JP3998243B2 - 核スピン偏極キセノンガスの製造方法及び製造装置 - Google Patents
核スピン偏極キセノンガスの製造方法及び製造装置 Download PDFInfo
- Publication number
- JP3998243B2 JP3998243B2 JP2003004304A JP2003004304A JP3998243B2 JP 3998243 B2 JP3998243 B2 JP 3998243B2 JP 2003004304 A JP2003004304 A JP 2003004304A JP 2003004304 A JP2003004304 A JP 2003004304A JP 3998243 B2 JP3998243 B2 JP 3998243B2
- Authority
- JP
- Japan
- Prior art keywords
- glass cell
- rubidium
- xenon
- gas
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1806—Suspensions, emulsions, colloids, dispersions
- A61K49/1815—Suspensions, emulsions, colloids, dispersions compo-inhalant, e.g. breath tests
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B23/00—Noble gases; Compounds thereof
- C01B23/001—Purification or separation processes of noble gases
- C01B23/0036—Physical processing only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0029—Obtaining noble gases
- C01B2210/0037—Xenon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【産業上の利用分野】
この発明は、核スピン偏極キセノンガスの製造方法と製造装置に係り、詳記すればNMR・MRI装置に有用な偏極した核スピンを高濃度で連続的に製造し得る核スピン偏極キセノンガスの製造方法と製造装置に関する。
【0002】
【従来の技術】
最近、核スピンが偏極したキセノンガス(核スピン偏極キセノンガス)を、NMR・MRI法に適用すると、検出感度が飛躍的に向上することが報告されている。
【0003】
ここで偏極しているとは、主静磁場に対する配向状態に対応する原子核の核スピンのエネルギー準位を占有するスピン数の分布が、熱平衡時におけるその分布に比べて、極端に偏っていることをいう。
【0004】
そして、この偏極している状態を有する希ガスは、キセノンー129(129Xe)、ヘリウムー3(9He)等のスピン量子数1/2の核スピンを有する単原子分子を含む希ガスとルビジウム、セシウム等のアルカリ金属蒸気を混合した気体に、円偏光された励起光を照射することによって、ルビジウム等の基底状態準位にある電子が光吸収により励起されて励起状態準位を経由した後に基底状態準位に戻る際に、外部から印加された磁場によって磁気的に縮退が解かれた基底状態準位の内の電子準位の一方の準位に高い確率で遷移させ、ルビジウム分子等の電子スピン偏極度が高い状態を作成し、この高偏極状態のルビジウム等がキセノン等の希ガスと衝突して、この過程でルビジウム等の高偏極状態がキセノン等の希ガスの核スピン系に移動することによって得られるものである。この過程は、一般に光ポンピングと呼ばれている。
【0005】
従来の偏極希ガス製造装置としては、光反応容器内に希ガスとアルカリ金属蒸気の混合気体を封じ込め、これに励起光の照射と磁場の印加を行うもので、例えば高密度の偏極ヘリウムー3を中性子ポーラライザーとして使用することを目的として、円筒状ガラスアンプル中にヘリウムー3ガスと窒素ガスの混合気体及びアルカリ金属を封じ込めて製造する装置がある(例えば、非特許文献1参照)。
【0006】
【非特許文献1】
M.E.Wagshul and T.E.Chupp,Phy.Rev.A40, 4447(1989)
【0007】
一方、例えば10気圧程度のヘリウムのバッファーガスに1%のキセノンを混合して円筒状ガラス容器に導入し、照射して偏極させ、容器のガス出口より液体窒素で冷却したデュワー内に誘導し、偏極キセノンを固体にして分離させ、残りのヘリウムガスはベントラインから排出させるものがある(例えば、非特許文献2参照)。
【0008】
【非特許文献2】
B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D.K. Walter and W. Happer, Appl.Phys, Lett. 69, 1668 (1996)。
【0009】
いずれも、偏極率を高めるための操作を、希ガス等を光反応容器内に滞留させた状態で、レーザー光を入射して行っている。偏極率が高まったところで、室温に冷却してそのまま中性子ポーラライザーとして使用するか、いったんデュワー内に固体分離された偏極キセノンー129を、再度加熱してガス化し、別の容器へ移送してNMR等の測定に使用することが行われていた。
【0010】
【発明が解決しようとする問題点】
しかしながら、上記従来法は、偏極し易くするため、キセノンを例えばヘリウム2%キセノン濃度程度に薄めて偏極させ、生成したキセノンを含むガスを液体窒素で凍らせ、これを加温してキセノンのみを取りだし、高濃度キセノンガスを製造していたので、極めて作業能率が悪い問題があった。そればかりか、従来のガス等を滞留させて偏極させる装置は、連続的に偏極希ガスを発生させることができないので、いちいち偏極ガスを別の容器に取り出してNMR装置等まで運ぶため手間がかかり、またその間に偏極率が減少するという問題があった。
【0011】
【発明が解決しようとする課題】
この発明はこのような点に着目してなされたものであり、凍らせなくとも高濃度の偏極キセノンガスが得られると共に連続的に偏極キセノンガスを発生させることができる製造方法及び製造装置を提供することを目的とする。
【0012】
またこの発明は、上記製造方法と製造装置に使用する金属ルビジウムとキセノンガスとを酸素の不在下で固化密封したガラスセルの製造方法及び製造装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的に沿う本発明のうち請求項1記載の製造方法は、固体ルビジウムと固体キセノンとが酸素不在の減圧状態で封入されたガラスセルを加温して気体キセノンと気液混合ルビジウムとし、これに磁場をかけてレーザー光を照射することを特徴とする。尚、酸素不在というのは、固体ルビジウムが酸化されないようにするためであり、固体ルビジウムが酸化されて反応の障害とならない程度の微量の酸素の存在は許容される。
【0014】
このようにして生成した核スピン偏極キセノンガスを取り出すと当然圧力が下がるので、空気がガラス製セル内に逆流するから、所定の圧力を維持するようにキセノンガスを導入しながら偏極キセノンガスを取りだす(請求項2)。また、このようにすることによって、偏極キセノンガスを連続的に製造することができる。
【0015】
キセノンガス供給装置の交換に際し、第1のエアオペレートバルブを介してキセノンガス供給装置側を一次側とし、前記ガラスセルのキセノンガス導入側を二次側とし、該一次側配管内の真空引きと窒素ガスによる加圧放置とを3回以上自動的に繰り返すように構成するのが好ましい(請求項3)。
【0016】
前記ガラスセルの交換に際し、前記一次側配管、ニ次側配管及び一次側配管から第2のエアオペレートバルブを介して連通する偏極キセノンガス取出し側のバルブまでの配管内の真空引きと前記一次側配管内の窒素ガスによる加圧放置とを3回以上自動的に繰り返すのが好ましい(請求項4)。
【0017】
本発明のガラスセルの製法は、ガラス容器中に封入したルビジウムを収容した室と前記ガラスセルとを配管で連通するように連結し、該配管内を真空発生器で排気した後、ルビジウムを封入したガラス容器を割って、金属ルビジウム、配管及びガラスセルを加熱し、配管及びガラスセル内に気体のルビジウムを存在させ、それから前記ガラスセルを冷却し、冷却した部分に金属ルビジウムを固体として析出させ、該ガラスセルにキセノンガスを導入して密封し、該ガラスセルを冷却してガラスセル内でキセノンを固化することを特徴とする(請求項5)。
【0018】
また本発明の製造装置は、固体ルビジウムと固体キセノンとが酸素不在の減圧状態で封入されたガラスセルを加温して気体キセノンと気液混合ルビジウムとする手段と、該ガラスセルに磁場をかけてレーザー光を照射する手段と、を具備することを特徴とする(請求項6)。
【0019】
更に、生成した核スピン偏極キセノンガスを取り出しながらキセノンガスを導入する手段と該操作を圧力が降下しないように制御する圧力調整手段とを具備するのが良い(請求項7)。
【0020】
第1のエアオペレートバルブを介してキセノンガス供給装置側を一次側配管とし、キセノンガスをガラスセル内に導入するバルブまでを二次側配管とし、前記一次側配管に第2のエアオペレートバルブを介して接続される分枝した配管と、該分枝した配管の一方は真空発生器に他方は前記ガラスセルの偏極キセノンガス取り出し側のバルブに達し、前記一次側配管にはガラスセルに導入する圧力を調整する圧力調整手段を設けるのが良い(請求項8)。
【0021】
本発明のガラスセルの製造装置は、ガラス容器中に封入したルビジウムを収容した室と前記ガラスセルとを連通するように連結した配管と、該配管内を真空にする手段と、ルビジウムを封入したガラスを割る手段と、金属ルビジウム、配管及びガラスセルを加熱する手段と、前記ガラスセルを冷却し冷却した部分に金属ルビジウムを析出させる手段とを具備することを特徴とする(請求項9)。
【0022】
要するに本発明は、金属ルビジウムを付着させたガラスセル中にキセノンを密封して加熱してレーザー光を照射することによって、凍らせることなく高濃度の偏極キセノンガスを得るようにしたことを要旨とするものである。
【0023】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて説明する。
【0024】
図1は、ルビジウムとキセノンを封入したガラスセルの製造法(製造装置)を示すものであり、ガラスで包まれた金属ルビジウム1収容室2とガラスセル3とを連結した配管4に、真空ポンプ5とキセノンガス供給ライン6とが接続されている。ルビジウムは、空気と接触すると酸化されてルビジウムの酸化物に変化するので、メーカーから購入する場合は、上記のようにガラスに封入されている。尚、この状態では、バルブVxeとバルブV1及びV2は閉じている。
【0025】
バルブVxeを閉じた状態でバルブVpを開いて真空ポンプ5で排気すれば、配管4及びガラスセル3内の空気は排気される。この状態でルビジウムを封入しているガラスを割ると、金属ルビジウムは真空中で存在することになるから酸化されない。金属ルビジウム1収容室2には、ガラスで包まれた磁石も封入されており、これを外側から磁石で動かしてガラスで包まれた金属ルビジウム1に当ててガラスを割っている。
【0026】
次に、金属ルビジウム1、ガラスセル3及び配管4を全体的に加熱する。加熱温度は、ルビジウムの融点(約40℃)以上で、ルビジウムが液体とその温度における蒸気圧分の気体が高濃度で存在する気液混合状態となる温度とするのが良い。具体的には、好ましくは130〜180℃、特に好ましくは150℃付近とするのが良い。
【0027】
ついで、ガラスセル3の一部分だけ冷却すると、図2に示すように、冷却された部分7だけに気体状態のルビジウムが固化して析出する。
【0028】
次に、真空ポンプ5側バルブVpを閉とし、Vxeを開くと、ガラスセル3の中にガス状キセノンが導入される。それからVxeを閉とし、ガラス製セル3全体を液体窒素で冷却すると、キセノンは固体となる。もともと、真空中に封じ込められた固体ルビジウムのところに、キセノンを導入したので、キセノンが固化すれば、ガラスセル内は減圧状態となる(液体窒素温度での蒸気圧)。
【0029】
この状態で図2の括れた部分8をバーナー操作で加熱溶解させれば、固体ルビジウムと固体キセノンが封入されたガラスセル3が得られる。
【0030】
このガラスセルを使用し、図3に示すように構成し、ガラスセル3の温度を好ましくは50〜180℃、特に好ましくは120℃付近の温度に上昇させると、ガラスセルの中は、キセノンガスと気液混合ルビジウムとなる。この状態で、磁場をかけてレーザーを照射すれば、数十分程度の時間で、キセノンガスは、核スピン偏極キセノンガスとなる。
【0031】
それから図3に示すように、バルブV2及びV3を開いて偏極キセノンガスを偏極キセノンガス採取シリンダー9で採取すると同時に、バルブV1を開いて圧力が降下しないようにオートプレッシャーレギュレーター(APC)10で圧力調整しながらキセノンガスを導入する。ガラスセル3の中の偏極キセノンガスを取り出すと圧力が下がり、大気が逆流するので、上記のように圧力制御したキセノンガスを導入している。尚、この状態では、図3中エアオペレートバルブAV6、AV1及びAV3とバルブV1、V2及びV3は開いている。
【0032】
それからバルブV1及びV2を閉じて、ガラスセル3全体を液体窒素で冷却して、キセノンを固化させた後、ガラスセル3を加熱して上記と同じ操作で偏極キセノンガスを製造する。このようにして、触媒のルビジウムがなくなるまで連続して繰り返し製造することができる。
【0033】
図3に示すように、キセノンボンベ11からのキセノンガスは、エアオペレートバルブ(AV1)、オートプレッシャーレギュレーター(APC)10及び第1エアオペレートバルブ(AV3)を通って、ガラスセル3のバルブV1から導入されるようになっている。尚、この実施例では偏極キセノンガスを取り出す圧力は、1.5気圧程度で行っているので、APC10によってキセノンガスの圧力を同じ1.5気圧程度に調整している。図3において、バルブV1〜V4はガラスのバルブで構成されているが、これは偏極キセノンガスが接触するためであり、ガラスにしないと偏極キセノンガスがキセノンガスに戻るためである。従って、偏極キセノンガスが接触する配管内の他の部分もガラス(パイレックスガラス)になっている。
【0034】
窒素ガス及びキセノンガスは、それぞれ減圧弁(REG2及びREG1)によって、1.5気圧程度の圧力に落とすようになっている。
【0035】
上記反応に際しては、ガラスセル内には、空気が全く入らないようにしなければならない。少量の空気が混入してもルビジウム触媒が酸化され、触媒機能を発揮しなくなるからである。
【0036】
空気が混入するのは、ボンベ交換の時とガラスセル交換の時であるので、この場合は、次のようにして空気がガラスセル内に混入しないようにしている。
【0037】
キセノンボンベ交換の場合は、ボンベの元バルブ13とエアオペレートバルブ(AV1)とエアオペレートバルブ(AV6)との間の配管内に空気が混入する。この空気を除去するため、真空ポンプ(P)15をオンし、エアオペレートバルブ(AV1)、エアオペレートバルブ(AV2)及び第2エアオペレートバルブ(AV4)を開いて、一次側の配管内を真空引きし、圧力トランスミッタ(PT1)で減圧度を検知しながら、所定時間このまま放置される。尚、第1のエアオペレートバルブ(AV3)を介してキセノンガス供給装置側を一次側とし、ガラスセルのキセノンガス導入側を二次側としている。
【0038】
それから、第2エアオペレートバルブ(AV4)を閉じて、一時側の配管内を窒素ガスで加圧する。この一次側の圧力を圧力トランスミッタ(PT1)で検知しながら、予め設定しておいた所定時間放置する。それから一次側配管内を再度真空引きし、一次側配管内を窒素ガスで加圧放置する工程を繰り返す。好ましくは、10回以上繰り返すことによって、ガラスセル内に酸素が混入しないようにすることができる。
【0039】
ガラスセル交換の時は、第1エアオペレートバルブ(AV3)を介して一次側の配管と連通する二次側のガラスセル入口の手動バルブV1までの配管内と偏極したガスを取り出す手動バルブV2と採取部への流入を制御するバルブV3と真空ポンプへの連通を制御するバルブV4との間の配管内に空気が混入する。
【0040】
バルブV4と第2エアオペレートバルブ(AV4)(一次側配管と真空ポンプへの連通を制御する)とを開いて、上記空気混入部の配管内を真空引きする。それから一次側と二次側の配管を連結する第1エアオペレートバルブ(AV3)と両ボンベから第1エアオペレートバルブ(AV3)までのバルブを開いて一次側の配管と二次側の配管とを窒素ガスで加圧し、バルブを全て閉じて加圧放置する。それから、第1エアオペレートバルブと第2エアオペレートバルブとを開いて上記と同様に真空引きし、加圧放置する工程を繰り返す。好ましくは、10回以上繰り返すことによって、ガラスセル内に酸素が混入しないようにすることができる。尚、二次側の配管には、圧力トランスミッタ(PT2)が配設されているから、これによって圧力を検知しながら、予め設定した所定時間の真空引きと加圧放置を行っている。尚、図3中エアオペレートバルブ(AV5)は、一次配管内が加圧状態のときにガスを放出するためのバルブであるが、上記操作では使用していない。
【0041】
図3においては、窒素及びキセノンガスはボンベから供給されているが、これは公知の他のガス供給装置であっても差し支えない。
【0042】
本発明によれば、キセノンガス80〜100%(残りは窒素ガス)という高濃度で反応させることによって偏極キセノンガスが得られるので、偏極させた後に固化するなどの処理を行うことなく高濃度の偏極キセノンガスが得られる。
【0043】
また、配管内の真空引きと加圧放置を多数回行うことによって、ガラスセルへの空気の混入を防止することができる。
【0044】
【発明の効果】
以上のべた如く、本発明によれば、高濃度のキセノンガスを使用して高濃度の偏極したキセノンガスが製造できるので、従来のように製造後凍らせて濃縮する手間をなくすことができる。
【0045】
また、偏極したキセノンガスを取出しながら原料キセノンガスを圧力調整して導入することにより、空気の逆流を防止し、連続的に偏極したキセノンガスを製造することができる。
【0046】
更に、配管内の真空引きと加圧放置を繰り返し行うことによって、配管内を十分にパージすることができるので、反応ガラスセル内の空気の混入が防止でき、ルビジウム触媒の寿命を長くすることができる。
【0047】
【図面の簡単な説明】
【図1】本発明のルビジウムとキセノンを封入したガラスセルの製造装置を示す概略断面図である。
【図2】ルビジウムとキセノンを封入後ガラスセルを閉じて密封する状態を示す断面図である。
【図3】本発明の製造装置の一実施例を示す構成図である。
【符号の説明】
1………金属ルビジウム
3………ガラスセル
10………圧力調整器(オートプレッシャーレギュレーター)
11………キセノンボンベ
AV3………第1エアーオペレートバルブ
AV4………第2エアーオペレートバルブ
PT1,PT2………圧力トランスミッタ
Claims (9)
- 固体ルビジウムと固体キセノンとが酸素不在の減圧状態で封入されたガラスセルを加温して気体キセノンと気液混合ルビジウムとし、これに磁場をかけてレーザー光を照射することを特徴とする核スピン偏極キセノンガスの製造方法。
- 前記レーザー光を照射して生成した核スピン偏極キセノンガスを取り出しながら、所定の圧力を維持するようにガラスセルにキセノンガスを導入する請求項1記載の製造方法。
- キセノンガス供給装置の交換に際し、第1のエアオペレートバルブを介してキセノンガス供給装置側を一次側とし、前記ガラスセルのキセノンガス導入側を二次側とし、該一次側配管内の真空引きと窒素ガスによる加圧放置とを3回以上自動的に繰り返す請求項2に記載の製造方法。
- 前記ガラスセルの交換に際し、前記一次側配管、ニ次側配管及び一次側配管から第2のエアオペレートバルブを介して連通する偏極キセノンガス取出し側のバルブまでの配管内の真空引きと前記一次側配管内の窒素ガスによる加圧放置とを3回以上自動的に繰り返す請求項3記載の製造方法。
- ガラス容器中に封入したルビジウムを収容した室とガラスセルとを配管で連通するように連結し、該配管内を真空発生器で排気した後、ルビジウムを封入したガラス容器を割って、金属ルビジウム、配管及びガラスセルを加熱し、配管及びガラスセル内に気体のルビジウムを存在させ、それから前記ガラスセルを冷却し、冷却した部分に金属ルビジウムを固体として析出させ、該ガラスセルにキセノンガスを導入して密封し、該ガラスセルを冷却してガラスセル内でキセノンを固化することを特徴とする固体ルビジウムと固体キセノンとが真空中で封入されたガラスセルの製造方法。
- 固体ルビジウムと固体キセノンとが酸素不在の減圧状態で封入されたガラスセルを加温して気体キセノンと気液混合ルビジウムとする手段と、該ガラスセルに磁場をかけてレーザー光を照射する手段と、を具備することを特徴とする核スピン偏極キセノンガスの製造装置。
- 更に、生成した核スピン偏極キセノンガスを取り出しながらキセノンガスを導入する手段と該操作を圧力が降下しないように制御する圧力調整手段とを具備する請求項6記載の製造装置。
- 第1のエアオペレートバルブを介してキセノンガス供給装置側を一次側配管とし、キセノンガスをガラスセル内に導入するバルブまでを二次側配管とし、前記一次側配管に第2のエアオペレートバルブを介して接続される分枝した配管と、該分枝した配管の一方は真空発生器に他方は前記ガラスセルの偏極キセノンガス取り出し側のバルブに達し、前記一次側配管にはガラスセルに導入する圧力を調整する圧力調整手段が設けられている請求項6又は7記載の製造装置。
- ガラス容器中に封入したルビジウムを収容した室と前記ガラスセルとを連通するように連結した配管と、該配管内を真空にする手段と、ルビジウムを封入したガラスを割る手段と、金属ルビジウム、配管及びガラスセルを加熱する手段と、前記ガラスセルを冷却し冷却した部分に金属ルビジウムを析出させる手段とを具備することを特徴とする固体ルビジウムと固体キセノンとが真空中で封入されたガラスセルの製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003004304A JP3998243B2 (ja) | 2003-01-10 | 2003-01-10 | 核スピン偏極キセノンガスの製造方法及び製造装置 |
PCT/JP2004/000093 WO2004063093A1 (ja) | 2003-01-10 | 2004-01-09 | 核スピン偏極キセノンガスの製造方法及び製造装置 |
US10/541,704 US8217293B2 (en) | 2003-01-10 | 2004-01-09 | Process and system for producing nuclear spin polarized xenon gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003004304A JP3998243B2 (ja) | 2003-01-10 | 2003-01-10 | 核スピン偏極キセノンガスの製造方法及び製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004262668A JP2004262668A (ja) | 2004-09-24 |
JP3998243B2 true JP3998243B2 (ja) | 2007-10-24 |
Family
ID=32708946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003004304A Expired - Fee Related JP3998243B2 (ja) | 2003-01-10 | 2003-01-10 | 核スピン偏極キセノンガスの製造方法及び製造装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8217293B2 (ja) |
JP (1) | JP3998243B2 (ja) |
WO (1) | WO2004063093A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4817317B2 (ja) * | 2006-11-24 | 2011-11-16 | 独立行政法人産業技術総合研究所 | 核スピン偏極希ガスの製造装置と核磁気共鳴分光装置並びに核磁気共鳴イメージング装置 |
WO2009143368A2 (en) * | 2008-05-23 | 2009-11-26 | University Of Utah | Non-cryogenic storage cell for hyperpolarized 129xe |
JP5191543B2 (ja) | 2008-08-01 | 2013-05-08 | 国立大学法人大阪大学 | 偏極キセノンガスの濃縮方法、偏極キセノンガスの製造供給装置及びmriシステム |
US8071019B2 (en) | 2008-10-31 | 2011-12-06 | Honeywell International Inc. | Methods for introduction of a reactive material into a vacuum chamber |
DE102020206031A1 (de) | 2020-05-13 | 2021-11-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vorrichtung zum Befüllen einer Dampfzelleneinrichtung mit einem Gas, Verfahren zum Herstellen einer mit einem Gas befüllten Dampfzelleneinrichtung, und Dampfzelleneinrichtung |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2712384A (en) * | 1952-09-27 | 1955-07-05 | Du Pont | Handling metallic sodium |
US5039500A (en) * | 1988-11-18 | 1991-08-13 | Kyodo Oxygen Co., Ltd. | Process for producing xenon |
US5545396A (en) * | 1994-04-08 | 1996-08-13 | The Research Foundation Of State University Of New York | Magnetic resonance imaging using hyperpolarized noble gases |
US5617860A (en) * | 1995-06-07 | 1997-04-08 | Smithsonian Astrophysical Observatory | Method and system for producing polarized 129 Xe gas |
US5642625A (en) * | 1996-03-29 | 1997-07-01 | The Trustees Of Princeton University | High volume hyperpolarizer for spin-polarized noble gas |
IL126347A (en) * | 1996-03-29 | 2003-11-23 | Lawrence Berkeley National Lab | Enhancement of nmr and mri in the presence of hyperpolarized noble gases |
US5809801A (en) * | 1996-03-29 | 1998-09-22 | The Trustees Of Princeton University | Cryogenic accumulator for spin-polarized xenon-129 |
US5934103A (en) * | 1997-04-22 | 1999-08-10 | Northrop Grumman Corporation | Method and apparatus for production of spin-polarized medical-grade xenon 129 gas by laser optical pumping |
US6085743A (en) * | 1997-05-30 | 2000-07-11 | The Regent Of The University Of Michigan | Polarized gas delivery system/method |
ES2289792T3 (es) * | 1997-08-18 | 2008-02-01 | The Trustees Of Princeton University | Polarizacion por espin de un gas noble a traves de un intercambio de espin con metales alcalinos opticamente polarizados. |
US6079213A (en) * | 1997-12-12 | 2000-06-27 | Magnetic Imaging Technologies Incorporated | Methods of collecting, thawing, and extending the useful life of polarized gases and associated accumulators and heating jackets |
JPH11248809A (ja) * | 1998-03-03 | 1999-09-17 | Agency Of Ind Science & Technol | 偏極希ガスの製造装置を有する核磁気共鳴検出装置並びにその装置を用いる核磁気共鳴測定方法 |
US6523356B2 (en) * | 1998-09-30 | 2003-02-25 | Medi-Physics, Inc. | Meted hyperpolarized noble gas dispensing methods and associated devices |
US6125654A (en) * | 1998-10-16 | 2000-10-03 | Syracuse University | Bulk production and usage of hyperpolarized 129 Xenon |
DE19937566C2 (de) * | 1999-08-09 | 2001-06-28 | Forschungszentrum Juelich Gmbh | Hochdruckpolarisator für Edelgase und Verfahren zum Betreiben des Polarisators |
DE10000675C2 (de) * | 2000-01-11 | 2001-11-15 | Otten Ernst Wilhelm | Lineardurchführung, Vorrichtung und Verfahren zur hochproduktiven Erzeugung von hoch kernspinpolarisiertem Helium-3 Gas |
US7287390B2 (en) * | 2001-10-22 | 2007-10-30 | Medi-Physics, Inc. | Optical pumping modules, polarized gas blending and dispensing systems, and automated polarized gas distribution systems and related devices and methods |
JP4169122B2 (ja) * | 2002-02-26 | 2008-10-22 | 独立行政法人産業技術総合研究所 | 核スピン偏極希ガスの製造装置とこれを用いた偏極希ガスの製造方法 |
NO20025124D0 (no) * | 2002-10-25 | 2002-10-25 | Amersham Health As | Metode |
-
2003
- 2003-01-10 JP JP2003004304A patent/JP3998243B2/ja not_active Expired - Fee Related
-
2004
- 2004-01-09 US US10/541,704 patent/US8217293B2/en not_active Expired - Fee Related
- 2004-01-09 WO PCT/JP2004/000093 patent/WO2004063093A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2004063093A1 (ja) | 2004-07-29 |
US20060083789A1 (en) | 2006-04-20 |
JP2004262668A (ja) | 2004-09-24 |
US8217293B2 (en) | 2012-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4350775B2 (ja) | スピン分極された希ガスを製造するための大容量超分極装置 | |
AU712530B2 (en) | Cryogenic accumulator for spin-polarized xenon-129 | |
Becker et al. | Study of mechanical compression of spin-polarized 3He gas | |
US6079213A (en) | Methods of collecting, thawing, and extending the useful life of polarized gases and associated accumulators and heating jackets | |
US7382124B2 (en) | Apparatus for producing hyperpolarized noble gas, and nuclear magnetic resonance spectrometer and magnetic resonance imager which use hyperpolarized noble gases | |
US7373782B2 (en) | Polarized gas accumulators and heating jackets and associated gas collection and thaw methods and polarized gas products | |
US7495435B2 (en) | Method for the hyperpolarisation of atomic nuclei and device for implementing the method | |
US10254357B2 (en) | NMR probe | |
US6125654A (en) | Bulk production and usage of hyperpolarized 129 Xenon | |
JP3998243B2 (ja) | 核スピン偏極キセノンガスの製造方法及び製造装置 | |
JP4643589B2 (ja) | 圧縮ガス容器にガスを充填するための方法 | |
US7710114B2 (en) | Apparatus for producing nuclear spin-polarized noble gas, nuclear magnetic resonance spectrometer, and nuclear magnetic resonance imager | |
US6666047B1 (en) | High pressure polarizer for hyperpolarizing the nuclear spin of noble gases | |
US7541051B2 (en) | Nuclear spin polarized rare gas production device and polarized rare gas production method using this | |
EP2309283B1 (en) | Polarized xenon gas concentration method, polarized xenon gas manufacturing supply device, and mri system | |
JP2011171729A (ja) | ヘリウムの充填方法 | |
US20070156046A1 (en) | Method of enriching hyperpolarized atom nuclei and an apparatus for implementing the method | |
JPH11248809A (ja) | 偏極希ガスの製造装置を有する核磁気共鳴検出装置並びにその装置を用いる核磁気共鳴測定方法 | |
JP2004113317A (ja) | 希ガスポーラライザ装置および磁気共鳴撮像装置 | |
JPH11309126A (ja) | 偏極希ガスの製造装置を有する磁気共鳴イメージング 装置並びにその装置を用いる磁気共鳴イメージング測 定方法 | |
Happer | Laser Spin-Exchange Polarized He-3 and Xe-129 for Diagnostics of Gas- Permeable Media with Nuclear Magnetic Resonance Imaging | |
JP2008111784A (ja) | 核スピン偏極キセノンガス製造用セル、その製造方法、偏極キセノンガス製造装置及び核磁気共鳴測定システム | |
Eichman | All-metal uranium bed loading system | |
Kennedy et al. | An optimized microfabricated platform for the optical generation and detection of hyperpolarized |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3998243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |