JP2003045842A - Method and apparatus of removing foreign matters deposited on surface - Google Patents

Method and apparatus of removing foreign matters deposited on surface

Info

Publication number
JP2003045842A
JP2003045842A JP2001234037A JP2001234037A JP2003045842A JP 2003045842 A JP2003045842 A JP 2003045842A JP 2001234037 A JP2001234037 A JP 2001234037A JP 2001234037 A JP2001234037 A JP 2001234037A JP 2003045842 A JP2003045842 A JP 2003045842A
Authority
JP
Japan
Prior art keywords
ozone
gas
solvent
substrate
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001234037A
Other languages
Japanese (ja)
Other versions
JP4844912B2 (en
Inventor
Hisashi Muraoka
久志 村岡
Mitsuru Endo
満 遠藤
Asuka Sato
あすか 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PYUAREKKUSU KK
Original Assignee
PYUAREKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PYUAREKKUSU KK filed Critical PYUAREKKUSU KK
Priority to JP2001234037A priority Critical patent/JP4844912B2/en
Publication of JP2003045842A publication Critical patent/JP2003045842A/en
Application granted granted Critical
Publication of JP4844912B2 publication Critical patent/JP4844912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for removing foreign matters (such as resist) deposited on the surfaces of various sorts of products including an electronic device substrate such as a liquid crystal glass substrate and cleaning the surfaces efficiently in a short time. SOLUTION: The method can remove foreign matters deposited on the surface of an object 1, by applying an ozone-soluble solvent on the surface of the object 1 to form a solution film thereon, and introducing a gas containing a high concentration of ozone into a lamellar gap between the surface and a ceiling plate 14 or another object to contact the gas with the solution film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、汚染物質の除去が
必要な物品表面の清浄化、特に電子デバイス用基板の表
面清浄化方法に関するものである。具体的には、半導体
用ウェハーまたは液晶用基板などの加工に際して使用す
るフォトレジストのような有機膜の除去並びにウェハー
工程全般にわたって発生する有機汚染物質の洗浄・除去
に関するものである。さらには、精密な金属加工品やガ
ラス加工品の有機汚染物質の洗浄・除去に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning an article surface requiring removal of contaminants, and more particularly to a method for cleaning the surface of an electronic device substrate. Specifically, the present invention relates to removal of an organic film such as a photoresist used in processing a semiconductor wafer or a liquid crystal substrate, and cleaning / removal of organic contaminants generated throughout the wafer process. Furthermore, it relates to cleaning and removal of organic pollutants in precision metal products and glass products.

【0002】[0002]

【従来の技術】酸化膜やシリコン膜の微細加工用に使用
した後のフォトレジストの剥離に関しては、通常硫酸
(3容または4容):過酸化水素(1容)の混合液(ピ
ラニアと呼ばれている)を用いて110〜140℃に加熱して
10〜20分間浸漬処理する方法が採用されている。レジス
トマスクに対して高濃度のイオン注入を行うような場合
には、レジストが変質してピラニア処理では除去できな
くなるので、プラズマ励起酸素によるアッシングが一般
に使われている。しかし、アッシングだけではウェハー
表面にレジスト由来の有機変質物、微粒子、並びに微量
金属が残る。そこで、通常は、アッシング処理後であっ
ても、さらにピラニア処理が行われている。
2. Description of the Related Art Regarding the stripping of a photoresist after it has been used for microfabrication of an oxide film or a silicon film, a mixed solution of sulfuric acid (3 volumes or 4 volumes) and hydrogen peroxide (1 volume) is usually called piranha. Heated to 110-140 ℃
A method of dipping for 10 to 20 minutes is adopted. When high-concentration ion implantation is performed on the resist mask, the resist is denatured and cannot be removed by the piranha treatment, so ashing with plasma-excited oxygen is generally used. However, only ashing leaves organic alteration products derived from resist, fine particles, and trace metals on the wafer surface. Therefore, normally, even after the ashing process, the piranha process is further performed.

【0003】ピラニア処理は、高温の硫酸を使うので排
液や排気に関し環境面での問題点が多い。そこで、この
ピラニア処理に代えてオゾン水によるレジスト剥離が試
みられている。水を0℃近くまで冷却するとオゾンの溶
解度は 70〜100ppmに達する。しかし、LSI製造で
広く使われているI線用ノボラック樹脂系ポジ型レジス
ト膜の場合には、オゾン水処理では剥離速度が70〜80n
m/分と遅いため非効率である。しかし、レジスト剥離
をオゾン水処理によって行うことは、オゾンでレジスト
を十分分解できる点で有効であるため、オゾン水処理に
よりレジストの剥離速度をさらに高める手法が試みら
れ、湿ったオゾンを含むガスで処理するする方法が、提
案されている。
Since the piranha treatment uses high temperature sulfuric acid, there are many environmental problems regarding drainage and exhaust. Therefore, instead of this piranha treatment, resist stripping with ozone water has been attempted. When water is cooled to near 0 ° C, the solubility of ozone reaches 70-100ppm. However, in the case of a novolac resin-based positive resist film for I-line, which is widely used in LSI manufacturing, the stripping rate is 70 to 80n in ozone water treatment.
It is inefficient because it is slow at m / min. However, performing the resist stripping by ozone water treatment is effective in that the resist can be sufficiently decomposed by ozone, so a method of further increasing the resist stripping rate by ozone water treatment has been attempted, and it has been proposed to use a gas containing moist ozone. Methods of handling have been proposed.

【0004】なお、配線のために用いられるアルミニウ
ムのような金属膜の微細加工に使ったレジストの剥離に
は、通常、n−メチルピロリドンのような有機溶剤が使
われている。また、電子部品関連の精密洗浄にはフレオ
ンが広く利用されてきたが、環境問題のため使用できな
くなり、水系の代替洗浄剤、例えばアルカリ系あるいは
界面活性剤等の洗浄剤が使われている。
An organic solvent such as n-methylpyrrolidone is usually used for stripping the resist used for fine processing of a metal film such as aluminum used for wiring. Further, although Freon has been widely used for precision cleaning of electronic parts, it cannot be used due to environmental problems, and a water-based alternative cleaning agent such as an alkaline cleaning agent or a surfactant is used.

【0005】[0005]

【発明が解決しようとする課題】半導体デバイス、特に
超LSIの高度細密化に伴って、ウェハー表面の有機汚
染物質の低減化の必要性は、ますます重要性を高めてい
る。有機汚染物質除去に有効なピラニア洗浄処理は、デ
バイス製造工場で広く実施されているが、高温の硫酸の
使用量が増加すると、環境対策が厄介になり、さらに硫
酸は粘性が強いのでリンス用の超純水を大量に必要とす
るため、社会的かつ経済的に問題点が多い。
With the increasing miniaturization of semiconductor devices, especially VLSI, the need for reduction of organic contaminants on the wafer surface is becoming more and more important. The piranha cleaning process, which is effective in removing organic pollutants, is widely practiced in device manufacturing plants, but when the amount of high-temperature sulfuric acid used increases, environmental measures become troublesome, and since sulfuric acid has a strong viscosity, it is not suitable for rinsing. Since a large amount of ultrapure water is required, there are many social and economic problems.

【0006】金属面上のノボラック樹脂系ポジ型レジス
ト剥離の場合は、上述のようにn−メチルピロリドンの
ような有機塩基類が使われることが多いが、処理液の加
温の程度や処理時間によっては金属表面が腐食される。
したがって、処理には精密な制御が必要で、かつイソプ
ロピルアルコールのような有機溶剤でリンスしてから超
純水リンスに移行させるような場合が多いので、経済性
の点でも問題である。
In the case of stripping a novolac resin-based positive resist on a metal surface, organic bases such as n-methylpyrrolidone are often used as described above, but the degree of heating of the processing liquid and the processing time are long. Some corrode the metal surface.
Therefore, the treatment requires precise control, and in many cases, rinsing with an organic solvent such as isopropyl alcohol is performed before transferring to ultrapure water rinsing, which is also a problem in terms of economy.

【0007】そこで、オゾン水処理が期待されるわけで
あるが、半導体レベル用の処理に用いられる高純度オゾ
ン水は、オゾンを含む高純度酸素(以下、オゾンガスと
いう)を超純水に通気し、オゾンを吸収させて製造して
いる。オゾンをCG[mg/リットル]の濃度で含む気体が
オゾンの濃度CL[mg/リットル]の液とある温度で平衡
する場合、ヘンリーの法則でCLとCGは比例し、その比
例常数である分配係数D=CL/CGは一定となる。ここ
で、液体が水の場合、ある研究例では25℃で D=0.2、
20℃でD=0.28、5℃でD=0.47の値と報告されてお
り、通常の放電式オゾンガス発生装置で得られるオゾン
濃度は 200mg/リットル程度で、これで計算すると20℃で
40ppm、5℃で94ppmが飽和濃度となる。実際に水
にオゾンを吸収させる場合、この飽和濃度より低い濃度
しか得られない。低温の水ではオゾン濃度は高くできる
が、温度が下がると通常反応速度が低くなり、レジスト
剥離速度は上述のように十分な値が得られず、厚さ 1.5
μmのノボラック樹脂系ポジ型レジスト膜の剥離・除去
には、20〜30分の時間を要する。
Therefore, it is expected that ozone water will be treated. However, high-purity ozone water used for semiconductor-level treatment is a method in which high-purity oxygen containing ozone (hereinafter referred to as ozone gas) is passed through ultrapure water. It is manufactured by absorbing ozone. When a gas containing ozone at a concentration of C G [mg / liter] is in equilibrium with a liquid at a concentration of ozone C L [mg / liter] at a certain temperature, C L and C G are proportional to Henry's law, and their proportions are proportional. The constant distribution coefficient D = C L / C G is constant. Here, when the liquid is water, in one research example, at 25 ° C, D = 0.2,
It has been reported that D = 0.28 at 20 ° C and D = 0.47 at 5 ° C. The ozone concentration obtained by a normal discharge type ozone gas generator is about 200 mg / liter.
At 40 ppm and 5 ° C, 94 ppm is the saturated concentration. When water actually absorbs ozone, only a concentration lower than this saturation concentration can be obtained. Although ozone concentration can be increased with low-temperature water, the reaction rate usually decreases when the temperature decreases, and the resist stripping rate does not reach a sufficient value as described above.
It takes 20 to 30 minutes to remove and remove the novolac resin-based positive resist film of μm.

【0008】市販の高濃度オゾンガス発生装置の中に
は、最高 300mg/リットルの濃度に達するオゾンガスを発
生できるものがある。オゾン水処理法の改良として登場
した湿ったオゾンガスを用いた処理方法でオゾンの濃度
と処理温度を高めた場合、ノボラック樹脂系ポジ型レジ
スト膜の剥離速度を大幅に向上できるという報告があ
る。この場合、ガスのオゾン濃度を 230mg/リットルとし
約80℃で処理すると、剥離速度は約1μm/分程度であ
る。
Some of the commercially available high-concentration ozone gas generators can generate ozone gas having a concentration of up to 300 mg / liter. It has been reported that when the concentration of ozone and the treatment temperature are raised by the treatment method using moist ozone gas, which appeared as an improvement of the ozone water treatment method, the peeling rate of the novolac resin-based positive resist film can be significantly improved. In this case, if the ozone concentration of the gas is 230 mg / liter and the treatment is performed at about 80 ° C., the peeling rate is about 1 μm / min.

【0009】本発明者は、気体中のオゾンと分配係数D
が 0.6以上である有機溶剤にオゾンを十分に溶解し、被
洗浄体面に接触させて、強力な洗浄作用を得る方法を発
明し、既に特許出願した( 特願2000-101064号、以下、
先願発明という)。室温の純酢酸に濃度 250mg/リットル
のオゾンガスをバブリングすれば、通常約5分で酢酸中
のオゾン濃度が 300ppm程度になる。このオゾンを溶
解した酢酸(以下、オゾン酢酸という)液によれば、上
記したノボラック樹脂系ポジ型レジストの剥離速度は室
温で5〜6μm/分であり、通常の 1.5μm程度の膜厚
のものでは15〜18秒で剥離できる。
The present inventor has found that ozone in gas and the partition coefficient D
Invents a method of sufficiently dissolving ozone in an organic solvent having a value of 0.6 or more and bringing it into contact with the surface to be cleaned to obtain a strong cleaning action, and has already applied for a patent (Japanese Patent Application No. 2000-101064, hereinafter,
Prior invention). When ozone gas with a concentration of 250 mg / liter is bubbled into pure acetic acid at room temperature, the ozone concentration in acetic acid usually reaches about 300 ppm in about 5 minutes. According to this acetic acid solution in which ozone is dissolved (hereinafter referred to as "ozone acetic acid"), the peeling rate of the above-mentioned novolac resin-based positive resist is 5 to 6 µm / min at room temperature, and the normal film thickness is about 1.5 µm. Then, it can be peeled off in 15-18 seconds.

【0010】しかし、バブリング手段を用いると、溶剤
中へのガスのオゾン分子の溶け込みと同時に溶剤中に溶
けたオゾンの脱気も起こるので、静的な平衡から求めら
れている分配係数とおりには溶剤中のオゾン濃度が高ま
らない。室温の酢酸に関する分配係数の研究報告は数件
あり、1.5から1.9の間であって、 250mg/リットルのオゾ
ンガスで低くともオゾン濃度 380ppmのオゾン酢酸が
得られるはずであるが、かなり複雑なバブリング器具を
使用し、ガス流量に対する酢酸の量を少なくするかまた
はバブリング時間を長くしないと容易にはこの所望濃度
には達しない。また、特に高濃度のオゾン酢酸ではオゾ
ンが脱気し易いので、このような高濃度オゾン酢酸の作
成器を用いても、短時間でも貯蔵した後にオゾン酢酸を
処理にもちいようとすると、実際の剥離処理段階でのオ
ゾン濃度が 300ppm程度まで低下し易い。
However, when the bubbling means is used, the ozone molecules dissolved in the solvent are degassed at the same time when the ozone molecules of the gas are dissolved in the solvent, so that the distribution coefficient obtained from the static equilibrium is obtained. The ozone concentration in the solvent does not rise. There have been several reports of partition coefficients for acetic acid at room temperature, between 1.5 and 1.9, which should give ozone acetic acid with an ozone concentration of at least 380 ppm at 250 mg / l of ozone gas, but a fairly complicated bubbling device. Is used and the amount of acetic acid is decreased with respect to the gas flow rate or the bubbling time is not increased, the desired concentration is not easily reached. In addition, since ozone is easily degassed especially with high-concentration ozone acetic acid, even if such a high-concentration ozone acetic acid generator is used, if ozone acetic acid is used for treatment after being stored for a short time, The ozone concentration during the peeling process is likely to drop to around 300 ppm.

【0011】上記先願発明では、また、オゾンを含む雰
囲気中で、被処理体表面にオゾン可溶の有機溶剤の液膜
を形成させて付着異質物質を除去する方法と、オゾンガ
スを処理チャンバーに導入し、その中で被処理体表面に
該溶剤液膜を形成する付着異質物質除去装置とを提供し
た。この場合、バブリング器具は不要となるが、オゾン
ガスの必要量が多くなり、高濃度オゾンガスを大量に使
用することから経済的に、実際上、その実施には難点が
ある。上記先願発明の実施例では、チャンバー内に導入
するオゾン濃度は 200mg/リットル以下とし、バブリング
で容易に得られる程度の濃度のオゾン酢酸で液膜を形成
すれば、上述した高濃度のオゾン酢酸を供給して液膜を
形成する場合に近い除去性能が得られ、実用的である。
しかし、当然ながらバブリングによるオゾン溶解器が必
要となる。
In the above-mentioned prior invention, a method for forming a liquid film of an ozone-soluble organic solvent on the surface of an object to be treated in an atmosphere containing ozone to remove adhering foreign substances, and ozone gas in a treatment chamber. An apparatus for removing an adhering foreign substance, which forms a solvent liquid film on the surface of an object to be treated, is provided. In this case, a bubbling device is not necessary, but the required amount of ozone gas is large, and a large amount of high-concentration ozone gas is used, so economically and practically there is a difficulty in implementing it. In the embodiment of the invention of the prior application, the ozone concentration introduced into the chamber is 200 mg / liter or less, and if the liquid film is formed with ozone acetic acid having a concentration that can be easily obtained by bubbling, the above-mentioned high concentration of ozone acetic acid can be obtained. It is practical because the removal performance is similar to that in the case of supplying liquid to form a liquid film.
However, naturally, an ozone dissolver by bubbling is required.

【0012】本発明は、先願発明をさらに改良して、有
機溶剤へのオゾン溶解器を不要とし、かつ大量でない高
濃度のオゾンガスにより、オゾンを溶解した溶剤液膜を
被処理体表面に形成する方法と装置を提供するものであ
って、その結果、高濃度オゾンガスの使用量を節減でき
ると共に、表面付着異質物質に対する除去性能をはるか
に向上させることを目的としたものである。
The present invention is a further improvement of the prior invention, in which an ozone dissolver for an organic solvent is unnecessary and a solvent liquid film in which ozone is dissolved is formed on the surface of the object to be treated by a high concentration ozone gas which is not large in quantity. The present invention provides a method and a device therefor, and as a result, it is possible to reduce the amount of high-concentration ozone gas used and to significantly improve the removal performance for foreign substances adhering to the surface.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、異質物質が付着した被処理体の表面に、
該表面を十分に濡らすことができるオゾン可溶性溶剤を
適用するとともに、これにより形成される液膜に対し
て、前記被処理体の表面に近接した天板または他の被処
理体との間の層状間隙に導入した高濃度のオゾンを含む
ガスを接触させて、被処理体の表面に付着した異質物質
を除去することを特徴とする表面付着異質物質の除去方
法および該除去方法のために用いられる除去装置に関す
るものである。
In order to achieve the above object, the present invention provides a surface of an object to which a foreign substance is attached,
An ozone-soluble solvent capable of sufficiently wetting the surface is applied, and a layer formed between the top plate adjacent to the surface of the object to be processed and another object to be processed with respect to the liquid film formed thereby. Used for removing a foreign substance adhering to a surface, which is characterized by removing a foreign substance adhering to the surface of an object to be treated by bringing a gas containing a high concentration of ozone introduced into a gap into contact therewith. The present invention relates to a removing device.

【0014】[0014]

【発明の実施の形態】本発明方法の好ましい実施形態
は、表面付着異質物質を有する物品の表面に対して、オ
ゾン濃度が 200mg/リットル以上のガスを、該物品表面と
該表面からの距離が10mm以内の天板または他の被処理
体との間の層状間隙に導入した後、該物品表面を十分に
濡らすことができるオゾン可溶性溶剤を該表面に供給し
て液膜を形成し、オゾンガスに接触させることである。
BEST MODE FOR CARRYING OUT THE INVENTION In a preferred embodiment of the method of the present invention, a gas having an ozone concentration of 200 mg / liter or more is applied to the surface of an article having a surface-attached foreign substance at a distance from the article surface to the surface of the article. After being introduced into the layered space between the top plate and another object to be treated within 10 mm, an ozone-soluble solvent capable of sufficiently wetting the surface of the article is supplied to the surface to form a liquid film, and ozone gas is generated. It is to contact.

【0015】さらに、本発明方法は、表面付着異物のあ
る物品の表面に、該表面を十分に濡らすことができるオ
ゾン可溶性溶剤の液膜を作成した後、オゾン濃度が 200
mg/リットル以上のガスを表面からの距離が10mm以内の
天板または他の被処理体との間の層状間隙に供給して行
なう態様をも包含する。
Furthermore, according to the method of the present invention, after forming a liquid film of an ozone-soluble solvent capable of sufficiently wetting the surface of an article having surface-attached foreign matter, the ozone concentration is 200%.
It also includes a mode in which mg / liter or more of gas is supplied to the layered gap between the top plate or another object to be processed and the distance from the surface is within 10 mm.

【0016】本発明が最も効果を発現するのは、物品が
電子工業用基板である場合で、特に表面付着異質物質が
フォトレジストの場合である。特に、LSIや液晶分野
で広く使われているノボラック樹脂系ポジ型レジストに
対して著効があり、また、化学増幅型のポリビニルフェ
ノール誘導体系ポジ型レジストでも、剥離速度は若干劣
るが同程度の効果がある。さらに、ネガタイプの代表的
なレジストである環化ポリイソプレン系のものについて
は、なお一層迅速な剥離速度が得られる。したがって、
電子工業で通常に使用されるフォトレジストの大部分に
本発明を適用することができる。
The present invention is most effective when the article is a substrate for the electronic industry, and particularly when the foreign substance adhering to the surface is a photoresist. It is particularly effective against novolak resin-based positive resists that are widely used in the LSI and liquid crystal fields, and even with chemically amplified polyvinylphenol derivative-based positive resists, the peeling speed is slightly inferior, but at the same level. effective. Furthermore, for the cyclized polyisoprene type, which is a typical negative type resist, an even faster peeling rate is obtained. Therefore,
The present invention is applicable to most of the photoresists commonly used in the electronics industry.

【0017】本発明において迅速な物品表面の付着異質
物質除去を達成するためには、まず物品表面に迅速に液
膜が形成されねばならない。すなわち、極めて短時間に
物品表面が十分に濡れるためには使用する溶剤の処理温
度での表面張力が小さくなければならない。したがっ
て、40dyn/cm以下、好ましくは30dyn/cm以
下の溶剤が使用される。液膜の厚さは、物品表面の傾斜
や回転状態等で変るが 100μm程度が望ましく、10μm
でも十分に目的を達し得る。なお、化学増幅型レジスト
の場合は 300μm程度の厚さにした方が好ましい場合も
ある。
In the present invention, in order to achieve the rapid removal of foreign substances from the surface of an article, a liquid film must be formed quickly on the surface of the article. That is, in order to sufficiently wet the article surface in an extremely short time, the surface tension of the solvent used at the treatment temperature must be small. Therefore, a solvent of 40 dyn / cm or less, preferably 30 dyn / cm or less is used. The thickness of the liquid film varies depending on the inclination of the article surface and the rotating state, but it is desirable that it be around 100 μm, 10 μm
But you can reach the goal enough. In the case of a chemically amplified resist, it may be preferable to set the thickness to about 300 μm.

【0018】また、液膜を形成する溶剤としては、好ま
しくは付着異質物質の全てまたは少なくともその一部を
膨潤させることができるもの、また、さらに好ましくは
付着異質物質の全てまたは少なくともその一部を溶解さ
せることができるものを採用することが、本発明方法に
おいて除去速度の迅速化を図るうえで極めて重要であ
る。溶解度は、付着汚染物質全量に対して、少なくとも
50重量%以上あることが望ましい。若干の溶解残渣があ
っても、通常これらは容易にオゾンによって分解され、
結局は分解物として完全に除去されるので問題はない。
一般に温度を上げると溶解度は著しく向上するので、溶
剤の引火点以下で加熱することが非常に好ましい。その
ためには、溶剤を加熱しても、オゾンガスを加熱して
も、あるいは処理対象の物品自体を加熱してもよい。付
着汚染物質の全てまたは少なくともその表層部に対し溶
解性があることが有効な分野は、油脂等により粘着した
微粒子等の付着異質物質の除去であり、特に、油脂等に
対し十分な溶解性がある溶剤の適用が極めて顕著な効果
を示す。
The solvent for forming the liquid film is preferably one capable of swelling all or at least a part of the attached foreign substance, and more preferably all or at least a part of the attached foreign substance. It is extremely important to adopt a material that can be dissolved in order to accelerate the removal rate in the method of the present invention. Solubility should be at least as much as the total amount of attached pollutants.
It is preferably 50% by weight or more. Even if there are some dissolved residues, these are usually easily decomposed by ozone,
After all, it is completely removed as a decomposed product, so there is no problem.
Generally, when the temperature is raised, the solubility is remarkably improved, so it is highly preferable to heat the solvent at a temperature not higher than the flash point of the solvent. For that purpose, the solvent may be heated, ozone gas may be heated, or the article to be treated itself may be heated. A field in which it is effective to have solubility in all or at least the surface layer of adhered pollutants is the removal of adhered foreign substances such as fine particles adhered by oils and fats, etc. The application of certain solvents has a very pronounced effect.

【0019】液膜を形成する溶剤がオゾンに対して高い
溶解性を有することが、表面付着汚染異質除去の迅速性
を高めるために、次いで重要なポイントである。本発明
方法は、特にこの迅速性を重視するものであり、溶剤の
オゾンガスに対する分配係数は1.0以上好ましくは1.5程
度あることが望ましい。しかし、表面付着汚染物質が金
属成分であって、その除去のために限られた目的の場合
は、分配係数がかなり小さくても上記溶解度を満足する
ものであれば、十分適用し得る。
The fact that the solvent forming the liquid film has a high solubility in ozone is the next most important point in order to enhance the speed of removal of foreign substances adhering to the surface. The method of the present invention attaches great importance to this quickness, and it is desirable that the partition coefficient of the solvent with respect to ozone gas is 1.0 or more, preferably about 1.5. However, when the surface-adhered contaminant is a metallic component and its purpose is limited for its removal, it can be sufficiently applied as long as the solubility is satisfied even if the partition coefficient is considerably small.

【0020】上記条件を満足するものであって、最も好
ましい溶剤は、低分子量の脂肪族カルボン酸であり、特
に、式:C2n+1COOH(式中、n=1、2ま
たは3の整数)で表わされるものは、オゾンとの反応性
が少ないので、好ましい。この中でも、酢酸は、従来よ
りオゾン酸化の反応溶媒として使われてきたように、オ
ゾンを含有した際の安定性が良いし、オゾンに対しての
分配係数も上述したように大きく、かつ表面張力は約25
dyn/cmであるので物品表面に液膜を容易に形成し
得る。特に、表面付着汚染物が二重もしくは三重の炭化
水素結合を有する有機物の場合、溶剤として酢酸を用い
た液膜中でオゾンによる酸化分解が強力に達成される。
また、プロピオン酸や酪酸を用いても、酢酸に準じて、
ほぼ同様の効果を奏する。
The most preferable solvent satisfying the above conditions is a low molecular weight aliphatic carboxylic acid, and in particular, a compound having the formula: C n H 2n + 1 COOH (where n = 1, 2 or 3 is an integer). The compound represented by () is preferable because it has low reactivity with ozone. Of these, acetic acid has good stability when it contains ozone, as it has been used as a reaction solvent for ozone oxidation, and has a large partition coefficient for ozone, as described above, and a high surface tension. Is about 25
Since it is dyn / cm, a liquid film can be easily formed on the article surface. In particular, when the surface-attached contaminant is an organic substance having a double or triple hydrocarbon bond, oxidative decomposition by ozone is strongly achieved in a liquid film using acetic acid as a solvent.
Also, even if propionic acid or butyric acid is used, in the same manner as acetic acid,
It has almost the same effect.

【0021】この他に、液膜処理として有効な有機溶剤
は、ハロゲン化炭化水素に多くみられる。特に、ハイド
ロクロロフルオロカーボン(HCFC)が好ましく、オ
ゾンに関する分配係数は 2.0に近く、表面張力は20dy
n/cm以下であって、精密な金属加工品やガラス加工
品の表面の油やフラックスに対する洗浄効果がさらに高
まる。このような液膜でのオゾンの洗浄作用は、加熱さ
れた硫酸のような無機溶剤でも可能であり、無機質表面
付着汚染物質の除去に有効である。
In addition to the above, halogenated hydrocarbons are often used as the effective organic solvent for the liquid film treatment. In particular, hydrochlorofluorocarbon (HCFC) is preferable, the distribution coefficient for ozone is close to 2.0, and the surface tension is 20 dy.
Since it is n / cm or less, the effect of cleaning the surface of precision metalworking products and glassworking products against oil and flux is further enhanced. The cleaning action of ozone with such a liquid film is possible even with an inorganic solvent such as heated sulfuric acid, and it is effective in removing inorganic surface-adhering pollutants.

【0022】上記先願発明で提供したように、表面付着
異質物質のある物品の表面に、オゾン可溶な溶剤の液膜
を形成させ、オゾンガス雰囲気下におき、生じた含オゾ
ン溶剤と物品表面とを接触させることによって表面異質
汚染物質の除去が可能である。液膜に接する雰囲気中の
オゾン濃度が液中のオゾン濃度より高ければ、オゾンは
容易に液膜中に拡散し、短時間に液膜中のオゾン濃度が
飽和点近くまで上昇するためである。しかし、先願発明
の方法では経済性のよい大容量の高濃度オゾンガス発生
装置が必要となる点で、実際上問題がある。
As provided in the above-mentioned prior invention, a liquid film of an ozone-soluble solvent is formed on the surface of an article having a foreign substance adhering to the surface and placed in an ozone gas atmosphere, and the resulting ozone-containing solvent and the article surface. Surface foreign contaminants can be removed by contacting with. This is because if the ozone concentration in the atmosphere in contact with the liquid film is higher than the ozone concentration in the liquid, ozone easily diffuses in the liquid film and the ozone concentration in the liquid film rises to near the saturation point in a short time. However, the method of the invention of the prior application has a practical problem in that a large-capacity high-concentration ozone gas generator with good economy is required.

【0023】本発明は、 250mg/リットル以上の高濃度オ
ゾンガスが、被処理表面上からの距離が10mm以内、好
ましくは1〜5mm程度の層状間隙を満たし、かつ、そ
のガスに接触する液膜を意図的に静止させるか、あるい
は数cm/秒以下の緩やかな速度で流動させるか、数c
m程度の移動距離で揺動させることで、 1.5μm厚さの
ノボラック樹脂系ポジ型レジストを10秒以内に剥離でき
る方法を提供する。剥離速度は10μm/分以上に達す
る。その機構は、狭い限られた層状間隙の高濃度オゾン
層に、表面張力が小さいことにより厚さが約 100μm以
下のごく薄い層となった液膜が接し、液膜中のオゾン濃
度が過飽和に達することに起因すると推定される。ま
た、膜厚が 0.5μm以下のポリビニルフェノール誘導体
レジストの場合は、層状間隙を1mm程度に制御してオ
ゾンガスの実効流速を高めることにより、同程度の剥離
性能を達成することができる。
According to the present invention, a high concentration ozone gas of 250 mg / liter or more fills a layered gap whose distance from the surface to be treated is within 10 mm, preferably about 1 to 5 mm, and a liquid film which contacts the gas is formed. Whether it is intentionally stopped or is made to flow at a slow speed of several cm / sec or less, or several c
A method for removing a novolac resin-based positive resist having a thickness of 1.5 μm within 10 seconds by swinging at a moving distance of about m. The peeling speed reaches 10 μm / min or more. The mechanism is that the high-concentration ozone layer with a narrow and limited layered gap is in contact with a thin liquid film whose thickness is less than 100 μm due to the small surface tension, resulting in supersaturation of the ozone concentration in the liquid film. It is estimated that this is due to reaching. Further, in the case of a polyvinylphenol derivative resist having a film thickness of 0.5 μm or less, the same degree of peeling performance can be achieved by controlling the layered gap to about 1 mm to increase the effective flow rate of ozone gas.

【0024】酢酸中にオゾンをバブリングして作成する
オゾン酢酸液のガス中のオゾンとの分配係数は、液の温
度が20℃から40℃になると、約60%に低下することが知
られており、温度が上がって溶剤自体のレジストに対す
る反応速度が上がっても、これを液膜として処理した場
合、剥離速度は最大で2倍程度、即ちほぼ10μm/分に
しかならない。しかし、本発明方法において、酢酸液膜
の温度を40℃とすると、上記の厚さ 1.5μmのノボラッ
ク樹脂系ポジ型レジスト膜は数秒で剥離され、この際の
剥離速度は20μm/分以上にも達していると推定され
る。
It is known that the partition coefficient of ozone acetic acid solution prepared by bubbling ozone into acetic acid with ozone in gas decreases to about 60% when the temperature of the solution changes from 20 ° C to 40 ° C. However, even if the temperature rises and the reaction rate of the solvent itself with respect to the resist rises, when it is treated as a liquid film, the peeling rate is about twice at maximum, that is, about 10 μm / min. However, in the method of the present invention, when the temperature of the acetic acid liquid film is set to 40 ° C., the above-mentioned novolac resin-based positive resist film having a thickness of 1.5 μm is peeled off within several seconds, and the peeling speed at this time is as high as 20 μm / min or more. Presumed to have reached.

【0025】本発明方法では、5秒程度の短時間にレジ
スト剥離ができるので、比較的小型の高濃度オゾン発生
器を用い、発生したガスを一旦貯蔵し、このガスをレジ
スト面に短時間で高流量で急速に放出すると、物品表面
のオゾンガス占有層状間隙が限られているので、レジス
ト剥離に十分な表面液膜のオゾン濃度を必要な時間保持
することができる。
In the method of the present invention, since the resist can be stripped in a short time of about 5 seconds, a relatively small high-concentration ozone generator is used to temporarily store the generated gas, and this gas is stored on the resist surface in a short time. When released rapidly at a high flow rate, the ozone gas-occupying layered gap on the surface of the article is limited, so that the ozone concentration of the surface liquid film sufficient for resist stripping can be maintained for a required time.

【0026】物品表面に必要な厚さの高濃度オゾンガス
層を形成する装置としては、着脱のできるの低い天板を
有するフード体を、オゾンガス供給時だけ被処理表面の
全面もしくは移動する該表面の一部に被せる構造が望ま
しい。カセットに入った電子工業用基板面の処理や複数
枚の基板を収容したカセットのスピン処理の場合は、基
板面間の層状間隙に高濃度オゾンガス層を形成すること
ができる。
As an apparatus for forming a high-concentration ozone gas layer having a required thickness on the surface of an article, a hood having a removable top plate is used, and the entire surface of the surface to be treated or the surface of the surface to be moved is supplied only when ozone gas is supplied. A structure that covers a part of it is desirable. In the case of processing an electronic industrial substrate surface in a cassette or spin processing a cassette containing a plurality of substrates, a high-concentration ozone gas layer can be formed in the layered gap between the substrate surfaces.

【0027】オゾンガスに接触させる液膜の形成方法の
例をあげれば、次のとおりである。 (1) 溶剤を傾斜した被処理基板面へノズルで短時間また
は間欠的に噴射し、基板全面が濡れた時点で噴射を中止
する。 (2) 枚葉スピン処理機構を利用する場合、溶剤を中央部
に吐出させ、50rpm前後の低速スピン処理をごく短時
間行って基板表面全面が濡れた時点で回転を停止する。 (3) チャンバ内で、複数枚の基板を載置したカセットに
溶剤をカセットよりも上部のノズルから吐出させて、基
板表面全面を濡らす。 (4) 複数枚の基板を載置したカセットを水平回転軸で回
転させるスピン処理機構を利用する場合、溶剤をカセッ
トよりも上部のノズルから吐出させ、50rpm前後の低
速スピン処理をごく短時間行って基板全面が濡れた時点
で回転を停止する。
An example of a method of forming a liquid film that is brought into contact with ozone gas is as follows. (1) The solvent is sprayed onto the inclined surface of the substrate to be processed with a nozzle for a short time or intermittently, and the spraying is stopped when the entire surface of the substrate becomes wet. (2) When using the single-wafer spin processing mechanism, the solvent is discharged to the central portion, and low-speed spin processing at about 50 rpm is performed for a very short time to stop the rotation when the entire surface of the substrate becomes wet. (3) In the chamber, the solvent is discharged from a nozzle above the cassette into a cassette on which a plurality of substrates are placed, so that the entire surface of the substrate is wetted. (4) When using a spin processing mechanism that rotates a cassette on which multiple substrates are placed on a horizontal rotation axis, the solvent is discharged from the nozzle above the cassette, and low speed spin processing at about 50 rpm is performed for a very short time. The rotation is stopped when the entire surface of the substrate gets wet.

【0028】以上のいずれの場合も液膜が表面の全面に
形成された後に、オゾンガスの放出を始める。剥離に要
する時間は短いので、溶剤でのリンスを含めて剥離・除
去処理を2回行う時間的余裕は十分にあり、操作を繰返
して効果を確実にすることが望ましい。なお、枚葉スピ
ン処理の場合、ドライエッチングやイオン注入後のレジ
ストであることによりレジスト剥離・除去が困難な場合
には、オゾンガス放出の時間中、比較的小さな角度で基
板に反復反転を与えることが有効である。
In any of the above cases, the ozone gas is released after the liquid film is formed on the entire surface. Since the time required for peeling is short, there is sufficient time margin to perform the peeling / removing treatment twice including the rinse with the solvent, and it is desirable to repeat the operation to ensure the effect. In the case of single-wafer spin processing, if resist removal / removal is difficult due to the resist after dry etching or ion implantation, the substrate should be repeatedly inverted at a relatively small angle during the ozone gas release time. Is effective.

【0029】[0029]

【実施例】以下の実施例で使用したオゾンを含むガス
は、小型の放電方式のオゾン発生装置に 0.4%の窒素を
添加した酸素を流して得た、オゾン濃度が 250mg/リッ
トル程度の高濃度オゾンガスである。オゾンを溶解させる
有機溶剤としては、先願発明明細書記載のように、付着
異質物質除去効果と経済性が両立する点で酢酸が好まし
いため、この実施例における有機溶剤としては、純度は
99.7%の酢酸を用いた。
[Examples] The ozone-containing gas used in the following examples was obtained by flowing oxygen containing 0.4% of nitrogen into a small discharge type ozone generator, and having a high ozone concentration of about 250 mg / liter. It is ozone gas. As the organic solvent for dissolving ozone, as described in the specification of the prior application, acetic acid is preferable in that the effect of removing attached foreign substances and economical efficiency are compatible, so that the organic solvent in this example has a purity of
99.7% acetic acid was used.

【0030】バブリングでオゾンを十分に溶解した酢酸
によれば、ノボラック樹脂系ポジ型レジストの剥離速度
が、室温で6μm/分に達する程剥離性能がよく、さら
に、少量のフッ酸を添加すれば、半導体ウェハー上の微
粒子や金属汚染が効果的に除去できる。そこで本発明に
おいて、オゾンガスに接触させた酢酸により上記より強
力なレジスト剥離ができれば、薬液として同様の作用・
効果が期待できるので、微粒子や金属等の表面付着異質
物質も同様に除去できると考えられる。
When acetic acid in which ozone is sufficiently dissolved by bubbling, the peeling performance of the novolak resin-based positive resist reaches 6 μm / min at room temperature, the peeling performance is good, and if a small amount of hydrofluoric acid is added. In addition, fine particles and metal contamination on the semiconductor wafer can be effectively removed. Therefore, in the present invention, if stronger resist peeling than the above can be performed by acetic acid contacted with ozone gas, the same action as a chemical solution
Since an effect can be expected, it is considered that foreign substances adhering to the surface such as fine particles and metals can be similarly removed.

【0031】本発明でのレジスト除去性能が先願発明よ
り優れていることを明らかにするため、実施例1から実
施例4において、レジスト塗布試料として、先願発明明
細書の実施例13に示されているものと同じノボラック
樹脂系ポジ型レジスト「IX555」(JSR(株)
製)を使い、前記実施例と同様のプロセス、すなわち、
HMDS(ヘキサメチルジシサザン)処理した面に塗布
し、いずれも塗布厚さは1.5μmであり、140℃ 60秒間
のベーキングを行ったものを用いた。レジスト剥離・除
去後の残存有機炭素量は特開平10-39410号公報に記載さ
れた試料作成器による荷電粒子放射化分析で測定し、剥
離・除去が十分満足に行われたことを確認した。
In order to clarify that the resist removal performance of the present invention is superior to that of the prior invention, it is shown in Example 13 of the prior invention specification as a resist coating sample in Examples 1 to 4. The same novolak resin-based positive resist "IX555" (JSR Corporation)
Manufactured by the same process as in the above embodiment, that is,
It was applied to the surface treated with HMDS (hexamethyldisizan), the coating thickness was 1.5 μm in each case, and baking was performed at 140 ° C. for 60 seconds. The amount of residual organic carbon after stripping / removing the resist was measured by charged particle activation analysis using a sample preparation device described in JP-A-10-39410, and it was confirmed that the stripping / removal was performed sufficiently.

【0032】実施例1 スピン回転速度が低速から高速まで可変のスピン洗浄、
スピンリンスおよびスピン乾燥ができる枚葉洗浄機を改
造して、シリコンウェハー用の枚葉スピンレジスト剥離
装置を作成した。図1は、その装置の縦断面概念図であ
る。 100nmの厚さの酸化膜表面にレジストが塗布され
ている 200mm径のシリコンウェハー1は、スピン軸2
に取付けられたウェハー保持具3に保持されて回転する
ように構成されている。スピン軸受4を持つチャンバー
5には、ウェハーが装填されている間だけ、その先端の
酢酸吐出口6でウェハー中央に酢酸を吐出できる回転可
能な酢酸供給管7の軸受8と同様に、その先端の放出口
9でウェハー中央に高濃度オゾンガスを放出する回転可
能なガス供給管10の軸受11が付属している。また、
オゾンガスが供給されている間、排気を行うためのウェ
ハーとほぼ同じ高さの排気管12を側壁に、オゾンガス
を溶解してレジストを剥離・除去した後の排酢酸液を排
出するための排液管13を底部に具備している。
Example 1 Spin cleaning in which the spin rotation speed is variable from low speed to high speed,
A single wafer cleaning machine capable of spin rinsing and spin drying was modified to create a single wafer spin resist stripping device for silicon wafers. FIG. 1 is a vertical sectional conceptual view of the device. A 200 mm diameter silicon wafer 1 with a 100 nm thick oxide film coated with a resist has a spin axis 2
It is configured to be held and rotated by the wafer holder 3 attached to the. Like the bearing 8 of the rotatable acetic acid supply pipe 7, which can discharge acetic acid to the center of the wafer through the acetic acid discharge port 6 at the tip of the chamber 5 having the spin bearing 4 only while the wafer is being loaded, the tip thereof has A bearing 11 of a rotatable gas supply pipe 10 for discharging high-concentration ozone gas is attached to the center of the wafer at the discharge port 9. Also,
While the ozone gas is being supplied, an exhaust liquid for exhausting acetic acid solution after the ozone gas is dissolved and the resist is stripped off and removed on the side wall of the exhaust pipe 12 having substantially the same height as the wafer for exhausting the ozone gas. A tube 13 is provided at the bottom.

【0033】オゾンガスをウェハー面に放出する間、ウ
ェハー全面を覆い、酢酸供給管およびオゾンガス供給管
の受け入れ個所部分以外はウェハー面との層状間隙が約
5mmとなるように屋根状の石英ガラス製フード体14
が配置される。なお、ウェハー着脱の際には、このフー
ド体14は上方に移動して待機する。酢酸供給管7には
そのバルブ15に近く熱交換器16が連結されている。
また、ガス供給管10はオゾン濃度 250mg/リットルでガ
ス流量4リットル/分のオゾンガスを発生する小型高濃度オ
ゾンガス発生装置(図示せず)に接続している。その配
管にはバルブ17に近く、三方バルブ18により発生装
置からの発生オゾンガスを一旦貯蔵し自動ピストン19
で約2リットルのオゾンガスを約10秒間でガス放出口9から
放出できるシリンダー20が結合されている。
While the ozone gas is discharged to the wafer surface, the entire surface of the wafer is covered, and the roof-like quartz glass hood is formed so that the layered gap between the wafer surface and the acetic acid supply pipe and the ozone gas supply pipe is not larger than about 5 mm. Body 14
Are placed. When the wafer is attached or detached, the hood body 14 moves upward and stands by. A heat exchanger 16 is connected to the acetic acid supply pipe 7 near the valve 15.
Further, the gas supply pipe 10 is connected to a compact high-concentration ozone gas generator (not shown) that generates ozone gas with an ozone concentration of 250 mg / l and a gas flow rate of 4 l / min. The pipe is close to the valve 17 and the three-way valve 18 temporarily stores the ozone gas generated from the generator to automatically store the generated ozone gas.
A cylinder 20 capable of discharging about 2 liters of ozone gas from the gas discharge port 9 in about 10 seconds is connected.

【0034】レジスト剥離・除去処理は以下のように行
う。まず、高濃度オゾンガスを予め三方バルブ18から
約30秒間シリンダーに送って、約2リットルの貯蔵容積を
有するシリンダー内に満タン状態に充填しておく。フー
ド体14を上方に上げて、レジスト付着ウェハー1を保
持具3に装填した後、酢酸吐出口6とガス放出口9をウ
ェハー中央部に位置せしめ、フード体14を下げてウェ
ハー全面を覆う。ウェハーを約60rpmで低速回転さ
せ、熱交換器16で約40℃に加熱した酢酸を、バルブ1
5の開閉により約5cc吐出させると、瞬時に全面に酢
酸液膜が形成される。ここで一旦回転を停止する。三方
バルブ18とバルブ17を操作してシリンダー20内に
貯えられた高濃度オゾンガス約1リットルを5秒間でウェハ
ー面に放出すると、数秒でほとんどのレジストが剥離さ
れる。放出終了と同時にウェハーを500〜1,000rpmの
中速回転とし、酢酸を 200cc/分の流速で約5秒放出
して第1次スピンリンスを行う。リンス後、再び回転と
液の放出を停止してシリンダー20内の約1リットルの高濃
度オゾンガスを約5秒間でウェハー上に放出して剥離を
完了した後、第一次リンスと同様に第二次スピンリンス
を行う。リンス終了後、フード体を上方に移動して、回
転速度を約 3,000rpmに上げ、ウェハー面に吸着した
リンス酢酸を離脱させ、スピン乾燥して、剥離・除去処
理を終了する。
The resist stripping / removing process is performed as follows. First, high-concentration ozone gas is previously sent to the cylinder from the three-way valve 18 for about 30 seconds to fill the cylinder having a storage volume of about 2 liters in a full tank. After the hood body 14 is lifted up and the resist-attached wafer 1 is loaded on the holder 3, the acetic acid discharge port 6 and the gas discharge port 9 are positioned at the center of the wafer, and the hood body 14 is lowered to cover the entire surface of the wafer. The wafer is rotated at a low speed of about 60 rpm, and acetic acid heated to about 40 ° C. by the heat exchanger 16 is transferred to the valve 1
When about 5 cc is discharged by opening and closing 5, an acetic acid liquid film is instantaneously formed on the entire surface. Here, the rotation is stopped once. By operating the three-way valve 18 and the valve 17, about 1 liter of high-concentration ozone gas stored in the cylinder 20 is discharged to the wafer surface in 5 seconds, and most of the resist is peeled off in several seconds. Simultaneously with the release, the wafer is rotated at a medium speed of 500 to 1,000 rpm, and acetic acid is released at a flow rate of 200 cc / min for about 5 seconds to perform the first spin rinse. After the rinse, the rotation and the discharge of the liquid are stopped again, and about 1 liter of high-concentration ozone gas in the cylinder 20 is discharged on the wafer for about 5 seconds to complete the peeling, and then the second rinse is performed similarly to the first rinse. Next spin rinse. After the rinsing is completed, the hood body is moved upward, the rotation speed is increased to about 3,000 rpm, the rinse acetic acid adsorbed on the wafer surface is released, and spin drying is performed to complete the peeling / removing treatment.

【0035】第一次オゾンガス放出段階でのレジスト剥
離速度は、20μm/分に近いものと推測でき、極めて速
い剥離が行うことができた。剥離・除去直後のウェハー
面の残存有機炭素量は、(3〜5)×1013原子/cm2
であった。この分析結果からレジスト剥離・除去が十分
に行われたことが分かる。剥離・リンス時間を合わせて
約20秒、スピン乾燥に約20秒、ウェハーの交換に約20秒
を要したとしても1枚あたり処理時間が1分で、生産性
も実用に十分と考えられる。本実施例での酢酸使用量は
約40ccであるので、予め酢酸にオゾンを溶解した液で
枚葉スピン処理をする場合と比較して1/4以下の液量で
済み、経済性も向上している。
The resist stripping rate at the primary ozone gas releasing stage was estimated to be close to 20 μm / min, and extremely fast stripping could be performed. The amount of residual organic carbon on the wafer surface immediately after peeling / removing is (3 to 5) × 10 13 atoms / cm 2
Met. From this analysis result, it can be seen that the resist was removed and removed sufficiently. Even if it takes about 20 seconds for the total peeling and rinsing time, about 20 seconds for spin-drying, and about 20 seconds for exchanging the wafer, the processing time is 1 minute per wafer, and the productivity is considered to be sufficient for practical use. Since the amount of acetic acid used in this example is about 40 cc, the amount of liquid is 1/4 or less as compared with the case of performing the single-wafer spin treatment with a liquid in which ozone is dissolved in acetic acid in advance, and the economical efficiency is improved. ing.

【0036】実施例2 表面にシリコンが成膜された液晶用四角形ガラス基板に
レジストが塗布されベークされたものを、水平方向に移
動して処理を進める製造システムに、本発明を適用する
例を示す。図2は、四角形ガラス基板の進行方向に対し
側方からみた装置の断面概念図である。650×550mmの
大型四角形ガラス基板21は、長辺の方向に1cm/秒
程度の速度で送り回転ロール22の上を図2の左方向に
進行する。送り回転ロール軸は、ガラス基板の進行方向
に直交しており、水平面より3〜4°傾斜し、紙面の裏
方向が比較的低い坂状となるように配置されている。坂
状上部に酢酸を基板面にほぼ水平に吹付ける第一扇状ノ
ズル23があり、また、石英ガラス製のチャンネル形フ
ード24が、その天板と基板面との間が10〜20mm程度
で、また、側壁の裾と基板面の間が約2mmの間隔を保
って、基板両端を含む幅約50mmの細幅領域を覆ってい
る。基板先端が矢印で図示されたAの位置に達したと
き、ノズル23から間欠的に酢酸のスプレーを行い、該
細幅領域に酢酸の液膜を形成する。なお、フード24内
の進行方向側と反対側の壁には、排気口25のある角形
排気管26が具備され、常時進行方向と直交方向の両側
へ排気が行われている。
Example 2 An example in which the present invention is applied to a manufacturing system in which a resist coated and baked on a rectangular glass substrate for liquid crystal having a silicon film formed on the surface is moved horizontally to advance the processing. Show. FIG. 2 is a conceptual sectional view of the device as seen from the side with respect to the traveling direction of the rectangular glass substrate. A large 650 × 550 mm square glass substrate 21 advances on the long side in a leftward direction of FIG. 2 on the feed rotation roll 22 at a speed of about 1 cm / sec. The feed rotation roll axis is orthogonal to the traveling direction of the glass substrate, is inclined by 3 to 4 ° with respect to the horizontal plane, and is arranged so as to have a slope shape in which the back direction of the paper surface is relatively low. There is a first fan-shaped nozzle 23 for spraying acetic acid almost horizontally to the substrate surface on the upper part of the slope, and a channel-shaped hood 24 made of quartz glass has a space between its top plate and the substrate surface of about 10 to 20 mm. In addition, a space of about 2 mm is maintained between the hem of the side wall and the substrate surface to cover a narrow region of about 50 mm in width including both ends of the substrate. When the tip of the substrate reaches the position A indicated by the arrow, acetic acid is intermittently sprayed from the nozzle 23 to form a liquid film of acetic acid in the narrow region. A rectangular exhaust pipe 26 having an exhaust port 25 is provided on the wall of the hood 24 on the side opposite to the advancing direction side, and exhaust is always performed to both sides in the direction orthogonal to the advancing direction.

【0037】チャンネル形フード24の進行方向側に隣
接して、形態を異にする石英ガラス製チャンネル形フー
ド27が配置されている。このフードの天板は低く設計
され、基板面から5mm程度の高さが好ましい。該天板
には複数の石英ガラス製高濃度オゾンガス供給管28が
設けられ、オゾンガスを加熱する熱交換器29を経由す
るステンレス( SUS 316 L)製ガス供給管30に接続して
いる。液膜形成のための酢酸スプレー開始と同時に、ガ
ス供給管からは約40℃に加熱した高濃度オゾンガスを 1
50cc/秒で送気してフード27の中に充満させてお
く。なお、スタート時の排気のために角形排気管31が
フード27に対峙して配設されてあり、基板面によりフ
ード内部空間が閉じられるまでに漏れたオゾンガスを排
気する。
A quartz glass channel hood 27 having a different shape is arranged adjacent to the channel hood 24 on the advancing direction side. The top plate of this hood is designed to be low and preferably has a height of about 5 mm from the substrate surface. A plurality of quartz glass high-concentration ozone gas supply pipes 28 are provided on the top plate, and are connected to a stainless (SUS 316 L) gas supply pipe 30 via a heat exchanger 29 for heating the ozone gas. At the same time as the start of acetic acid spraying to form a liquid film, a high-concentration ozone gas heated to approximately 40 ° C was supplied from the gas supply pipe.
Air is supplied at 50 cc / sec to fill the hood 27. A rectangular exhaust pipe 31 is arranged to face the hood 27 for exhaust at the time of start, and exhausts ozone gas leaked until the inner space of the hood is closed by the substrate surface.

【0038】図3に、四角形基板の進行方向を基端部か
らみたフード27の側壁内面の断面概念図を示す。基板
21は傾斜しているので、送り回転ロール22軸端部に
は基板を支えるための段部である頭部32を設けてあ
る。フード27の両端にある排気管33は、フード27
と基板の間に充満したガスを排気するものである。この
ように充満した段階では、供給管28からのオゾンガス
の導入は、当初の 1/2以下に低減することができる。
FIG. 3 is a conceptual sectional view of the inner surface of the side wall of the hood 27 as seen from the base end in the traveling direction of the rectangular substrate. Since the substrate 21 is inclined, a head portion 32, which is a step portion for supporting the substrate, is provided at the axial end of the feed rotation roll 22. The exhaust pipes 33 at both ends of the hood 27 are
The gas filled between the substrate and the substrate is exhausted. At the stage of filling in this way, the introduction of ozone gas from the supply pipe 28 can be reduced to 1/2 or less of the initial amount.

【0039】基板先端がフード27の末端の矢印で図示
された位置(図2)Bに到達したとき、フード内の基板
面の液膜はほとんど静止しており、そのオゾン濃度が十
分に高まって、レジストのほとんどすべてが酢酸液膜中
に溶け込んだオゾンにより分解している。酢酸液膜形成
時間と合わせても分解完了に要した時間は約10秒で、レ
ジスト剥離は9μm/分以上の速度で行われたことにな
る。
When the substrate tip reaches the position (FIG. 2) B shown by the arrow at the end of the hood 27, the liquid film on the substrate surface in the hood is almost stationary, and the ozone concentration is sufficiently increased. However, almost all of the resist is decomposed by ozone dissolved in the acetic acid liquid film. The time required for the completion of decomposition was about 10 seconds even when combined with the acetic acid solution film formation time, which means that the resist peeling was performed at a speed of 9 μm / min or more.

【0040】フード27に進行方向に隣接してフード2
4と同形状のフード34と、フード27と同形状のフー
ド35、また、フード27のオゾン供給管28と同様
に、また、ほぼ同流量のオゾンガスを供給する供給管3
6を順に設け、フード34の領域には第二の扇状ノズル
37を、第一ノズル23と同様に配置し、またフード3
5の下方にはフード27の角形排気管31と同形状の角
形排気管(図示せず)を配設させ、フード35の両端に
フード27のオゾン排気管33と同様のオゾン排気管
(図示せず)を設ける。さらに、チャンネル形フード4
0内に、約 100mm幅の基板の細幅領域を覆って、第
三、第四の扇状ノズル38、39により酢酸スプレーが
行われる。フード40の進行方向の側壁内部には前記角
形排気管26と同様の角形排気管41を配設させてい
る。
The hood 2 is adjacent to the hood 27 in the traveling direction.
4, a hood 34 having the same shape as the hood 27, a hood 35 having the same shape as the hood 27, and a supply pipe 3 for supplying ozone gas at the same flow rate as the ozone supply pipe 28 of the hood 27.
6 are provided in order, the second fan-shaped nozzle 37 is arranged in the area of the hood 34 in the same manner as the first nozzle 23, and the hood 3
A rectangular exhaust pipe (not shown) having the same shape as the rectangular exhaust pipe 31 of the hood 27 is disposed below the hood 5, and an ozone exhaust pipe (not shown) similar to the ozone exhaust pipe 33 of the hood 27 is provided at both ends of the hood 35. No) is provided. In addition, channel-shaped hood 4
The acetic acid spray is performed by the third and fourth fan-shaped nozzles 38 and 39 covering the narrow area of the substrate having a width of about 100 mm. A rectangular exhaust pipe 41 similar to the rectangular exhaust pipe 26 is provided inside the side wall of the hood 40 in the traveling direction.

【0041】Bの位置を通過した基板はフード34の中
でノズル36によりスプレーリンスされ、基板がフード
35の領域に入ると、フード27の領域と同様に剥離処
理がなされる。この段階は、未剥離部が残っていた場合
に備えた第二段階処理に相当する。フード40の領域で
は、酢酸のスプレーリンスが行われ、リンス液は傾斜面
に沿って流下・排除される。
The substrate that has passed the position B is spray-rinsed by the nozzle 36 in the hood 34, and when the substrate enters the region of the hood 35, the peeling process is performed in the same manner as the region of the hood 27. This stage corresponds to the second stage treatment prepared when the unpeeled portion remains. In the area of the hood 40, spray rinse of acetic acid is performed, and the rinse liquid flows down and is removed along the inclined surface.

【0042】最後に、基板はトンネル状フード42に入
る。このフードに覆われた基板領域では液膜のリンス酢
酸はほぼ静止状態となり、エアナイフ43により酢酸が
基板より飛散・排除され、乾燥表面が得られる。なお、
気化した酢酸の排気管44が図示されている。第二、第
三および第四のノズルから放出される酢酸の流量は、20
0cc/分程度で十分である。これらの酢酸は送り回転
ロールの下方で排液管(図示せず)に集められて回収さ
れる。1枚の基板当たりの酢酸使用量は、約 700ccで
ある。この装置の生産性は1枚当たり約1分であり、実
用的には十分である。また、オゾン濃度 250mg/リットル
のガスを毎分18リットル使用したことになるが、この実施例
の基板面積は実施例1の約11倍であり、単位面積当たり
で比較すれば、ほぼ同程度の経済性と言える。
Finally, the substrate enters the tunnel hood 42. In the substrate area covered with the hood, the rinse acetic acid in the liquid film becomes almost stationary, and the air knife 43 scatters and removes the acetic acid from the substrate to obtain a dry surface. In addition,
A vaporized acetic acid exhaust line 44 is shown. The flow rate of acetic acid discharged from the second, third and fourth nozzles is 20
0 cc / min is sufficient. These acetic acids are collected and collected in a drainage pipe (not shown) below the feed rotary roll. The amount of acetic acid used per substrate is about 700 cc. The productivity of this device is about 1 minute per sheet, which is practically sufficient. Further, 18 liters of gas with an ozone concentration of 250 mg / liter were used per minute, but the substrate area of this example was about 11 times that of Example 1, and when compared per unit area, it was about the same. It can be said to be economical.

【0043】実施例3 フォトマスク用ガラス基板の多数枚をフッ素樹脂製の洗
浄用カセットに入れて、一度にレジスト剥離を行うバッ
チ処理の場合の実施例を示す。図4,5は、その装置の
概念図であり、図4は基板面に垂直な方向からみた縦断
面図、また、図5は基板に平行な向きからみた縦断面図
である。
Example 3 An example of a batch process in which a large number of glass substrates for photomasks are placed in a fluorocarbon resin cleaning cassette and the resist is stripped at once is shown. 4 and 5 are conceptual views of the apparatus, FIG. 4 is a vertical sectional view seen from a direction perpendicular to the substrate surface, and FIG. 5 is a vertical sectional view seen from a direction parallel to the substrate.

【0044】基板45は、20cm角であり、その表面に
クロム薄膜が形成されていて、この面にレジストが塗布
・ベークされている。カセット46での基板の層状間隙
は6mm、カセットの端の溝にダミーの基板45´を入
れ、レジスト面をこの方向に向けて被処理基板をセット
して処理容器47に装填する。該容器は、排液管48を
低部に付属させた角形濾斗状のものである。カセット
は、基板のレジスト面が上向きで、鉛直線方向より1〜
2°傾斜して保持されるように位置が定められたカセッ
トの載台兼用の石英ガラス製オゾンガス放出器49に載
せられ、上方に待機していた上下移動可能で排気管50
が付設されたフード51を容器47に被せる。
The substrate 45 is 20 cm square and has a chromium thin film formed on its surface, and a resist is applied and baked on this surface. The layer gap of the substrate in the cassette 46 is 6 mm, a dummy substrate 45 ′ is put in the groove at the end of the cassette, and the substrate to be processed is set with the resist surface facing this direction and loaded in the processing container 47. The container is in the shape of a rectangular funnel with a drainage pipe 48 attached to the lower part. In the cassette, the resist surface of the substrate faces upward, and 1 to 1 from the vertical direction.
The exhaust pipe 50 is mounted on a quartz glass ozone gas discharger 49 which also serves as a mounting stand for the cassette and is positioned so as to be held at an inclination of 2 °, and is vertically movable waiting in the upward direction.
The container 47 is covered with the hood 51 attached with.

【0045】処理容器47の壁には、酢酸供給管52と
オゾンガス供給管53が貫通しており、酢酸供給管の先
端には、基板の上方から基板全体に酢酸が噴霧できる充
角錐スプレーノズル54が具備されており、酢酸供給管
には、バルブ55により熱交換器56で加熱された酢酸
が供給される機構となっている。オゾンガス供給管は、
バルブ57を経てオゾン発生装置(図示せず)に連結し
ている。基板層状間隙へのオゾンガスの供給は、各層状
間隙の真下に位置し、上方に複数の開孔58を有する外
径5mmの一端封じの石英ガラス管59が複数本並んで
構成される網状構造体で行われる。網の一辺は、各石英
ガラス管の開口側にオゾンガスを導入する石英ガラス管
60で、対辺は封じ側を固定する石英ガラス棒、他の2
辺は網構造を補強する石英ガラス板よりなり、この網が
オゾンガス放出器49の主要部を構成していて、石英ガ
ラス管60がオゾンガス供給管に接続している。
An acetic acid supply pipe 52 and an ozone gas supply pipe 53 penetrate the wall of the processing container 47, and the tip of the acetic acid supply pipe is a full-pyramidal spray nozzle 54 capable of spraying acetic acid over the substrate from above the substrate. Is provided, and the acetic acid supply pipe is supplied with acetic acid heated by the heat exchanger 56 by the valve 55. The ozone gas supply pipe is
It is connected to an ozone generator (not shown) via a valve 57. Ozone gas is supplied to the substrate layered gaps directly below each layered gap, and a net-like structure is formed by arranging a plurality of quartz glass tubes 59 having an outer diameter of 5 mm and having an outer diameter of 5 mm and having a plurality of openings 58 above. Done in. One side of the net is a quartz glass tube 60 for introducing ozone gas into the opening side of each quartz glass tube, and the opposite side is a quartz glass rod for fixing the sealing side, and the other 2
The sides are made of a quartz glass plate that reinforces the net structure, the net constitutes the main part of the ozone gas discharger 49, and the quartz glass pipe 60 is connected to the ozone gas supply pipe.

【0046】レジスト剥離処理は次のように実施する。
カセットは基板を25枚収容できるものを用い、すべての
溝に基板をセットした。オゾン発生装置は、オゾンガス
濃度250mg/リットルを10リットル/分の流量で発生できるも
のを使用した。処理に先立ち、排液管48のバルブ61
は閉じ、フードの排気管50のバルブ62は開けてお
く。バルブ57を開いてオゾンガスを10リットル/分の流量
で約2分供給し、基板の層状間隙をオゾンガスで充満さ
せた後、バルブ55を開き熱交換器56で約40℃に加温
された酢酸をノズル54からレジスト面へ数秒間スプレ
ーし、全基板面が濡れた段階で一旦バルブ55を閉じ
る。基板からの酢酸の流下がほとんど停まり、液膜がほ
とんど静止した段階で、高濃度オゾンガスから液膜への
オゾンの溶解が加速し、レジストは数秒で剥離される。
剥離速度は、酢酸スプレーによる液膜形成時間を含めて
も10μm/分以上と推定される。
The resist stripping process is carried out as follows.
A cassette that can accommodate 25 substrates was used, and the substrates were set in all the grooves. The ozone generator used was one capable of generating an ozone gas concentration of 250 mg / l at a flow rate of 10 l / min. Prior to processing, valve 61 of drain 48
Is closed, and the valve 62 of the hood exhaust pipe 50 is opened. After opening the valve 57 and supplying ozone gas at a flow rate of 10 l / min for about 2 minutes to fill the layered gap of the substrate with ozone gas, the valve 55 is opened and the acetic acid heated to about 40 ° C. by the heat exchanger 56. Is sprayed from the nozzle 54 onto the resist surface for a few seconds, and the valve 55 is closed once the entire substrate surface is wet. When the flow of acetic acid from the substrate has almost stopped and the liquid film has almost stopped, the dissolution of ozone from the high-concentration ozone gas into the liquid film is accelerated, and the resist is stripped in a few seconds.
The peeling rate is estimated to be 10 μm / min or more, including the liquid film formation time by the acetic acid spray.

【0047】バルブ61を開いてから、再びバルブ55
を開き、基板面を約10秒スプレーリンスした後、バルブ
55を閉じて液の流下を抑制し、液膜のオゾン濃度を高
めて再度の剥離操作によりレジスト除去を確実にする。
続いてバルブ57とバルブ62を閉じ、バルブ55を開
いてノズル54より約10秒スプレーリンスを行う。バル
ブ55を閉じ、基板からの酢酸の流下がほぼ停止した
ら、フード51を上方に上げ、カセットを搬出して、別
途準備された一般的な洗浄装置で純水スプレーを行い、
乾燥する。
After opening the valve 61, the valve 55 is opened again.
After spraying and rinsing the substrate surface for about 10 seconds, the valve 55 is closed to suppress the flow of the liquid, the ozone concentration of the liquid film is increased, and the resist removal is ensured by the peeling operation again.
Subsequently, the valve 57 and the valve 62 are closed, the valve 55 is opened, and the spray rinse is performed from the nozzle 54 for about 10 seconds. When the valve 55 is closed and the flow of acetic acid from the substrate is almost stopped, the hood 51 is lifted up, the cassette is unloaded, and pure water is sprayed by a separately prepared general cleaning device.
dry.

【0048】レジスト剥離面を電子顕微鏡で精査した結
果、レジストは完全に除かれ、クロム面は全く侵食され
ていなかった。これは高濃度のオゾンを含む酢酸液膜に
クロム面が接触する時間が極めて短いためであると推定
される。本処理はバッチ方式のため、生産性に問題はな
く、従来からの洗浄システムに整合でき、また1枚当た
りのオゾンガス並びに酢酸の所要量は前実施例1,2よ
りも少ない。
As a result of scrutinizing the resist peeled surface with an electron microscope, the resist was completely removed and the chromium surface was not corroded at all. It is presumed that this is because the contact time of the chromium surface with the acetic acid liquid film containing a high concentration of ozone is extremely short. Since this treatment is a batch method, there is no problem in productivity, it can be matched with the conventional cleaning system, and the required amount of ozone gas and acetic acid per sheet is smaller than those in the previous Examples 1 and 2.

【0049】実施例4 実施例3と同様のバッチ処理で、シリコンウェハーを密
閉チャンバー内において垂直回転させ、有機溶剤をスプ
レーしてレジスト剥離する既存の装置に類似した例を図
6,7により説明する。図6は回転軸を含む横断面図
で、図7は回転軸に垂直な縦断面図である。
Example 4 An example similar to the existing apparatus for vertically rotating a silicon wafer in a closed chamber and spraying an organic solvent for resist stripping in the same batch processing as in Example 3 will be described with reference to FIGS. To do. FIG. 6 is a horizontal cross-sectional view including the rotation axis, and FIG. 7 is a vertical cross-sectional view perpendicular to the rotation axis.

【0050】チャンバー63に挿通させた回転軸64に
セットできる専用のカセット65にウェハー66が収納
され、20rpmの低速からスピン乾燥用の 2,000rpm
まで回転制御が可能な機構(図示せず)が設けられてい
る。ウェハーの層状間隙約5mmが高濃度オゾンガス層
となるように、バルブ67から供給されたガスを層流で
ウェハー間に流すフッ素樹脂被覆ステンレス( SUS316
L)製のフィン群68,69がチャンバー壁に付設されて
いる。バルブ70はバルブ67と同時に開閉が必要で、
ウェハー間71の層流化を助けるための排気用のもので
ある。
The wafer 66 is housed in a dedicated cassette 65 which can be set on the rotary shaft 64 inserted into the chamber 63, and the wafer 66 is stored at a low speed of 20 rpm to 2,000 rpm for spin drying.
A mechanism (not shown) capable of controlling the rotation is provided. Fluorine resin-coated stainless steel (SUS316 stainless steel (SUS316) that flows the gas supplied from the valve 67 in a laminar flow between the wafers so that a layered gap of about 5 mm in the wafer becomes a high-concentration ozone gas layer.
Fin group 68, 69 made of L) is attached to the chamber wall. The valve 70 needs to be opened and closed at the same time as the valve 67,
It is for exhausting to assist the laminar flow between the wafers 71.

【0051】ウェハーカセットをセットして、回転を最
低速で行い、バルブ67,70を開いて、オゾンガスを
供給する。オゾンガスがウェハー間に充満したら、酢酸
供給管72で運ばれた酢酸をバルブ73により、アース
されたステンレス( SUS 316L)製充角錐スプレーノズル
74からスプレーし、ウェハー全体が濡れた段階でスプ
レーを一旦停止する。バルブ67,70を閉じて、上方
バルブ75と下方バルブ76を開いて、酢酸のリンスス
プレーを 1,000rpmで約20秒間行う。リンス終了
後、回転速度を約 2,000rpmに上げ、ウェハーに吸着
したリンス酢酸を離脱させ、スピン乾燥を行う。
The wafer cassette is set, rotation is performed at the lowest speed, the valves 67 and 70 are opened, and ozone gas is supplied. When the ozone gas fills the space between the wafers, acetic acid carried by the acetic acid supply pipe 72 is sprayed from the grounded stainless (SUS 316L) full-pyramidal spray nozzle 74 by the valve 73, and once the entire wafer is wet, the spray is sprayed. Stop. The valves 67 and 70 are closed, the upper valve 75 and the lower valve 76 are opened, and a rinse spray of acetic acid is performed at 1,000 rpm for about 20 seconds. After the rinse is completed, the rotation speed is increased to about 2,000 rpm, the rinse acetic acid adsorbed on the wafer is removed, and spin drying is performed.

【0052】具体的には、実施例1と同様に準備された
レジスト付 200mm径のウェハー25枚のカセットに対
し、オゾン濃度 200mg/リットルのガスが20リットル/分の流
速で1分間フィン68に送りこまれ、ウェハー層状間隙
に高濃度オゾンガスが充満してから40℃に加熱した酢酸
をスプレーし、数秒で全面が濡れた段階で、20秒間スプ
レーを停止する。続いて、酢酸リンスを20秒間行い、ス
ピン乾燥した。装置の構造上レジストの剥離状態が観察
出来ないので、このようなスケジュールで処理したが、
実施例1と同様にレジストは完全に剥離・除去されてい
た。ガスと酢酸の使用量は多いが、バッチ処理であるた
め、1枚当りの使用量は十分に少なく、かつ生産性は非
常に良い。
Specifically, for a cassette of 25 wafers with a diameter of 200 mm with a resist prepared in the same manner as in Example 1, a gas having an ozone concentration of 200 mg / liter was applied to the fin 68 for 1 minute at a flow rate of 20 liter / minute. After being sent in, the wafer layered gap is filled with high-concentration ozone gas and then acetic acid heated to 40 ° C. is sprayed. When the entire surface is wet in a few seconds, spraying is stopped for 20 seconds. Subsequently, a rinse with acetate was performed for 20 seconds, and spin drying was performed. Due to the structure of the device, the peeling state of the resist cannot be observed, so processing was performed with this schedule.
As in Example 1, the resist was completely stripped and removed. The amount of gas and acetic acid used is large, but since it is a batch process, the amount used per sheet is sufficiently small and the productivity is very good.

【0053】実施例5 半導体用クリーンルームに暴露されたシリコンウェハー
表面には、雰囲気由来の有害な有機汚染が生じるが、そ
の汚染物質の大部分はジオクチルフタレート(DOP)
であることが知られている。そこで、放射性同位元素で
ある64Cuが2×1013原子/ccの濃度で溶けているバ
ッファードフッ酸(希フッ酸水溶液(濃度6重量%)に
対して、フッ化アンモニウムを30重量%添加・溶解させ
たもの)に、フッ素樹脂カセットに収納したシリコンウ
ェハー6枚を10分間浸漬して純水でリンス乾燥し、各ウ
ェハーの放射能を計測して、各ウェハーの表面に液から
の吸着で故意汚染させた64Cu濃度がいずれも1012原子
/cm2であることを確かめた。
Example 5 On the surface of a silicon wafer exposed to a clean room for semiconductors, harmful organic pollution derived from the atmosphere occurs, but most of the pollutant is dioctyl phthalate (DOP).
Is known to be. Therefore, 30 wt% of ammonium fluoride was added to buffered hydrofluoric acid (dilute hydrofluoric acid aqueous solution (concentration: 6 wt%)) in which 64 Cu, which is a radioisotope, is dissolved at a concentration of 2 × 10 13 atoms / cc.・ Dissolved), 6 silicon wafers stored in a fluorocarbon resin cassette are immersed for 10 minutes, rinsed and dried with pure water, the radioactivity of each wafer is measured, and the surface of each wafer is adsorbed from the liquid. Concentration of 64 Cu intentionally polluted with 10 12 atoms
It was confirmed to be / cm 2 .

【0054】さらにこのウェハー6枚を入れたカセット
を、DOP液を満たしたガラス皿が底にセットされた密
閉プラスチックケースの中段に配置して60℃の恒温槽中
で一夜放置した。DOPの蒸気圧は極めて低いが、密閉
ケースス内の雰囲気はDOPの蒸気で飽和するので、D
OP蒸気を吸着しやすいシリコンウェハー表面はDOP
で強く故意汚染される。上記のフッ酸を含む液に溶けて
いる1価のCuイオンはイオン化傾向によりシリコン表
面に金属原子状態で吸着するが、この吸着状態は極めて
粒径の小さいCu微粒子の集団であることが知られてい
る。この故意汚染でDOPは表面張力が30dyn/cm
程度のため、64Cu微粒子の下に潜り込み、個々の微粒
子をシリコン面へ粘着させる。即ち、結果としてCu粒
子をDOPで強固に粘着させた表面汚染状態が形成され
る。
Further, the cassette containing the six wafers was placed in the middle stage of a closed plastic case with a glass dish filled with DOP solution set at the bottom, and left overnight in a constant temperature bath at 60 ° C. Although the vapor pressure of DOP is extremely low, the atmosphere inside the sealed case is saturated with the vapor of DOP.
The surface of the silicon wafer that easily absorbs OP vapor is DOP
It is strongly and intentionally contaminated. The monovalent Cu ions dissolved in the hydrofluoric acid-containing liquid are adsorbed on the silicon surface in the state of metal atoms due to the ionization tendency, and this adsorption state is known to be a group of Cu fine particles having an extremely small particle size. ing. Due to this intentional contamination, the surface tension of DOP is 30 dyn / cm.
Due to the degree, it goes under the 64 Cu fine particles and sticks the individual fine particles to the silicon surface. That is, as a result, a surface contamination state in which Cu particles are strongly adhered with DOP is formed.

【0055】洗浄処理に先立ち、実施例1の装置で、液
膜を形成させるために吐出させる約5ccの酢酸を、室
温の2容量%のフッ酸添加酢酸に変更するため、熱交換
器16をはずして、枝管とバルブを設け、フッ酸添加酢
酸の供給機構を付設させた。上記6枚の故意汚染ウェハ
ーから2枚を任意に選ぴ、1枚づつこの装置でレジスト
剥離と同様に処理した。即ち、該ウェハーを保持具3に
装填後、実施例1と同様の手順でウェハー上にフッ酸添
加酢酸の液膜を形成し高濃度オゾンガスを5秒放出し、
その後は室温の酢酸で第一次スピンリンスを行う。レジ
スト剥離と同様に再処理を行いスピン乾燥して、64Cu
の残存率を洗浄前後のウェハーの放射能強度の比較で求
めた。その結果、フッ酸添加酢酸を用いた場合のCuの
残存率は2枚ともに 0.1%で強力な洗浄効果が得られる
ことが分かった。この効果は酢酸が迅速にまずDOPを
溶解し、続いてオゾンがCu微粒子を酸化して酸化銅に
変え、同時にシリコン表面に酸化膜を成長させるが、シ
リコン酸化膜とCu2+イオンをフッ酸添加酢酸が溶解
し、酢酸リンスで該溶解液が遠心力離脱するためと推定
される。
Prior to the cleaning treatment, in the apparatus of Example 1, the heat exchanger 16 was changed in order to change the acetic acid of about 5 cc discharged for forming the liquid film to acetic acid containing 2% by volume of hydrofluoric acid at room temperature. It was removed, a branch pipe and a valve were provided, and a supply mechanism of hydrofluoric acid-added acetic acid was attached. Two wafers were arbitrarily selected from the above-mentioned six intentionally contaminated wafers, and the wafers were processed one by one in the same manner as the resist stripping. That is, after loading the wafer into the holder 3, a liquid film of acetic acid containing hydrofluoric acid was formed on the wafer by the same procedure as in Example 1 to release a high-concentration ozone gas for 5 seconds.
After that, the primary spin rinse is performed with acetic acid at room temperature. Resist stripping and then spin drying is performed in the same manner as in reprocessing, 64 Cu
The residual rate of was measured by comparing the radioactivity intensities of the wafers before and after cleaning. As a result, it was found that when the acetic acid containing hydrofluoric acid was used, the residual rate of Cu was 0.1% for both sheets, and a strong cleaning effect was obtained. This effect is that acetic acid quickly dissolves DOP first, and then ozone oxidizes Cu fine particles to convert them into copper oxide, and at the same time grows an oxide film on the silicon surface, but the silicon oxide film and Cu 2+ ions are hydrofluoric acid. It is presumed that the added acetic acid was dissolved and the dissolved solution was separated by centrifugal force by the rinse with acetic acid.

【0056】比較例1 RCA洗浄法は最も代表的なシリコンウエハーの洗浄法
であり、「SC−2」(代表的な組成は、塩酸:過酸化
水素:水=1容:1容:6容)ないし「SC−1」(代表
的な組成は、アンモニア:過酸化水素:水=1容:1
容:12容)を用いて、ともにウェハーを多数枚カセット
に入れて同時に浸漬し、70℃で1O分間の処理をするのが
標準的である。特に前者はCuのような重金属汚染に対
して、後者は有機汚染と錯体化が容易なCuに対して、
強力な洗浄ができるとされている。そこで、DOP汚染
した場合のCuに対する洗浄効果を実施例5と比較する
ために、「SC−1」液と「SC−2」液とを、それぞ
れ石英ガラス製角槽に満たし、両者ともに70℃に加熱し
て、実施例5で作成したDOP/Cu汚染ウェハーの残
りを2枚ずつ、いずれも放射能強度を計測してから10分
間浸漬洗浄して超純水リンスし、風乾後の放射能強度を
測り、洗浄前の計測値と比較して64Cuの残存率を求め
た。
Comparative Example 1 The RCA cleaning method is the most typical cleaning method for silicon wafers, and is "SC-2" (a typical composition is hydrochloric acid: hydrogen peroxide: water = 1 volume: 1 volume: 6 volumes). ) To "SC-1" (a typical composition is ammonia: hydrogen peroxide: water = 1 volume: 1)
It is standard to put a large number of wafers in a cassette, immerse them at the same time, and treat them at 70 ° C for 10 minutes. In particular, the former is for heavy metal pollution such as Cu, and the latter is Cu for easily complexing with organic pollution,
It is said that strong cleaning can be performed. Therefore, in order to compare the cleaning effect on Cu in the case of DOP contamination with Example 5, a "SC-1" solution and a "SC-2" solution were filled in a quartz glass square tank, both of which were at 70 ° C. The remaining DOP / Cu-contaminated wafers prepared in Example 5 were heated to 2 each, and after measuring the radioactivity in each case, they were immersed and washed for 10 minutes, rinsed with ultrapure water, and dried after air-drying. The strength was measured, and the residual rate of 64 Cu was determined by comparing with the measured value before cleaning.

【0057】「SC−2」洗浄後のウェハーにおける64
Cu残存率は43%と47%、また、「SC−1」洗浄後の
ウェハーの場合の残存率は2.O%と2.2%であった。前者
は、DOPが除去できないためCuに対する洗浄作用が
働かず、過酸化水素によって成長するシリコン酸化膜に
Cuが埋没してしまうため残存率が高いものと推定でき
る。後者は、DOPの除去はできるがCuに十分な錯体
化作用がおよぶ前に、成長するシリコン酸化膜が残存C
uを捕捉してしまうために、洗浄不十分になるものと推
定される。Cu残存率の比較からみて、実施例5の本発
明による洗浄法の優位性が明らかである。
64 on wafer after "SC-2" cleaning
The Cu residual rates were 43% and 47%, and the residual rates in the case of the wafer after "SC-1" cleaning were 2.0% and 2.2%. The former can be presumed to have a high residual rate because the cleaning action on Cu does not work because DOP cannot be removed and Cu is buried in the silicon oxide film grown by hydrogen peroxide. In the latter, the DOP can be removed, but the growing silicon oxide film remains C before Cu has a sufficient complexing action.
It is presumed that washing will be insufficient due to the capture of u. From the comparison of the Cu residual ratio, the superiority of the cleaning method according to the present invention of Example 5 is clear.

【0058】実施例6 ポリビニルフェノール誘導体と酸発生剤からなるKrF
エキシマレーザー用化学増幅型レジストをO.75μmの厚
さで塗布した 200mm径のシリコンウェハーであって、
140℃、90秒間のハードベークを行った試料に対して、
実施例1の装置を用い、酢酸とオゾンガスによりレジス
ト除去を行った例を示す。ただし、スピン軸が4回/秒
の周期で右回りおよび左回りにそれぞれ30°の反復反転
を行えるように、同軸の回転機構を改造した。
Example 6 KrF Consisting of Polyvinylphenol Derivative and Acid Generator
A 200 mm diameter silicon wafer coated with a chemically amplified resist for excimer lasers to a thickness of O.75 μm,
For samples that were hard baked at 140 ℃ for 90 seconds,
An example in which the resist is removed with acetic acid and ozone gas using the apparatus of Example 1 will be shown. However, the coaxial rotation mechanism was modified so that the spin axis could be repeatedly rotated clockwise and counterclockwise by 30 ° each at a cycle of 4 times / second.

【0059】レジスト剥離除去処理は、次の点を除いて
実施例1と全く同様に行った。即ち、フード体14を下
げてウェハー全面を覆った後、ウェハーの反復反転を開
始し、加熱酢酸を約15cc吐出させると、液はウェハー
全面に拡がり、約 300μmの厚さの液膜を生じる。その
後は実施例1と同様にシリンダー内に貯えられた高濃度
オゾンガス約1リットルを5秒間放出する。放出終了と同時
に反復反転を停止し、以降実施例1と同様に第1次スピ
ンリンスを行う。このように処理するのは、該レジスト
の酢酸への溶解能がノボラック型レジストの場合よりも
若干弱いためであり、酢酸の厚い液膜はウェハーの反復
反転でよく揺動し、オゾンガスの分解能力も加わって該
レジストを急速に溶解することができる。この処理でほ
とんどのレジスト膜が数秒間で剥離される。
The resist stripping and removing treatment was performed in exactly the same manner as in Example 1 except for the following points. That is, when the hood body 14 is lowered to cover the entire surface of the wafer and then the wafer is repeatedly inverted, and about 15 cc of heated acetic acid is discharged, the solution spreads over the entire surface of the wafer to form a liquid film having a thickness of about 300 μm. Thereafter, similar to Example 1, about 1 liter of highly concentrated ozone gas stored in the cylinder is discharged for 5 seconds. Simultaneously with the end of discharge, the repetitive inversion is stopped, and thereafter, the first spin rinse is performed as in the first embodiment. This treatment is performed because the solubility of the resist in acetic acid is slightly weaker than that in the case of the novolak type resist, and a thick acetic acid liquid film swings well in repeated inversion of the wafer, and the ozone gas decomposing ability is high. Can also be added to rapidly dissolve the resist. By this treatment, most of the resist film is peeled off within a few seconds.

【0060】第1次リンスの後は、ウェハー同転が完全
に停止してから酢酸の放出を停止すると再びウェハー面
上には厚い液膜が生じる。ここで再ぴウェハーの反復反
転を5秒間行い、その間にシリンダー20内の残りのガ
スを放出してレジスト剥離を完了させ、以下実施例1と
同様に処理する。
After the first rinse, when the rotation of the wafer is completely stopped and then the release of acetic acid is stopped, a thick liquid film is again formed on the wafer surface. Here, the repetitive wafer is repeatedly inverted for 5 seconds, during which the remaining gas in the cylinder 20 is released to complete the resist stripping, and the same process as in Example 1 is performed.

【0061】剥離直後のウェハー面の残存有機炭素量は
5×1013原子/cm2以下であり、ポリビニルフェノー
ル系化学増幅型レジストも10μm/分以上の速い剥離速
度で除去することができた。
The amount of residual organic carbon on the wafer surface immediately after peeling was 5 × 10 13 atoms / cm 2 or less, and the polyvinylphenol-based chemically amplified resist could be removed at a high peeling rate of 10 μm / min or more.

【0062】[0062]

【発明の効果】本発明は、上記先願発明を改良したもの
で、溶剤として酢酸を使用すると、例えば、ノボラック
樹脂系ポジ型レジストの場合、剥離速度が2〜5倍程度
向上している。薬液の構成そのものは上記先願発明と変
らないので、本発明の表面付着汚染物除去効果は、金属
汚染物や微粒子にも有効であり、またフッ酸を少量添加
すれば、酸化膜表面等の場合に、この除去効果は極めて
高いものとなる。すなわち、本発明で付着除去性能が著
しく改良された。また剥離時間の大幅な短縮が可能とな
り生産性への寄与が大きい。
The present invention is an improvement of the above-mentioned prior invention. When acetic acid is used as a solvent, the stripping rate is improved by about 2 to 5 times in the case of a novolac resin-based positive resist, for example. Since the composition itself of the chemical solution is not different from the above-mentioned prior invention, the effect of removing surface-adhered contaminants of the present invention is also effective for metal contaminants and fine particles, and if a small amount of hydrofluoric acid is added, the surface of an oxide film, etc. In this case, this removal effect is extremely high. That is, the present invention significantly improved the adhesion removing performance. In addition, the peeling time can be greatly shortened, which greatly contributes to productivity.

【0063】本発明では、高濃度オゾンを溶解した液が
基板表面に接する時間は、通常十数秒以下で極めて短
い。したがって、本発明は、シリコンやシリコン酸化膜
面だけでなく、アルミニウム、タングステン、モリブデ
ン、TiN、ITO等の面でもその面を腐蝕することな
くレジスト剥離が可能である。またオゾンガスを溶剤液
膜に接する間は通常液膜を静止させており、これが剥離
性能向上に寄与しているだけでなく、溶剤使用量が大幅
に低減できる。剥離時間が短く、狭い空間だけにオゾン
ガスを供給するので、高濃度ガスを一旦貯蔵し、必要な
短時間だけ大流量で流す手法が利用できる。したがっ
て、使用するオゾン発生装置の小型化やオゾン使用量の
低減化という利点がある。すなわち、経済性の点でも先
願発明に比較して著しく改良されたものである。
In the present invention, the time during which the liquid in which high-concentration ozone is dissolved is in contact with the substrate surface is usually ten seconds or less, which is extremely short. Therefore, according to the present invention, not only the surface of silicon or a silicon oxide film, but also the surface of aluminum, tungsten, molybdenum, TiN, ITO or the like can be removed without corroding the surface. Further, while the ozone gas is in contact with the solvent liquid film, the liquid film is usually kept stationary, which not only contributes to the improvement of the peeling performance, but also can significantly reduce the amount of solvent used. Since the peeling time is short and ozone gas is supplied only to a narrow space, a method of temporarily storing a high-concentration gas and flowing it at a large flow rate for a required short time can be used. Therefore, there are advantages that the ozone generator used is downsized and the amount of ozone used is reduced. That is, in terms of economy, it is a significant improvement over the invention of the prior application.

【0064】このようにオゾン発生装置を利用すると、
貯蔵オゾンガスで処理している間に、発生装置を別の目
的に使用できる。レジスト剥離後の溶剤排液に発生オゾ
ンガスをバブリングさせれば、排液中の未分解のレジス
トが完全に分解できる。したがって、オゾンガスのバブ
リングにより、必要に応じ濾過、蒸留等の簡便な処理に
より使用済溶媒の再循環利用が可能となる。
When the ozone generator is used as described above,
The generator can be used for other purposes while being treated with stored ozone gas. If the generated ozone gas is bubbled in the solvent drainage after the resist is stripped, the undecomposed resist in the drainage can be completely decomposed. Therefore, by bubbling ozone gas, it becomes possible to recycle the used solvent by a simple treatment such as filtration or distillation if necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】枚葉スピンレジスト剥離装置の縦断面を示す概
念図。
FIG. 1 is a conceptual diagram showing a vertical section of a single-wafer spin resist peeling apparatus.

【図2】角形大型基板を面方向に移動してレジストを剥
離する装置における、移動方向の側方からみた概念図。
FIG. 2 is a conceptual view of an apparatus for moving a large rectangular substrate in a surface direction to remove a resist, as viewed from the side in the moving direction.

【図3】前記装置の移動方向に直交する断面の概念図。FIG. 3 is a conceptual diagram of a cross section orthogonal to the moving direction of the device.

【図4】角形基板の多数枚をカセットに入れて静置し、
一度にレジスト剥離を行うバッチ処理装置の概念を示す
図で、基板面に垂直な方向からみた縦断面図。
[Fig. 4] Placing a large number of rectangular substrates in a cassette and allowing them to stand,
It is a figure which shows the concept of the batch processing apparatus which removes a resist at once, and is a longitudinal sectional view seen from the direction perpendicular to the substrate surface.

【図5】前記装置の概念を示す図で、基板に平行な向き
からみた縦断面図。
FIG. 5 is a view showing a concept of the device, and is a vertical cross-sectional view seen from a direction parallel to a substrate.

【図6】円形基板の多数枚をカセットに入れて、基板の
ほぼ中央を中心に回転が可能なチャンバー入りの処理装
置の概念図であって、回転軸を含む横断面図。
FIG. 6 is a conceptual view of a processing apparatus including a chamber in which a large number of circular substrates are placed in a cassette and can be rotated about the center of the substrates, and a cross-sectional view including a rotation axis.

【図7】前記装置の概念図であって、回転軸に垂直の縦
断面図。
FIG. 7 is a conceptual view of the apparatus, which is a vertical cross-sectional view perpendicular to the rotation axis.

【符号の説明】[Explanation of symbols]

1.シリコンウェハー 2.スピン軸 3.
ウェハー保持具 4.スピン軸受 5.チャンバー 6.
酢酸吐出口 7.酢酸供給管 8.酢酸供給管軸受 9.
オゾンガス放出口 10.ガス供給管 11.ガス供給管軸受 1
2.排気管 13.排液管 14.フード体 1
5.酢酸供給用バルブ 16.熱交換器 17.ガス供給用バルブ 1
8.三方バルブ 19.自動ピストン 20.シリンダー 2
1.大型四角形基板 22.送り回転ロール 23,37,38,3
9.扇状酢酸ノズル 24,34.チャンネル形フード 2
5.フード内排気口 26,41.フード内角形排気管 27,35.チ
ャンネル形低屋根フード 28,36.石英ガラス製ガス供給管 2
9.熱交換器 30.金属製ガス供給管 31.底部角形排気管 3
2.回転軸頭部 33.両側排気管 40.広幅チャンネル形フード 4
2.トンネル状フード 43.エアナイフ 44.酢酸用排気管 4
5.角形石英ガラス基板 45´.ダミー基板 46.カセット 4
7.処理容器 48.排液管 49.オゾンガス放出器 5
0.排気管 51.フード 52.酢酸供給管 5
3.ガス供給管 54.充角錐スプレーノズル 55.酢酸供給バルブ
56.熱交換器 57.ガス供給バルブ 58.オゾン放出用開孔 5
9.オゾン放出管 60.オゾンガス導入管 61.排液用バルブ 6
2.排気用バルブ 63.チャンバー 64.カセット回転軸 6
5.カセット 66.シリコンウェハー 67.ガス導入バルブ 6
8,69.層流用フィン 70.ガス排気バルブ 71.ウェハー層状間隙
72.酢酸供給管 73.酢酸供給用バルブ 74.充角錐スプレーノズル
75.上方バルブ 76.下方バルブ
1. Silicon wafer 2. Spin axis 3.
Wafer holder 4. Spin bearing 5. Chamber 6.
Acetic acid outlet 7. Acetic acid supply pipe 8. Acetic acid supply pipe bearing 9.
Ozone gas outlet 10. Gas supply pipe 11. Gas supply pipe bearing 1
2. Exhaust pipe 13. Drainage pipe 14. Hood body 1
5. Acetic acid supply valve 16. Heat exchanger 17. Gas supply valve 1
8. Three-way valve 19. Automatic piston 20. Cylinder 2
1. Large square substrate 22. Feed rotation roll 23, 37, 38, 3
9. Fan-shaped acetic acid nozzle 24, 34. Channel type hood 2
5. Exhaust port in hood 26, 41. Square exhaust pipe in hood 27, 35. Channel type low roof hood 28, 36. Quartz glass gas supply pipe 2
9. Heat exchanger 30. Metal gas supply pipe 31. Bottom square exhaust pipe 3
2. Rotating shaft head 33. Both side exhaust pipe 40. Wide channel type hood 4
2. Tunnel hood 43. Air knife 44. Exhaust pipe for acetic acid 4
5. Square quartz glass substrate 45 '. Dummy substrate 46. Cassette 4
7. Processing container 48. Drainage pipe 49. Ozone gas ejector 5
0. Exhaust pipe 51. Hood 52. Acetic acid supply pipe 5
3. Gas supply pipe 54. Full-pyramidal spray nozzle 55. Acetic acid supply valve
56. Heat exchanger 57. Gas supply valve 58. Opening hole for ozone release 5
9. Ozone discharge tube 60. Ozone gas introduction tube 61. Drain valve 6
2. Exhaust valve 63. Chamber 64. Cassette rotation axis 6
5. Cassette 66. Silicon wafer 67. Gas introduction valve 6
8,69. Laminar flow fin 70. Gas exhaust valve 71. Wafer layered gap
72. Acetic acid supply pipe 73. Acetic acid supply valve 74. Full-pyramidal spray nozzle 75. Upper valve 76. Lower valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 あすか 神奈川県横浜市港北区新羽町735番地 株 式会社ピュアレックス内 Fターム(参考) 2H088 FA21 FA30 HA01 MA20 2H096 AA25 LA02 5F046 MA02 MA05 MA13 MA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Asuka Sato             735 Shinba-cho, Kohoku Ward, Yokohama City, Kanagawa Prefecture             Inside the company Purelex F term (reference) 2H088 FA21 FA30 HA01 MA20                 2H096 AA25 LA02                 5F046 MA02 MA05 MA13 MA17

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 異質物質が付着した被処理体の表面に、
該表面を十分に濡らすことができるオゾン可溶性溶剤を
適用するとともに、これにより形成される液膜に対し
て、前記被処理体とその表面に近接した天板または他の
被処理体との間の層状間隙に導入した高濃度のオゾンを
含むガスを接触させて、被処理体の表面に付着した異質
物質を除去することを特徴とする表面付着異質物質の除
去方法。
1. A surface of an object to be processed to which foreign substances are attached,
An ozone-soluble solvent capable of sufficiently wetting the surface is applied, and a liquid film formed thereby is provided between the object to be processed and a top plate or another object to be processed adjacent to the surface. A method for removing a foreign substance adhering to a surface, which comprises contacting a gas containing a high concentration of ozone introduced into a layered gap to remove a foreign substance adhering to the surface of a target object.
【請求項2】 前記表面に対して、前記ガスを前記層状
間隙に導入した後、前記溶剤を該表面に供給して液膜を
形成し、前記ガスに接触させることを特徴とする前記請
求項1記載の表面付着異質物質の除去方法。
2. The method according to claim 1, wherein after introducing the gas into the layered gap with respect to the surface, the solvent is supplied to the surface to form a liquid film, and the liquid film is contacted with the gas. 1. The method for removing foreign substances adhering to the surface according to 1.
【請求項3】 前記表面に、前記溶剤の液膜を作成した
後、前記ガスを前記層状間隙に供給して処理を行なうこ
とを特徴とする前記請求項1記載の表面付着異質物質の
除去方法。
3. The method for removing foreign substances adhering to the surface according to claim 1, wherein after the liquid film of the solvent is formed on the surface, the gas is supplied to the layered gap for treatment. .
【請求項4】 前記液膜が加熱されることを特徴とする
前記請求項1〜3のいずれか一項記載の表面付着異質物
質の除去方法。
4. The method for removing a foreign substance adhering to a surface according to claim 1, wherein the liquid film is heated.
【請求項5】 前記溶剤が、前記異質物質の全てまたは
少なくともその一部を溶解させることができるものであ
ることを特徴とする前記請求項1〜4のいずれか一項記
載の表面付着異質物質の除去方法。
5. The surface-attached foreign substance according to claim 1, wherein the solvent is capable of dissolving all or at least a part of the foreign substance. Removal method.
【請求項6】 前記溶剤が、式:C2n+1COO
H(式中、n=1、2または3の整数)で表わされる脂
肪族カルボン酸を主成分とするものであることを特徴と
する前記請求項1〜5のいずれか一項記載の表面付着異
質物質の除去方法。
6. The solvent is of the formula: C n H 2n + 1 COO.
The surface adhesion according to any one of claims 1 to 5, wherein the main component is an aliphatic carboxylic acid represented by H (in the formula, an integer of 1, 2, or 3). How to remove foreign substances.
【請求項7】 前記被処理体が電子工業用基板であり、
前記表面付着異質物質がフォトレジストであり、前記溶
剤の主成分が酢酸であることを特徴とする前記請求項1
〜4記載のいずれか一項記載の表面付着異質物質の除去
方法。
7. The substrate to be processed is a substrate for electronic industry,
The said surface-attached foreign substance is a photoresist, and the main component of the solvent is acetic acid.
5. The method for removing surface-attached foreign matter according to any one of claims 4 to 4.
【請求項8】 除去対象の異質汚染物質の付着した被処
理体表面の全部あるいは一部を覆い、該表面に近接した
天板を具備し、かつ該天板が該表面と接触しない構造の
フード体と、該フード体内の空間をオゾン含有ガスで充
満させるためのフード壁に付設したガス放出器およびそ
れに連結したガス供給管と、該表面を十分に濡らすこと
ができるオゾン可溶性溶剤の液膜を該表面に形成するた
めの溶剤の供給器、並びに、それに付属した溶剤液膜を
静止状態におくか、あるいは緩やかな速度ないし短い移
動距離で流動させ、その後最終的には処理後の液膜およ
び残存異質物質を該表面から排除する機構を具備するこ
とを特徴とする表面付着異質物質の除去装置。
8. A hood having a top plate which covers all or a part of the surface of the object to be treated to which foreign contaminants to be removed are attached, and which has a structure in which the top plate does not come into contact with the surface. A body, a gas discharger attached to the hood wall for filling the space inside the hood with an ozone-containing gas and a gas supply pipe connected to the body, and a liquid film of an ozone-soluble solvent capable of sufficiently wetting the surface. The solvent supply device for forming on the surface and the solvent liquid film attached thereto are kept stationary or flow at a slow speed or a short moving distance, and finally the liquid film after treatment and A device for removing foreign substances adhering to a surface, comprising a mechanism for removing residual foreign substances from the surface.
【請求項9】 前記除去装置が、電子工業用基板を枚葉
でスピン処理し洗浄する機構を有する場合であって、洗
浄基板の回転速度を任意に変更できる機構を備え、ま
た、基板面に接近し、処理時間だけ中央部に配置されて
基板面上にオゾン含有ガスを供給するガス放出器と、基
板面に前記溶剤を吐出して液膜を形成する溶剤供給器と
を具備し、更に、処理に際し、内部にオゾン含有ガスを
充満させ得る上下移動可能な天板を具備したフード体を
有することを特徴とする請求項8記載の表面付着異質物
質の除去装置。
9. A case where the removing device has a mechanism for spin-processing and cleaning an electronic industrial substrate in a single-wafer manner, and is provided with a mechanism capable of arbitrarily changing a rotation speed of the cleaning substrate, A gas discharger that is located close to the substrate for the processing time and supplies an ozone-containing gas onto the substrate surface; and a solvent supplier that discharges the solvent onto the substrate surface to form a liquid film, and 9. The apparatus for removing foreign substances adhering to a surface according to claim 8, further comprising a hood body provided with a vertically movable top plate capable of being filled with an ozone-containing gas during processing.
【請求項10】 前記除去装置が、表面にフォトレジス
トが付着した四角形基板を移動させつつ、その四角形基
板の進行方向に対して直角方向に、該四角形基板を水平
面から傾斜させ、前記溶剤を前記直角方向に流下して液
膜を形成させる機構を有する場合であって、四角形基板
面の進行方向に対して直角方向の両端を含む複数の細幅
領域を覆うチャンネル型の低い天板を有するフード体を
適用し、この複数の細幅領域部において、該四角形基板
斜面に沿って溶剤を流下させ溶剤液膜を形成させるため
の放出器が、前記各細幅領域斜面の上方に配設されてい
ることを特徴とする請求項8記載の表面付着異質物質の
除去装置。
10. The removing device moves a rectangular substrate having a photoresist adhered to the surface thereof, tilts the rectangular substrate from a horizontal plane in a direction perpendicular to the traveling direction of the rectangular substrate, and removes the solvent. A hood having a channel type low top plate that covers a plurality of narrow regions including both ends in a direction perpendicular to the traveling direction of a square substrate surface, in the case of having a mechanism for forming a liquid film by flowing down in a direction perpendicular to the rectangular substrate surface. A body is applied, and an emitter for forming a solvent liquid film by flowing a solvent along the slopes of the rectangular substrate is disposed above the narrow regions in the plurality of narrow regions. 9. The apparatus for removing foreign substances adhering to the surface according to claim 8, wherein:
【請求項11】 洗浄用容器内において、表面に異質物
質が付着している複数枚の同形状の電子工業用基板が、
互いに近接した層状間隙で収容されたカセットを処理す
る装置であって、その各基板間の層状間隙に対し高濃度
オゾン含有ガスを導入するガス放出器と、カセット上方
に位置させた各基板表面を十分に濡らすことができるオ
ゾン可溶性溶剤を各基板面に噴霧するノズルとで構成さ
れ、かつ、ガス放出器固定台と該ガスの供給管及び前記
ノズルへ溶剤を供給する溶剤供給管、並びに各基板間の
層状間隙から流下する洗浄処理後の溶剤のための排液口
を付設させたことを特徴とする表面付着異質物質の除去
装置。
11. A plurality of substrates having the same shape and having different shapes adhered to the surface of a substrate for electronic industry in a cleaning container,
An apparatus for processing a cassette housed in a layered gap close to each other, comprising a gas discharger for introducing a high-concentration ozone-containing gas into the layered gap between the respective substrates, and a surface of each substrate positioned above the cassette. A nozzle for spraying a sufficiently wettable ozone-soluble solvent on the surface of each substrate, a gas discharger fixing base, a supply pipe for the gas, a solvent supply pipe for supplying the solvent to the nozzle, and each substrate A device for removing foreign substances adhering to a surface, characterized in that a drainage port for the solvent after the cleaning process that flows down from the layered gap between them is attached.
【請求項12】 複数枚の同形状の電子工業用基板が、
互いに近接した層状間隙で収容されたカセットをスピン
処理する洗浄装置であって、前記カセットは密閉容器の
水平方向の壁体に挿通した回転軸によって支持され、か
つ垂直回転できるように構成され、該回転軸はその回転
速度を任意に変更できるものであって、前記密閉容器に
は、高濃度オゾン含有ガス放出口および排出口、各基板
表面を十分に濡らすことができるオゾン可溶性溶剤を各
基板面に噴霧するカセット上方に位置させたノズル、下
方に排液口が設けられており、そして、高濃度オゾン含
有ガスの放出、前記溶剤の噴霧、リンスおよび排液の各
工程で前記回転軸を介して前記カセットを、停止または
低速から高速へと所望の回転速度で回転させることがで
きるように構成したことを特徴とする表面付着異質物質
の除去装置。
12. A plurality of substrates having the same shape for electronic industry,
A washing device for spin-processing a cassette housed in a layered gap close to each other, wherein the cassette is supported by a rotary shaft inserted through a horizontal wall of a closed container and is configured to be vertically rotatable. The rotation speed of the rotating shaft can be arbitrarily changed, and the hermetically sealed container is provided with a high-concentration ozone-containing gas discharge port and discharge port, and an ozone-soluble solvent capable of sufficiently wetting each substrate surface with each substrate surface. Nozzle located above the cassette for spraying on, a drain port is provided below, and through the rotary shaft in the steps of releasing the high-concentration ozone-containing gas, spraying the solvent, rinsing and draining liquid. A device for removing foreign substances adhering to a surface, characterized in that the cassette can be stopped or rotated at a desired rotation speed from low speed to high speed.
【請求項13】 前記除去装置に、更に、オゾンガス発
生装置で発生したオゾン含有ガスを、一旦貯蔵した後、
該貯蔵ガスを短時間に高流量で吐出できるように、ガス
放出用のピストンを備えたシリンダー状ガス貯蔵器を付
設させたことを特徴とする前記請求項8〜12のいずれ
か一項記載の表面付着異質物質の除去装置。
13. The removing device further stores an ozone-containing gas generated by an ozone gas generating device,
13. A cylinder-shaped gas reservoir provided with a piston for releasing gas so that the stored gas can be discharged at a high flow rate in a short time, and the gas reservoir according to any one of claims 8 to 12, characterized in that. Removal device for foreign substances adhering to the surface.
【請求項14】 前記除去装置で用いられる溶剤が、前
記異質物質の全てまたは少なくともその一部を溶解させ
ることができるものであることを特徴とする前記請求項
8〜13のいずれか一項記載の表面付着異質物質の除去
装置。
14. The solvent used in the removing device is capable of dissolving all or at least a part of the foreign substance, according to any one of claims 8 to 13. Equipment for removing foreign substances adhering to the surface of.
JP2001234037A 2001-08-01 2001-08-01 Photoresist removal method and removal apparatus Expired - Fee Related JP4844912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234037A JP4844912B2 (en) 2001-08-01 2001-08-01 Photoresist removal method and removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234037A JP4844912B2 (en) 2001-08-01 2001-08-01 Photoresist removal method and removal apparatus

Publications (2)

Publication Number Publication Date
JP2003045842A true JP2003045842A (en) 2003-02-14
JP4844912B2 JP4844912B2 (en) 2011-12-28

Family

ID=19065727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234037A Expired - Fee Related JP4844912B2 (en) 2001-08-01 2001-08-01 Photoresist removal method and removal apparatus

Country Status (1)

Country Link
JP (1) JP4844912B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020011A (en) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd Apparatus and method for removing photoresist from substrate
JP2009141347A (en) * 2007-12-05 2009-06-25 Siltronic Ag Method for performing wet chemical treatment on semiconductor wafer
CN101794089A (en) * 2010-04-12 2010-08-04 常州瑞择微电子科技有限公司 Resist removing method of electron beam resist optical mask plate and device thereof
KR20130046364A (en) * 2011-10-27 2013-05-07 도쿄엘렉트론가부시키가이샤 Liquid processing apparatus, liquid processing method, and storage medium
WO2014118862A1 (en) * 2013-01-29 2014-08-07 信越半導体株式会社 Cleaning method using ozonated water and cleaning apparatus
CN106765428A (en) * 2017-03-17 2017-05-31 东莞市安哲罗电器科技有限公司 A kind of super pressure-negative cooker hood
CN109496346A (en) * 2016-09-16 2019-03-19 株式会社斯库林集团 Pattern collapse restoration methods, substrate processing method using same and substrate board treatment
CN110447088A (en) * 2017-03-29 2019-11-12 信越半导体株式会社 The cleaning method of semiconductor crystal wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547730A (en) * 1991-08-20 1993-02-26 Chlorine Eng Corp Ltd Removing method for organic material
JPH05152203A (en) * 1991-11-29 1993-06-18 Chlorine Eng Corp Ltd Method and device for treating substrate
JPH0922122A (en) * 1995-07-10 1997-01-21 Hitachi Ltd Resist removing solution and removing method
JP2000037671A (en) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp Method of and apparatus for treating surface of substrate
JP2000150349A (en) * 1998-11-13 2000-05-30 Mitsubishi Electric Corp Method and device for removing photo-resist film
JP2000299268A (en) * 1999-04-13 2000-10-24 Dainippon Screen Mfg Co Ltd Stripping apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547730A (en) * 1991-08-20 1993-02-26 Chlorine Eng Corp Ltd Removing method for organic material
JPH05152203A (en) * 1991-11-29 1993-06-18 Chlorine Eng Corp Ltd Method and device for treating substrate
JPH0922122A (en) * 1995-07-10 1997-01-21 Hitachi Ltd Resist removing solution and removing method
JP2000037671A (en) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp Method of and apparatus for treating surface of substrate
JP2000150349A (en) * 1998-11-13 2000-05-30 Mitsubishi Electric Corp Method and device for removing photo-resist film
JP2000299268A (en) * 1999-04-13 2000-10-24 Dainippon Screen Mfg Co Ltd Stripping apparatus and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020011A (en) * 2003-06-26 2005-01-20 Samsung Electronics Co Ltd Apparatus and method for removing photoresist from substrate
JP4489513B2 (en) * 2003-06-26 2010-06-23 三星電子株式会社 Apparatus and method for removing photoresist from a substrate
JP2009141347A (en) * 2007-12-05 2009-06-25 Siltronic Ag Method for performing wet chemical treatment on semiconductor wafer
US8070882B2 (en) 2007-12-05 2011-12-06 Siltronic Ag Method for the wet-chemical treatment of a semiconductor wafer
CN101794089A (en) * 2010-04-12 2010-08-04 常州瑞择微电子科技有限公司 Resist removing method of electron beam resist optical mask plate and device thereof
CN101794089B (en) * 2010-04-12 2012-06-13 常州瑞择微电子科技有限公司 Resist removing method of electron beam resist optical mask plate and device thereof
KR20130046364A (en) * 2011-10-27 2013-05-07 도쿄엘렉트론가부시키가이샤 Liquid processing apparatus, liquid processing method, and storage medium
KR101678251B1 (en) 2011-10-27 2016-11-21 도쿄엘렉트론가부시키가이샤 Liquid processing apparatus, liquid processing method, and storage medium
WO2014118862A1 (en) * 2013-01-29 2014-08-07 信越半導体株式会社 Cleaning method using ozonated water and cleaning apparatus
CN109496346A (en) * 2016-09-16 2019-03-19 株式会社斯库林集团 Pattern collapse restoration methods, substrate processing method using same and substrate board treatment
CN109496346B (en) * 2016-09-16 2023-06-06 株式会社斯库林集团 Pattern collapse recovery method, substrate processing method, and substrate processing apparatus
CN106765428A (en) * 2017-03-17 2017-05-31 东莞市安哲罗电器科技有限公司 A kind of super pressure-negative cooker hood
CN106765428B (en) * 2017-03-17 2023-08-15 东莞市安哲罗电器科技有限公司 Super negative pressure smoke ventilator
CN110447088A (en) * 2017-03-29 2019-11-12 信越半导体株式会社 The cleaning method of semiconductor crystal wafer
CN110447088B (en) * 2017-03-29 2023-03-28 信越半导体株式会社 Method for cleaning semiconductor wafer

Also Published As

Publication number Publication date
JP4844912B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP3914842B2 (en) Method and apparatus for removing organic coating
US6699330B1 (en) Method of removing contamination adhered to surfaces and apparatus used therefor
TWI406110B (en) Process for removing material from substrates
US4695327A (en) Surface treatment to remove impurities in microrecesses
JPH1027771A (en) Cleaning method and device
US6478035B1 (en) Cleaning device, cleaning system, treating device and cleaning method
WO1999050898A1 (en) Organic removal process
WO2005015625A1 (en) Method of processing substrate and substrate processing apparatus
KR100238234B1 (en) In-situ cleaning apparatus for semiconductor device and method for cleaning semiconductor device using the same
JP4844912B2 (en) Photoresist removal method and removal apparatus
US20060040506A1 (en) Semiconductor fabrication methods and apparatus
JP2008311660A (en) Method for cleaning and drying semiconductor wafer, and for making it hydrophilic
JP5265669B2 (en) How to prevent premature drying
JP2003203856A (en) Removal method for organic coated film
JP3538114B2 (en) Method and apparatus for removing contaminants adhering to a surface
TW404853B (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
JP2003103228A (en) Apparatus and method for removal of deposit on surface of electronics-industrial substrate
JP4399843B2 (en) Method and apparatus for removing photoresist from substrate surface for electronics industry
TWI276141B (en) Method of manufacturing an electronic device
JP3035450B2 (en) Substrate cleaning method
JP2004104090A (en) Method and apparatus for removing surface contaminant
JP3324824B2 (en) Cleaning equipment
JP2003109928A (en) Substrate cleaning method and device thereof
WO1989000895A1 (en) Surface treatment to remove impurities in microrecesses
JP2002353190A (en) Drying method, drying device and cleaning and drying device for object to be cleaned

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees