultrapure water rinsing tank 3 each have a 6 "wafer volume of 300 mL.
The wafer 4 is held in a quartz glass support (not shown) in a quartz glass square tank which is dipped in the substrate, and is manually dipped. In the tank 1, the processing liquid supply pipe 8 (hereinafter, the liquid piping is shown by a thick line in the figure) allows the processing liquid heated to 40 ° C. to flow from the tank 7 (initially filled with 600 mL of new processing liquid) to the pump P. It is supplied through the fine particle filter F and the liquid temperature is maintained at 40 ° C by the heater 9. There is a quartz glass ozone diffuser 10 on the heater, and 0.5 L / min from an ozone generator (not shown) to a pipe 11 (hereinafter, gas pipe is shown by a thick dotted line) and a valve 12. Bubbling is performed by sending ozone gas at a flow rate. After the immersion treatment for 5 minutes, the wafer is transferred to the rinse tank 2. 6
When the processing for one sheet is completed, 50m with the valve 13 and the piping 14.
L is discharged to the tank 6, 50 mL of the tank 7 is replenished, and after 1 minute, the removal process for 6 wafers is similarly performed. In this way, the discharge of liquid, the replenishment, and the processing of 6 wafers are repeated.

【0033】リンス槽2は処理槽1とまったく同じ構造
で、当初槽1の液充填の際、同時に40℃に加熱されたリ
ンス液が加熱器15を具備したタンク5からポンプPと
精密微粒子フィルターFを経由してリンス液供給管16
で充填される。槽1と同時にオゾンガスバブリングを開
始して、除去処理を終えたウェハーが浸されたら所定時
間リンスする。6枚分のリンス処理が終わる毎にバルブ
17と配管18で 15mLをタンク6に排出し、タンク
5から 15mLを補充する。オゾンバブリングリンスを
終えたウェハーは槽3で室温の超純水によるオーバーフ
ローリンス(機構図示せず)を行い、スピンドライヤー
(図示せず)で乾燥した。
The rinse tank 2 has exactly the same structure as the treatment tank 1, and at the time of filling the liquid in the initial tank 1, the rinse liquid heated to 40 ° C. at the same time is supplied from the tank 5 equipped with the heater 15 to the pump P and the fine particle filter. Rinsing liquid supply pipe 16 via F
Filled with. Ozone gas bubbling is started at the same time as the tank 1, and when the wafer after the removal processing is dipped, it is rinsed for a predetermined time. Every time the rinsing process for 6 sheets is completed, 15 mL is discharged to the tank 6 through the valve 17 and the pipe 18, and 15 mL is replenished from the tank 5. The wafer after the ozone bubbling rinse was subjected to an overflow rinse (mechanism not shown) with ultrapure water at room temperature in the tank 3 and dried by a spin dryer (not shown).

【0034】それぞれの槽での浸漬時間を2分とする
と、乾燥直後、目視でレジストの残存はまったく見られ
ず、未分解の硬化レジスト微細片の表面付着を顕微鏡で
調べたが観察されなかった。また、最初に処理を行なっ
たウェハーからチップを切出して荷電粒子放射化分析の
試料とした。表面の残存有機炭素量は、2.7×1013原子/
cm2で、硬化レジストは十分に除去できていた。
When the immersion time in each tank was 2 minutes, immediately after drying, no residual resist was visually observed, and the surface adhesion of undecomposed cured resist fine pieces was examined by a microscope, but was not observed. . Further, a chip was cut out from the wafer that was first processed to obtain a sample for charged particle activation analysis. The amount of residual organic carbon on the surface is 2.7 × 10 13 atoms /
At cm 2 , the cured resist could be sufficiently removed.

【0035】槽1の処理でレジスト膜は剥離するが、液
中に未分解の硬化レジスト微細片の浮遊を生じる。タン
ク6内の排出液のこの微細片を十分に分解するために、
液量が 100mLに達したところで、バルブ19、20と
ガス配管21によりガス発散器22から1L/分の流速
でオゾンガスをバブリングさせる。液量が 200mLとな
って5分経過後、高純度窒素ガス配管23、バルブ24
とバルブ20を介して発散器22から窒素ガスを5分間
バブリングし、タンク内の液から溶解しているオゾンを
脱気して、連結管25によりバルブ26と送液ポンプP
で該液をタンク7に移す。なお、タンク6および7は加
熱器27、28を具備し、内部の液の温度をほぼ 40℃
に保持する。またタンク5および7は新処理液導入管2
9とそれに付属したバルブ30を具備しており、また液
の廃棄は廃棄管31と付属したバルブ32で行なう。
Although the resist film is peeled off by the treatment in the tank 1, undecomposed cured resist fine particles float in the liquid. In order to fully decompose this fine piece of effluent in the tank 6,
When the liquid amount reaches 100 mL, ozone gas is bubbled through the gas divergent 22 at a flow rate of 1 L / min through the valves 19 and 20 and the gas pipe 21. After 5 minutes have passed since the liquid volume has reached 200 mL, high-purity nitrogen gas pipe 23, valve 24
Nitrogen gas is bubbled for 5 minutes from the diffuser 22 via the valve 20 and the dissolved ozone is degassed from the liquid in the tank.
Then, the solution is transferred to the tank 7. The tanks 6 and 7 are equipped with heaters 27 and 28, and the temperature of the liquid inside is about 40 ° C.
Hold on. The tanks 5 and 7 are the new processing liquid introduction pipe 2
9 and a valve 30 attached to it, and liquid is discarded by a waste pipe 31 and an attached valve 32.

【0036】液供給器具系において、オゾンで分解でき
なかった硬化レジスト微細片は、硬化が1×1014/cm2
のイオン注入によるものでもその量はごく僅かで、処理
液供給管8に付属するフィルターに大きな負担を強いる
ことはない。従って、処理液の性能劣化が生じるとすれ
ば、それは、レジスト並びに処理液自体のオゾンとの反
応生成物増加に起因する剥離性能の低下に基づくと考え
られる。そこで、最初の6枚処理に引続いて、イオン注
入していないレジスト膜のウェハーにより上記の循環液
供給を6枚×19回、即ち 114枚実施し、最後の1枚をイ
オン注入した試料ウェハーによって行なった。その乾燥
直後に当初の試料と同様のレジスト除去状態の評価を行
い、目視による表面の観察および荷電粒子放射化分析結
果(残存炭素量:3.4×1013原子/cm2)の評価によ
り、硬化レジスト膜を除去する能力が当初の液と差が無
いことを確認した。
In the liquid supply instrument system, the cured resist fine particles which could not be decomposed by ozone were cured at 1 × 10 14 / cm 2
However, the amount of the ion implantation is extremely small and does not impose a heavy burden on the filter attached to the processing liquid supply pipe 8. Therefore, if the performance of the processing liquid is deteriorated, it is considered that the deterioration of the stripping performance is caused by the increase of reaction products of the resist and the processing liquid itself with ozone. Therefore, following the treatment of the first 6 wafers, the above circulating liquid supply was performed 6 times × 19 times, that is, 114 wafers were performed on the wafer of the resist film that had not been ion-implanted, and the last one was ion-implanted sample wafer. Done by. Immediately after the drying, the resist removal state was evaluated in the same manner as the original sample, and the cured resist was evaluated by visual observation of the surface and evaluation of the charged particle activation analysis result (residual carbon amount: 3.4 × 10 13 atoms / cm 2 ). It was confirmed that the ability to remove the film was not different from the original liquid.

【0037】処理 120枚に対し使用した処理液は 1.2L
で、1Lあたり 100枚処理できたことになる。従来の方
式ならば、通常、6枚ごとに 300mL使うので1Lあた
り 20枚の処理であり、この混合溶液ではオゾンによる
レジスト分解で液の寿命を従来方式の5倍にできた。こ
れは炭酸エチレンが酢酸と同様にオゾンによって分解を
受け難いからである。
Treatment liquid used for 120 sheets is 1.2L
Thus, 100 sheets can be processed per liter. In the conventional method, 300 mL is usually used for every 6 sheets, so 20 sheets are processed per 1 L. With this mixed solution, the life of the solution can be made five times longer than that of the conventional method by the resist decomposition by ozone. This is because ethylene carbonate, like acetic acid, is less susceptible to decomposition by ozone.

【0038】実施例3 細かい隙間のある表面の有機被膜を除く処理では、隙間
の中の側面や底に付着している被膜が除去できずに残る
場合があり、精密な除去処理の追加が必要となる。超L
SIの微細化で高アスペクト比のドライエッチングによ
る微細孔の側壁にはレジスト由来の変質膜が生じてい
る。マスクしたレジストは一般に酸素プラズマアッシン
グで除去されているが、この変質膜は残るので剥離液に
よる湿式除去を後続させている。微細化が進むと微細孔
内の処理のために表面張力と粘性率のできるだけ小さい
レジスト除去液が必要になる。そこで、オゾンをよく溶
かす溶媒としてHFE−7100を用い、酢酸との混合
溶液として、そのレジスト剥離作用を調べた。
Example 3 In the treatment for removing the organic coating on the surface having fine gaps, the coating adhered to the side surface or the bottom in the gap may remain unremoved, and therefore it is necessary to add a precise removal treatment. Becomes Super L
Due to the miniaturization of SI, an altered film derived from the resist is formed on the side wall of the fine hole due to the high aspect ratio dry etching. The masked resist is generally removed by oxygen plasma ashing, but since this deteriorated film remains, wet removal with a stripping solution follows. As miniaturization progresses, a resist removing solution having a surface tension and a viscosity coefficient as small as possible is required for the treatment in the fine holes. Therefore, HFE-7100 was used as a solvent for dissolving ozone well, and its resist stripping action was examined as a mixed solution with acetic acid.

【0039】除去対象の膜は厚さ 1.5μmのIX500
(商品名、JSR(株)製)を 140℃で 60秒間ベークし
たものである。枚葉の実験系を実施例2の除去処理槽1
とリンス槽2とHFE液が入った小型のHFE蒸気乾燥
槽(図示せず)で構成した。ウェハーは同実施例の支持
具で保持し各槽で順に処理を行なった。槽1と槽2とは
混合溶液を満たして 40℃に加熱し、オゾンガスのバブ
リングは槽1のみにおいて、実施例2と同様に行なっ
た。処理液の混合比(重量)が、HFE/酢酸=90/1
0、80/20、および 60/40のものについて検討したが、混
合比 90/10では2分浸漬しても除去できなかった。混合
比 80/20では目視で確認したところ除去に1分を要し
た。槽2で1分リンスした後、HFE−7100の蒸気
で乾燥し顕微鏡で除去面を観察したが、剥離残りはまっ
たく無かった。混合比 60/40では槽1での除去所要時間
は 45秒で剥離速度は約2μm/分となり、この種の除去
目的には一応十分な除去性能が得られた。表面張力と粘
性率は、混合比 80/20で 16dyn/cmおよび 0.6cP
となり、また混合比 60/40でも 18dyn/cmおよび
0.7cPであり、オゾン酢酸処理の場合の 27dyn/c
mおよび 1.0cPに比較し、微小間隙への濡れ性が著し
く改善された。
The film to be removed is IX500 having a thickness of 1.5 μm.
(Trade name, manufactured by JSR Corporation) is baked at 140 ° C. for 60 seconds. The single-wafer experimental system is the removal treatment tank 1 of the second embodiment.
And a small HFE vapor drying tank (not shown) containing the HFE solution. The wafer was held by the support of the same example and processed in each tank in order. The tank 1 and the tank 2 were filled with the mixed solution and heated to 40 ° C., and ozone gas was bubbled in the tank 1 only in the same manner as in Example 2. The mixing ratio (weight) of the treatment liquid is HFE / acetic acid = 90/1
When 0, 80/20, and 60/40 were examined, they could not be removed even by dipping for 2 minutes at a mixing ratio of 90/10. When the mixing ratio was 80/20, it took 1 minute to remove it when visually confirmed. After rinsing in the tank 2 for 1 minute, it was dried with HFE-7100 vapor and the removed surface was observed with a microscope, but there was no peeling residue at all. When the mixing ratio was 60/40, the time required for removal in tank 1 was 45 seconds, and the peeling rate was about 2 μm / min, so a removal performance that was adequate for this type of removal purpose was obtained. The surface tension and viscosity are 16 dyn / cm and 0.6 cP at a mixing ratio of 80/20.
And the mixing ratio of 60/40 is 18 dyn / cm and
0.7 cP, 27 dyn / c in case of ozone acetic acid treatment
Compared with m and 1.0 cP, the wettability to the minute gap was significantly improved.

【0040】実施例4 実施例3では表面張力と粘性率の小さいレジスト除去液
が示されたが、剥離速度も満足できるように、炭酸エチ
レン(濃度1重量%)およびHFE−7200と酢酸と
の混液から成る混合溶液で、実施例3と同様のレジスト
除去実験を行なった。蒸気乾燥槽の液はHFE−720
0である。HFE/酢酸=90/10(重量比)の場合でも
剥離速度3μm/分が得られ、この場合、処理液の表面
張力と粘性率は殆どHFEと同じである。混合比 80/20
では剥離速度が 4.5μm/分となり、オゾン添加酢酸の
剥離速度にかなり近づく。
Example 4 In Example 3, a resist removing solution having a small surface tension and a low viscosity was shown, but ethylene carbonate (concentration 1% by weight), HFE-7200 and acetic acid were mixed so that the stripping rate could be satisfied. The same resist removal experiment as in Example 3 was conducted using a mixed solution composed of a mixed solution. The liquid in the steam drying tank is HFE-720.
It is 0. Even when HFE / acetic acid = 90/10 (weight ratio), a peeling rate of 3 μm / min was obtained, and in this case, the surface tension and viscosity of the treatment liquid were almost the same as those of HFE. Mixing ratio 80/20
The stripping rate is 4.5 μm / min, which is very close to the stripping rate of ozone-added acetic acid.

【0041】実施例5 表面形状が複雑な部品類の精密洗浄には表面張力および
粘性率の小さいフッ素系洗浄剤が最も効果的であった。
そこで、オゾンとの反応が比較的少ないtert-ブチルア
ルコール(濃度:10重量%)とHFE−7100溶剤か
ら成る混合溶液を用いて本発明のオゾンによる有機被膜
除去液の除去効果と再生効果を調べた。アルコールを添
加したフッ素系洗浄剤がロジン系フラックスを溶かすこ
とは知られている。このフラックスを除去対象とし、各
実施例で用いた酸化ウェハー上に塗布して除去試料とし
た。実験器具は実施例3のものを用い、オゾンバブリン
グでの除去処理1分以降、一連の処理を実施例3と同様
に行なった。目視ではフラックスが除去されていたが、
荷電粒子放射化分析でさらに除去を確認した。槽1で20
枚処理したが、槽内の液にはフラックス溶解による着色
変化はみられず、フラックスは分解したものと考えられ
る。
Example 5 A fluorine-based cleaning agent having a small surface tension and a low viscosity was most effective for precision cleaning of parts having a complicated surface shape.
Therefore, using a mixed solution of tert-butyl alcohol (concentration: 10% by weight), which has relatively little reaction with ozone, and a HFE-7100 solvent, the removal effect and the regeneration effect of the organic film removing solution by ozone of the present invention were investigated. It was It is known that a fluorine-based cleaning agent to which alcohol is added dissolves rosin-based flux. This flux was used as a removal target and was applied on the oxidized wafer used in each example to obtain a removal sample. The experimental tool used in Example 3 was used, and after 1 minute of ozone bubbling removal treatment, a series of treatments were performed in the same manner as in Example 3. Although the flux was visually removed,
Further removal was confirmed by charged particle activation analysis. 20 in tank 1
After processing one sheet, no color change due to flux dissolution was observed in the liquid in the tank, and it is considered that the flux was decomposed.

【0042】環境問題が解決されたフッ素系洗浄剤は他
の溶剤に比し高価であるが、溶かした有機被膜がオゾン
により分解して洗浄剤の寿命が延びれば、経済性の難点
を緩和でき、フッ素系の特長を活かした被膜除去の適用
分野を拡大できる。そこで銅板上のポリビニルブチラー
ル塗膜を、HFE−7200 70重量%、酢酸 20重量
%、および酢酸ブチル 10重量%の混合剤で、実施例3
の実験器具により、各処理時間を5分として塗膜の剥離
を試みた。目視では被膜除去が確認された。同様の処理
を乾性油の油膜の残った塩化ビニル樹脂板状試料に対し
て施し、油膜の除去を試みた。処理液の組成は、HFE
−7200 70重量%、酢酸 20重量%、デカン 10重量
%である。各処理時間を2分としたが、目視では被膜の
残存は見られず、溶解オゾンに由来する液の青い着色状
態は処理時間経過後回復した。
Fluorine-based cleaning agents that have solved environmental problems are more expensive than other solvents, but if the dissolved organic film is decomposed by ozone and the life of the cleaning agent is extended, the economic difficulties are alleviated. It is possible to expand the application field of film removal that takes advantage of the characteristics of fluorine. Therefore, a polyvinyl butyral coating film on a copper plate was prepared in the same manner as in Example 3 with a mixture of HFE-7200 70% by weight, acetic acid 20% by weight, and butyl acetate 10% by weight.
With the experimental equipment of No. 3, each treatment time was set to 5 minutes, and peeling of the coating film was tried. The film removal was visually confirmed. The same treatment was applied to a vinyl chloride resin plate-shaped sample in which an oil film of the drying oil remained, to try to remove the oil film. The composition of the treatment liquid is HFE
-7200 70% by weight, acetic acid 20% by weight, decane 10% by weight. Although each treatment time was set to 2 minutes, no coating remained visually, and the blue coloring state of the liquid derived from dissolved ozone was recovered after the treatment time had elapsed.

【0043】実施例6 実施例2の剥離処理槽1とオゾン発散器10を利用し
て、この槽を投込み式の28KC超音波振動子の入った水
槽内の振動子の真上にセットし、塗膜の除去を検討し
た。剥離対象は 10cm角のステンレス鋼板上のポリメ
チルメタクリレート塗膜とポリ酢酸ビニル塗膜であり、
処理液の組成はプロピオン酸 70重量%および酢酸ブチ
ル 30重量%の混合溶液である。処理は 20℃で行った。
実施例2と同様にオゾンをバブリングさせ、5分経過後
試料を浸漬し、超音波は 30秒停止、10秒稼動の反復と
した。塗膜の厚さは計測しなかったが、ポリメチルメタ
クリレート塗膜の場合は約5分で、また、ポリ酢酸ビニ
ル塗膜の場合は約3分で、目視的に剥離が確認された。
Example 6 Using the stripping treatment tank 1 and ozone spreader 10 of Example 2, this tank was set right above a vibrator in a water tank containing a 28KC ultrasonic vibrator of a throw-in type. Then, the removal of the coating film was examined. The target of peeling is a polymethylmethacrylate coating film and a polyvinyl acetate coating film on a 10 cm square stainless steel plate.
The composition of the treatment liquid is a mixed solution of 70% by weight of propionic acid and 30% by weight of butyl acetate. The treatment was carried out at 20 ° C.
Ozone was bubbled in the same manner as in Example 2, and the sample was immersed after 5 minutes had passed, and the ultrasonic wave was stopped for 30 seconds and repeated for 10 seconds. Although the thickness of the coating film was not measured, peeling was visually confirmed in about 5 minutes in the case of the polymethylmethacrylate coating film and in about 3 minutes in the case of the polyvinyl acetate coating film.

【0044】[0044]

【発明の効果】本発明は、特定の混合溶液からなる有機
被膜に対して優れた溶解力を持つ処理液を用い、これに
オゾンを溶解させて有機被膜の除去を行うものであっ
て、各種のオゾン分解性有機被膜の除去が可能となっ
た。また、処理液自体がオゾンと反応しにくいことか
ら、オゾンの分解力を高めるために、本処理液に高濃度
にオゾンを溶解させることができ、更に、分解後の反応
生成物は低分子量のもので、処理液によく溶け、基体を
汚染することなく、また、前記除去処理後の処理液に溶
解した前記有機被膜由来の成分は、処理区域とは異なる
区域において、オゾンガスで処理することにより分解す
ることができ、処理液の再生・再使用を可能とすること
ができるため、有機被膜の除去性能を著しく向上させる
と同時に環境面において問題がなく、省資源化も図るこ
とができる。
INDUSTRIAL APPLICABILITY According to the present invention, a treatment liquid having an excellent dissolving power for an organic coating film made of a specific mixed solution is used, and ozone is dissolved therein to remove the organic coating film. It has become possible to remove the ozone-decomposable organic coating. Further, since the treatment liquid itself does not easily react with ozone, it is possible to dissolve ozone in a high concentration in the treatment liquid in order to enhance the decomposition power of ozone, and further, the reaction product after decomposition has a low molecular weight. However, the components derived from the organic coating dissolved in the treatment liquid well without polluting the substrate and dissolved in the treatment liquid after the removal treatment are treated with ozone gas in an area different from the treatment area. Since the treatment liquid can be decomposed and the treatment liquid can be regenerated and reused, the removal performance of the organic film can be significantly improved, at the same time, there is no problem in terms of environment and resource saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において得られた、酢酸:炭酸エチレ
ンの組成比とレジスト剥離速度との相関関係を示す図で
ある。
FIG. 1 is a diagram showing a correlation between a composition ratio of acetic acid: ethylene carbonate and a resist stripping rate obtained in Example 1.

【図2】実施例2において用いられた、枚葉の実験機構
のための剥離器具列と液供給器具列の概要を示す図であ
る。
FIG. 2 is a diagram showing an outline of a stripping instrument row and a liquid supply instrument row for a single-wafer experiment mechanism used in Example 2.

【符号の説明】[Explanation of symbols]

1.剥離処理槽 2.処理液リンス
槽 3.超純水リンス槽 4.ウェハー 5,6,7.タンク 8.処理液供給管 9.加熱器 10.オゾン発散器 11.配管 12,13.バルブ 14.配管 15.加熱器 16.リンス液供給管 17.バルブ 18.配管 19,20.バルブ 21.ガス配管 22.発散器 23.窒素ガス配管 25.連結管 26.バルブ 27,28.加熱器 29.新処理液導入管 30.バルブ 31.廃棄管 32.バルブ
1. Peeling treatment tank 2. Treatment liquid rinse tank 3. Ultrapure water rinse tank 4. Wafer 5, 6, 7. Tank 8. Processing liquid supply pipe 9. Heater 10. Ozone diffuser 11. Piping 12,13. Valve 14. Piping 15. Heater 16. Rinse liquid supply pipe 17. Valve 18. Piping 19,20. Valve 21. Gas piping 22. Divergence device 23. Nitrogen gas piping 25. Connection pipe 26. Valve 27, 28. Heater 29. New treatment liquid introduction pipe 30. Valve 31. Waste pipe 32. valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/027 H01L 21/30 572B (72)発明者 村岡 久志 神奈川県横浜市港北区新羽町735番地 株 式会社ピュアレックス内 Fターム(参考) 2H096 AA25 AA27 LA03 4H003 DA15 DB01 EA31 EB07 EB09 ED03 ED26 ED32 5F046 MA02 MA05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/027 H01L 21/30 572B (72) Inventor Hisashi Muraoka 735, Shinba-cho, Kohoku-ku, Yokohama-shi, Kanagawa Formula company Purelex F term (reference) 2H096 AA25 AA27 LA03 4H003 DA15 DB01 EA31 EB07 EB09 ED03 ED26 ED32 5F046 MA02 MA05

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】表面にオゾン分解性有機被膜を有する基体
に、オゾンガスを溶解させた処理液を接触させて前記有
機被膜を除去する方法において、前記処理液が、(a)前
記有機被膜を溶解することができ、かつ、オゾンによっ
て分解され難い有機物質と、(b)気体中のオゾンとの分
配係数が室温で 0.6以上であり、かつ、オゾンによって
分解され難い1種または複数種混合の有機溶剤との溶液
(ただし、前記有機物質および/または前記有機溶剤の
少なくとも1種は水混和性である)であることを特徴と
する有機被膜の除去方法。
1. A method of removing a treatment liquid in which ozone gas is dissolved by contacting a substrate having an ozone-decomposable organic coating on the surface thereof to remove the organic coating, wherein the treatment liquid dissolves (a) the organic coating. Organic compounds of one or a mixture of two or more, which have a partition coefficient of 0.6 or more at room temperature and which are difficult to decompose by ozone and (b) ozone in gas. A method of removing an organic film, which is a solution with a solvent (however, at least one of the organic substance and / or the organic solvent is miscible with water).
【請求項2】前記(a)の有機物質がエステル化合物であ
り、かつ、前記(b)の有機溶剤が式:Cn2n+1COOH
(式中、n=1〜3の整数)で表される脂肪酸、また
は、前記脂肪酸とC49OCHおよびC49OC25
から成る群から選ばれる少なくとも1種のハイドロフル
オロエーテルとの混合物であることを特徴とする請求項
1に記載の方法。
2. The organic substance of (a) is an ester compound, and the organic solvent of (b) is of the formula: C n H 2n + 1 COOH.
(Wherein n is an integer of 1 to 3), or the fatty acid and C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5
The method according to claim 1, which is a mixture with at least one hydrofluoroether selected from the group consisting of:
【請求項3】前記エステル化合物が炭酸アルキレンおよ
び酢酸アルキルから成る群から選ばれる少なくとも1種
のエステル化合物である請求項2に記載の方法。
3. The method according to claim 2, wherein the ester compound is at least one ester compound selected from the group consisting of alkylene carbonate and alkyl acetate.
【請求項4】前記(a)の有機物質がtert-ブチルアルコー
ルであり、かつ、前記(b)の有機溶剤がC49OCH
およびC49OC25から成る群から選ばれる少なくと
も1種のハイドロフルオロエーテルであることを特徴と
する請求項1に記載の方法。
4. The organic substance of (a) is tert-butyl alcohol, and the organic solvent of (b) is C 4 F 9 OCH 3
And at least one hydrofluoroether selected from the group consisting of C 4 F 9 OC 2 H 5 and the method according to claim 1.
【請求項5】前記(a)の有機物質が式:Cn2n+1COO
H(式中、n=1〜3の整数)で表される脂肪酸であ
り、かつ、前記(b)の有機溶剤がC49OCHおよび
49OC25から成る群から選ばれる少なくとも1種
のハイドロフルオロエーテルであることを特徴とする請
求項1に記載の方法。
5. The organic material of (a) has the formula: C n H 2n + 1 COO.
A fatty acid represented by H (wherein n is an integer of 1 to 3), and the organic solvent (b) is from the group consisting of C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5. The method according to claim 1, which is at least one hydrofluoroether selected.
【請求項6】請求項1〜5のいずれか1項に記載の方法
であって、有機被膜除去処理後の処理液を前記処理を施
す区域とは異なる区域に移送して、オゾンガスで処理し
た後、前記処理を施す区域に復帰させ、別の基体を処理
するための処理液として再使用することを特徴とする方
法。
6. The method according to any one of claims 1 to 5, wherein the treatment liquid after the organic film removal treatment is transferred to an area different from the area where the treatment is applied and treated with ozone gas. After that, the method is characterized by returning to the area where the treatment is applied and reusing it as a treatment liquid for treating another substrate.
【請求項7】請求項1〜6記載のいずれか1項に記載の
方法であって、前記有機被膜がレジスト膜であることを
特徴とする方法。
7. The method according to claim 1, wherein the organic coating film is a resist film.
【請求項8】表面にオゾン分解性有機被膜を有する基体
に接触させて前記有機被膜を除去するために、オゾンガ
スを溶解させて用いられる有機被膜除去剤であって、
(a)前記有機被膜を溶解することができ、かつ、オゾン
によって分解され難い有機物質、および(b)気体中のオ
ゾンとの分配係数が室温で 0.6以上であり、かつ、オゾ
ンによって分解され難い1種または複数種混合の有機溶
剤を含むこと(ただし、前記有機物質および/または前
記有機溶剤の少なくとも1種は水混和性である)を特徴
とする有機被膜除去剤。
8. An organic film removing agent which is used by dissolving ozone gas in order to bring the substrate into contact with a substrate having an ozone decomposable organic film to remove the organic film,
(a) an organic substance that can dissolve the organic coating and that is not easily decomposed by ozone, and (b) a partition coefficient with ozone in gas that is 0.6 or more at room temperature and is not easily decomposed by ozone An organic film removing agent comprising one or a mixture of two or more organic solvents (provided that at least one of the organic substance and / or the organic solvent is water-miscible).
【請求項9】前記(a)の有機物質がエステル化合物であ
り、かつ、前記(b)の有機溶剤が式:Cn2n+1COOH
(式中、n=1〜3の整数)で表される脂肪酸、また
は、前記脂肪酸とC49OCHおよびC49OC25
から成る群から選ばれる少なくとも1種のハイドロフル
オロエーテルとの混合物であることを特徴とする請求項
8に記載の有機被膜除去剤。
9. The organic substance of (a) is an ester compound, and the organic solvent of (b) is of the formula: C n H 2n + 1 COOH.
(Wherein n is an integer of 1 to 3), or the fatty acid and C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5
The organic film removing agent according to claim 8, which is a mixture with at least one hydrofluoroether selected from the group consisting of:
【請求項10】前記エステル化合物が炭酸アルキレンお
よび酢酸アルキルから成る群から選ばれる少なくとも1
種のエステル化合物である請求項8に記載の有機被膜除
去剤。
10. The at least one ester compound is selected from the group consisting of alkylene carbonate and alkyl acetate.
The organic film removing agent according to claim 8, which is a kind of ester compound.
【請求項11】前記(a)の有機物質がtert-ブチルアルコ
ールであり、かつ、前記(b)の有機溶剤がC49OCH
およびC49OC25から成る群から選ばれる少なく
とも1種の請求項8に記載の有機被膜除去剤。
11. The organic substance of (a) is tert-butyl alcohol, and the organic solvent of (b) is C 4 F 9 OCH.
The organic film remover according to claim 8, which is at least one member selected from the group consisting of 3 and C 4 F 9 OC 2 H 5 .
【請求項12】前記(a)の有機物質が式:Cn2n+1CO
OH(式中、n=1〜3の整数)で表される脂肪酸であ
り、かつ、前記(b)の有機溶剤がC49OCHおよび
49OC25から成る群から選ばれる少なくとも1種
のハイドロフルオロエーテルであることを特徴とする請
求項8に記載の有機被膜除去剤。
12. The organic substance of (a) above has the formula: C n H 2n + 1 CO
A fatty acid represented by OH (wherein n is an integer of 1 to 3), and the organic solvent (b) is a group consisting of C 4 F 9 OCH 3 and C 4 F 9 OC 2 H 5. The organic film removing agent according to claim 8, which is at least one kind of hydrofluoroether selected.
【請求項13】レジスト膜除去用である請求項8〜12
のいずれか1項に記載の有機被膜除去剤。
13. The method according to claim 8, which is for removing a resist film.
The organic film removing agent according to any one of 1.
JP2002083001A 2002-03-25 2002-03-25 Method and agent for removing organic coating Expired - Fee Related JP4004318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083001A JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083001A JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Publications (2)

Publication Number Publication Date
JP2003282518A true JP2003282518A (en) 2003-10-03
JP4004318B2 JP4004318B2 (en) 2007-11-07

Family

ID=29230965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083001A Expired - Fee Related JP4004318B2 (en) 2002-03-25 2002-03-25 Method and agent for removing organic coating

Country Status (1)

Country Link
JP (1) JP4004318B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011433A (en) * 2004-06-21 2006-01-12 Dongjin Semichem Co Ltd Resist-removing composition
JP2006024823A (en) * 2004-07-09 2006-01-26 Casio Comput Co Ltd Method for removing resist
JP2006024822A (en) * 2004-07-09 2006-01-26 Casio Comput Co Ltd Method for removing resist
JP2006324358A (en) * 2005-05-17 2006-11-30 Sekisui Chem Co Ltd Resist removing method and resist removing apparatus
WO2007114448A1 (en) * 2006-04-05 2007-10-11 Asahi Glass Company, Limited Device substrate washing method
KR100848981B1 (en) * 2005-12-02 2008-07-30 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate processing method and substrate processing apparatus
JP2010074168A (en) * 2008-09-19 2010-04-02 Imec Method for removing hardened photoresist from semiconductor substrate
JP2014115356A (en) * 2012-12-07 2014-06-26 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2015062259A (en) * 2012-11-26 2015-04-02 東京エレクトロン株式会社 Substrate cleaning system
US9799538B2 (en) 2012-11-26 2017-10-24 Tokyo Electron Limited Substrate cleaning system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011433A (en) * 2004-06-21 2006-01-12 Dongjin Semichem Co Ltd Resist-removing composition
JP4632872B2 (en) * 2004-06-21 2011-02-16 東進セミケム株式会社 Resist removing composition
JP4613535B2 (en) * 2004-07-09 2011-01-19 カシオ計算機株式会社 Resist removal method
JP2006024823A (en) * 2004-07-09 2006-01-26 Casio Comput Co Ltd Method for removing resist
JP2006024822A (en) * 2004-07-09 2006-01-26 Casio Comput Co Ltd Method for removing resist
JP2006324358A (en) * 2005-05-17 2006-11-30 Sekisui Chem Co Ltd Resist removing method and resist removing apparatus
JP4555729B2 (en) * 2005-05-17 2010-10-06 積水化学工業株式会社 Resist removing method and resist removing apparatus
KR100848981B1 (en) * 2005-12-02 2008-07-30 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate processing method and substrate processing apparatus
WO2007114448A1 (en) * 2006-04-05 2007-10-11 Asahi Glass Company, Limited Device substrate washing method
US8143203B2 (en) 2006-04-05 2012-03-27 Asahi Glass Company, Limited Method for washing device substrate
JP5124447B2 (en) * 2006-04-05 2013-01-23 旭硝子株式会社 Device substrate cleaning method
US8568534B2 (en) 2006-04-05 2013-10-29 Asahi Glass Company, Limited Method for washing device substrate
JP2010074168A (en) * 2008-09-19 2010-04-02 Imec Method for removing hardened photoresist from semiconductor substrate
JP2015062259A (en) * 2012-11-26 2015-04-02 東京エレクトロン株式会社 Substrate cleaning system
US9799538B2 (en) 2012-11-26 2017-10-24 Tokyo Electron Limited Substrate cleaning system
JP2014115356A (en) * 2012-12-07 2014-06-26 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus

Also Published As

Publication number Publication date
JP4004318B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
TW584893B (en) Method and apparatus for removing organic films
US5977041A (en) Aqueous rinsing composition
US20040011386A1 (en) Composition and method for removing photoresist and/or resist residue using supercritical fluids
TW556054B (en) Stripping composition
JP4741315B2 (en) Polymer removal composition
US6949495B2 (en) Cleaning solution for removing residue
US20090120457A1 (en) Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
US20030171239A1 (en) Methods and compositions for chemically treating a substrate using foam technology
WO2005104682A2 (en) Non-fluoride containing supercritical fluid composition for removal of ion-implant photoresist
US6379875B2 (en) Stripper pretreatment
JP4004318B2 (en) Method and agent for removing organic coating
WO2015143942A1 (en) Low-etching cleaning fluid for removing photoresist etching residues
US7402213B2 (en) Stripping and removal of organic-containing materials from electronic device substrate surfaces
TWI752903B (en) Compositions and methods that promote charge complexing copper protection during low pka driven polymer stripping
JP2003203856A (en) Removal method for organic coated film
TW200307973A (en) Removal of contaminants using supercritical processing
JP2001340817A (en) Removal method and removal apparatus of pollutant adhering to surface
JP4883975B2 (en) Method for removing deposits on substrate surface, treatment liquid for removal and removal apparatus
JP2003045842A (en) Method and apparatus of removing foreign matters deposited on surface
JPWO2006132008A1 (en) Organic film remover, organic film removal method and remover using the remover
JP2004104090A (en) Method and apparatus for removing surface contaminant
JP2003171694A (en) Cleaning composition and cleaning method
WO2009017484A1 (en) Stripping and removal of organic-containing materials from electronic device substrate surfaces
KR20060106514A (en) Stripper composition, stripping method using the same and stripper systems
JP2003171695A (en) Cleaning composition and cleaning method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees