JP3995450B2 - 永久磁石型回転電機 - Google Patents

永久磁石型回転電機 Download PDF

Info

Publication number
JP3995450B2
JP3995450B2 JP2001344656A JP2001344656A JP3995450B2 JP 3995450 B2 JP3995450 B2 JP 3995450B2 JP 2001344656 A JP2001344656 A JP 2001344656A JP 2001344656 A JP2001344656 A JP 2001344656A JP 3995450 B2 JP3995450 B2 JP 3995450B2
Authority
JP
Japan
Prior art keywords
permanent magnets
circumferential direction
permanent magnet
rotor
magnet type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001344656A
Other languages
English (en)
Other versions
JP2002252941A (ja
Inventor
正 高野
秀明 高橋
勧 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Electronics Co Ltd
Original Assignee
Yamaha Motor Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Electronics Co Ltd filed Critical Yamaha Motor Electronics Co Ltd
Priority to JP2001344656A priority Critical patent/JP3995450B2/ja
Priority to US09/683,286 priority patent/US7102263B2/en
Priority to EP20010130195 priority patent/EP1217713B1/en
Priority to DE60141269T priority patent/DE60141269D1/de
Priority to CNB011437650A priority patent/CN100338849C/zh
Publication of JP2002252941A publication Critical patent/JP2002252941A/ja
Application granted granted Critical
Publication of JP3995450B2 publication Critical patent/JP3995450B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Description

【0001】
【発明の属する技術分野】
この発明は、複数の永久磁石を周方向にその極性が交互に変化するように設けた永久磁石型ロータを用いた永久磁石型回転電機に関するものである。
【0002】
【従来の技術】
外周面に複数の永久磁石を固定した永久磁石型ロータを用いるブラシレスDCモータや発電機などの回転電機が公知である。この種のモータでは、通常固定子(ステータ)の内側に永久磁石式ロータを配設し、このロータの回転に同期して固定子が形成する回転磁界を制御することによりロータを回転させるものである。また発電機では、ロータの回転によって固定子コイルに電圧を誘起させるものである。
【0003】
ここに従来のロータは複数の永久磁石を周方向に等間隔に配設している。また固定子のスロットも周方向に等間隔に配設している。発電機として用いる場合には、発電出力を0としてロータを回転させるのに必要なトルク(コギングトルクという)が小さいのが望ましい。このコギングトルクが大きいとロータを回転するエンジンなどの駆動力を大きくする必要が生じ、また振動も大きくなるからである。モータとして用いる場合には空転時の駆動トルクが大きくなり、振動が大きくなるからである。
【0004】
ここにロータ1回転当たりのコギング数は、ステータのスロット数Sと、ロータの永久磁石の極数Pの最小公倍数になる。またコギングトルクは、このコギング数の2乗の逆数[1/(コギング数)2]に比例する。
【0005】
従って、ロータのコギングトルクや回転変動を小さくするためには、磁極数を増やすことが考えられる。例えば固定子のスロット数(コイルを入れる溝の数S)を9とし、ロータの磁極数(ポール数P)を8としたモータや発電機、すなわち9スロット・8ポール構造としたものが公知である。この場合のコギング周波数は72/1回転となり充分に高くなる。従ってコギングトルクも十分に小さくなる。
【0006】
図12はこの9スロット・8ポールのブラシレスDCモータあるいは発電機の構成を示す図、図13はそのコギングトルク(A)と逆起電圧(B)の変化を示す図、図14は磁束線図である。固定子10は9個のスロット12を持ち、各スロット12の間の磁極歯には図12に示すように、U、V、W相のそれぞれ3つのコイルが隣接して巻付けられている。なお各相の隣接する3つのコイルは、巻き方向が交互に逆になる。この図12では巻き方向が逆になるコイルにはU、V、Wの上に ̄を付して示した。
【0007】
またロータ14には8個の永久磁石16が周方向に等間隔に固定されている。すなわち永久磁石16は図12に示すように、弓状に湾曲したセグメントを固定したものである。ここにロータ14は、次のように作られる。セグメント化した弓状の永久磁石16とヨーク(鉄心)とを金型内に位置決めし、全体を樹脂モールドする。そして中心にロータ軸18(図12)を圧入した後、各永久磁石16を着磁したものである。この方法で作られたロータ14はここではSPM(Surface Permanent Magnet)型という。
【0008】
【発明が解決しようとする課題】
このモータ(発電機)ではコギングトルクは図13の(A)に示すように極めて小さく、また逆起電圧は同図(B)に示すように滑らかである。しかしこのモータの場合には、図12に示すように、周方向に隣接する3つのコイルに同相電流を流す構成となるため、その磁束密度は図14に示すようにロータ14の中心に対して一側方が大きく反対側が小さくなる。このため図14の状態では、ロータ14には磁束密度が大きい方向(上方向)に大きな半径方向の力が加わることになり、ロータ14に大きい軸振れ方向の力が加わる。このためロータ軸受に発生する振動が増大し、軸受の寿命が短くなる。
【0009】
そこでロータ14の磁極数(永久磁石16の数)を変えることが考えられる。例えば永久磁石16を6個とすることが考えられる。すなわち固定子10のスロット数を9個とし、ロータ14の磁極数を6個(6ポール)とした、9スロット・6ポールのモータ(発電機)である。しかし解析の結果、この場合にはロータ1回転当たりのコギング数が18と低くなり、コギングトルクが著しく大きくなることが解った。
【0010】
このような問題を解決するためには、スロットまたは永久磁石にスキュー(軸方向に対して傾斜させること)を付すことが考えられる。しかしこの場合は、製作工数が増え、製作を自動化するのに適さないという問題がある。
【0011】
この発明はこのような事情に鑑みなされたものであり、コギング数をスロット数(S)と磁極数(P)の最小公倍数の3倍以上として、ロータに加わる振動が小さくなり軸受の寿命を延ばすことができると共に、コギングトルクも小さくすることができ、また製作工数が増えず製作を自動化するのに適する永久磁石型ロータを用いた永久磁石型回転電機を提供することを目的とする。
【0012】
【発明の構成】
この発明によればこの目的は、4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、各組の3個の永久磁石の周方向の配置ピッチ角度を26.7°とし、各組に含まれる3個の永久磁石の前後に隣接する異なる組の永久磁石との間のピッチ角度を36.6°としたことを特徴とする永久磁石型回転電機、により達成される。
【0013】
同じ目的は、4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、対称位置の2つの組に含まれる各永久磁石の周方向の配置ピッチ角度を26.7°とし、対称位置の他の2つの組に含まれる各永久磁石の周方向の配置ピッチ角度を33.3°としたことを特徴とする永久磁石型回転電機、によっても達成される
【0014】
同じ目的は、4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、各組に含まれる3つの永久磁石の周方向の配置ピッチ角度を28.3°とし、周方向に隣接する異なる組の永久磁石の配置ピッチ角度を周方向に順に33.3°、28.3°、33.3°、38.3°に設定したことを特徴とする永久磁石型回転電機、によっても達成される。ステータのスロットは周方向に等間隔に配設したものであってもよいし、周方向に不均等に配置したものであってもよい。回転電機はモータであってもよいし、発電機であってもよい。ロータはステータの内側で回転するインナーロータ型のものであってもよいし、ロータがステータの外側で回転するアウターロータ型のものであってもよい。
【0015】
ステータの周方向に隣接するコイルは、同一相にならないようにしたから、ロータに加わる半径方向の力が大きくならず、ロータの半径方向の振動が減り、軸受の耐久性が向上する。
【0018】
コギング数がスロット数Sとポール数Pの最小公倍数の3倍以上になる条件すなわち請求項1,2,3の条件は、実際にずらし角を種々に変えたロータを多数用意して実験することにより求めてもよい。しかしコンピュータ数値解析によりずらし角などの条件を決めるのが望ましい。ここに用いるコンピュータ解析用のソフトウェアは、永久磁石のぞれぞれについて作用するトルクを別々に求めることができるものが望ましい。
【0019】
例えばある永久磁石に作用するトルクのロータ回転角に対する変化を求め、このトルクの山と谷を別のある永久磁石に作用するトルクの谷と山によって相殺させるような永久磁石の配置を求めればよい。このような目的で使用できるコンピュータソフトウェアとしては、例えば、「アンソフト・ジャパン株式会社」が提供しているエレクトロメカニカル設計用電磁場解析ツールであるソフト名「Maxwell 2D Field Simulation」を用いることができる。
【0020】
この発明はブラシレスDCモータに適用できる。この場合にスロット数S=18、ポール数P=12とし、U、V、W相の異なる相電流が隣接するステータのコイルに流れ、隣接する3個の永久磁石を1組として、これらの組を4組周方向に配列する構成が可能である。例えば各組の3つの永久磁石の周方向配置のピッチ角度を26.7°(機械角)とし、各組の前後に隣接する異なる組の永久磁石との間のピッチ角度を36.6°とするのがよい。この場合のコギング数は、スロット数(S=18)とポール数(P=12)との最小公倍数(36)の3倍(108)になり、コギングトルクを著しく小さくすることができる。
【0021】
参考例
図1はこの発明の一参考例である9スロット・6ポールのブラシレスDCモータあるいは発電機の構成を示す図である。図2はそのコギングトルク(A)と逆起電圧(B)を示す図、図3は固定子コイルの巻線構造を示す図である。
【0022】
固定子10Aの各磁極歯には、図3に示すようにU、V、W相のコイルが巻かれている。すなわちU、V、Wの各相コイルは3つおきの磁極に分散され、これらは同一方向に巻かれている。
【0023】
ロータ14Aは6個の永久磁石16Aを持つが、図1に示すように互いに近接する3個の永久磁石16Aの磁石間隙Aは小さく(A=8.33°)、他の2つの間隙Bは大きい(B=28.3°)。ここで用いる永久磁石16Aは平板状であり、ロータ14Aの鉄心に設けた溝内に挿入され、この溝内にクサビなどを押し入れて固定される。また鉄心にロータ軸18Aを圧入した後、永久磁石16Aに着磁したものである。このように作られたロータ14Aは、IPM(Interior Permanent Magnet)型という。なお永久磁石16Aの幅は、回転中心軸に対して45°の角度を占めるように決められる。
【0024】
この実施態様によれば、コギングトルクは図2(A)に示すように十分小さい。すなわち前記図13(A)に示した9スロット・8ポールの場合のコギングトルクが最大0.007(Nm)位であるのに対し、この図2(A)に示す場合には最大0.017(Nm)程度に抑えられる。また固定子10Aの同相のコイルは周方向に120°ずつ偏位しているので、ロータ14Aに加わる半径方向の力が極めて小さくなり、ロータ14Aの軸受に加わる振動が小さくなる。このため騒音が減少すると共に、軸受の寿命が長くなる。
【0025】
この実施態様ではIPM型のロータ14Aを用いているので、ロータ14Aの構造が単純で生産性が高く信頼性が向上する。また板状の永久磁石16Aを使用できるので、磁石16Aの生産性がよくなり、コスト低減に適する。
【0026】
次にこの参考例の効果を従来構造のモータ(発電機)と比較する。図4、6、8、10はそれぞれ異なる構造のロータ14B〜Eを用いた場合の磁束線図、図5、7、9、11はそれぞれのロータ14B〜Eを用いた場合のコギングトルク(A)と逆起電圧(B)を示す。なおこれらは図1〜3の実施態様と同じ構造の固定子10Aを用いたものであり、計算による解析結果である。
【0027】
図4に示すロータ14Bは、弓形にセグメント化した永久磁石16Bを6個用いたもので、前記図12〜14で説明したロータ14と同様のSPM型である。この図4のロータ14Bを用いた場合には、コギングトルクは図5(A)に示すように最大0.35(Nm)となる。この値(0.35)は、前記図12(A)に示す値(0.007)や前記図2(A)に示す値(0.017)に比べて約20〜50倍である。
【0028】
図6に示すロータ14Cはカマボコ型にセグメント化した永久磁石16Cを6個用いたもので、前記図4、12〜14のものと同様なSPM型である。この場合のコギングトルクも図7(A)に示すように最大約0.3(Nm)となり大きい。
【0029】
図8に示すロータ14Dはラジアル形(円筒状)の1つの永久磁石16Dを6つの磁極に着磁したSPM型のものである。すなわち円筒状の永久磁石16Dと鉄心とを金型にセットし、樹脂モールドしてからロータ軸を圧入する。そして着磁するものである。なお鉄心と永久磁石16Dを接着剤で接着し、磁石16Dの飛散防止のため、永久磁石16Dの外周にステンレス管などの保護材を装着するものであってもよい。このロータ14Dを用いた場合のコギングトルクは、図9(A)に示すように最大約0.45(Nm)であり、非常に大きい。
【0030】
図10に示すロータ14Eは板状の6個の永久磁石16Eを用いたもので、図1〜3に示したものと同様にIPM型である。このロータ14Eが図1〜3に示したロータ14Aと異なるのは、永久磁石16Eを周方向に等間隔に配置した点である。この場合のコギングトルクは図11(A)に示すように最大約0.3(Nm)となり非常に大きい。
【0031】
実施態様】
図15はこの発明の実施態様の構成を示す図、図16はその各永久磁石ごとに作用するトルクと合成コギングトルクを示す図、図17はその相/線電圧を示す図、図18は比較例として永久磁石を均等配置したものの構成を示す図、図19はその各永久磁石に作用するトルクと合成コギングトルクとを示す図である。
【0032】
この実施態様は図15に示すように、スロット数S=18、ポール数P=12のモータまたは発電機であり、ステータ10Bは18本の磁極歯を等間隔に配置したものである。周方向に並ぶ各磁極歯には図3と同様にU、V、W相の順にコイルが巻かれている。ここに全ての磁極歯は周方向配置のピッチ角が同一となっている。すなわち磁極歯は周方向に均等配置になる。
【0033】
ロータ14Fは12個の永久磁石16Fを持つ。永久磁石16Fは3個で1組として合計4組が周方向に並べられるが、ここに同一組の磁石間のピッチ角(マグネットピッチ)θ1は同一であるが、異なる組の隣接する磁石間のピッチ角θ2は前記θ1とは異なる。ここではθ1=26.7°(機械角)であり、θ2=36.6°(機械角)である。なおこの図15では、ロータ14の外周に対向する面がN極となっている磁石をN1、N2…N6と表示し、S極となっている磁石をS1〜S6と表示している。各磁石16Fは周方向に磁極性が交互に変化するように配置される。
【0034】
このようにθ1、θ2を決めたのはコンピュータ数値解析の結果である。ここに用いるコンピュータソフトウェアとしては、例えば「アンソフト・ジャパン株式会社」(本社・神奈川県横浜市港北区新横浜3−18−20)が販売しているソフト名「Maxwell 2D Field Simulator」を用いることができる。このソフトウェアは、エレクトロメカニカル設計用電磁場解析ツールの1つであり、ある個所に働くトルクを知りたい時に、その個所を選定することによりここに作用するトルクを算出することができるものである。
【0035】
このソフトウェアを用いて必要なデータを入力する。例えば永久磁石16Fのロータ中心に対して張るマグネット角度θM、磁極歯の歯先幅を示すティース先端角θTなどの諸元や前記のピッチ角θ1、θ2などを入力する。ピッチ角θ1、θ2を変化させて計算を繰り返すことにより最適なピッチ角θ1、θ2を決めるものである。
【0036】
ピッチ角θ1=26.7°は磁石の均等配置の場合のピッチ角θ0=30°に対して3.3°(機械角)ずらしたものであるから、この3.3°をずらし角θDと呼ぶことにする。ピッチ角θ2はピッチ角θ1=26.7°にした時には必然的に36.6°になる。
【0037】
このようにずらし角θD=3.3°として、コイルに電流を流さずにロータ14Fを回した時に永久磁石16Bに加わるトルクは、図16のようになる。この図16でN1,4は、モータの対称性により、N1とN4(図15参照)の磁石16Fに作用するトルクが同一になることから、これらのトルク和を表したものである。同様にN3,6、N2,5はそれぞれN3とN6のトルク和、N2とN5のトルク和を示す。またS1,4、S3,6、S2,5はそれぞれ磁石S1とS4のトルク和、磁石S3、S6のトルク和、S2、S5のトルク和を示す。図16で横軸はロータ14Fの回転角度(機械角)である。
【0038】
この図16に明らかなように、ずらし角θD=3.3°とした場合には、或る磁石のトルク和の山と別の磁石のトルク和の谷とが相殺し合う現象が生じる。例えばN1,4 のトルクの山と、N2,5のトルクの谷とが相殺する。この結果全てのトルクを合計すると、図16に太線で示すように合計トルクすなわち合成コギングトルクは極めて小さくなる。この合計トルクは、コイルに駆動電流を流さずにロータ14Dを回転させる時のコギングトルクである。
【0039】
このコギングトルクは、ロータ14Fが10°回転する間に3つのトルクの山を持つ。換言すればロータ14Bの1回転(360°)に対して108回のトルクの山が現れることになり、コギング数は108回となる。
【0040】
このモータはステータ数S=18、ポール数P=12であるから、これらの最小公倍数は36である。従って最小公倍数36の3倍(36×3=108)のコギング数となることが解る。
【0041】
今このモータの結果を、ロータ14Fの永久磁石16Fだけを等間隔配置にしたモータと比較してみる。図18はそのモータの構成を示す図、図19はその各永久磁石に作用するトルクと合成コギングトルクを示す図である。図18に示すロータ14Gでは12個の永久磁石16Gは等ピッチ角θ0(=30°)に配列されている。
【0042】
このモータにおいて前記図15〜17の場合と同じコンピュータソフトウェアを用いて解析を行った。その結果、図19が得られた。磁石N1〜N6に作用するトルクは同じであり、同様に磁石S1〜S6に作用するトルクも同じであって位相が機械角で10°ずれている。これらの合計である合成コギングトルクはこれらの6倍になり、結局合成コギングトルクは図19に示したものになる。
【0043】
この図19から明らかなように、ロータ14Gの永久磁石16Gを均等に配置した場合には、機械角で20°の中にコギングトルクの山は2つ現れるから、ロータ14Bの1回転について36回のコギングが生じることになる。このためコギング数の2乗の逆数で求められるコギングトルクが大きくなることは、前記した通りである。
【0044】
【他の実施態様】
図20はこの発明の他の実施態様の構成を示す図である。この実施態様は、スロット数S=18、ポール数P=12のモータまたは発電機であり、ステータ10Bは18本の磁極歯を等間隔に配置したものである。
【0045】
周方向に並ぶ各磁極歯には図3と同様にU、V、W相の順にコイルが巻かれている。ここに全ての磁極歯は周方向の配置ピッチが同一である。すなわち磁極歯は周方向に均等配置になる。
【0046】
ロータ14Hは12個の永久磁石16Hを持つ。図20では永久磁石16Hには、S1〜S6およびN1〜N6の極性と位置を示す記号が付されている。永久磁石16Hは3個を1組として合計4組が周方向に並んでいる。
【0047】
すなわち、N1、S6、N6で第1組を形成する。S5、N5、S4で第2組を形成する。N4、S3、N3で第3組を形成する。S2、N2、S1で第4組を形成する。
【0048】
ここに対称位置の2つの組、例えば第1組と第3組に含まれる永久磁石N1、S6、N6、N4、S3、N3の周方向の配置ピッチ角度は26.7°である。すなわち均等配置とした場合のピッチ角度(基準ピッチ角度)は360°/12=30°であるから、N1、N4を基準にした時には隣りのS6、S3との角度は基準ピッチ角度30°より3.33°小さくして、30.00−3.33=26.67°(≒26.7°)とする。同様にS6、S3の基準位置からの偏位角度は6.66°である。
【0049】
また対称位置の他の組(第2、第4組)に含まれる永久磁石S5、N5、S4、S2、N2、S1の配置ピッチ角度は33.3°である。なお異なる組の間で隣接する永久磁石のピッチ角度は30°である。すなわち永久磁石N6とS5の間のピッチ角度、S4とN4の間のピッチ角度、N3とS2の間のピッチ角度、S1とN1の間のピッチ角度はいずれも30°である。
【0050】
この実施態様において前記の実施態様と同様にコンピュータによる数値解析を行った結果、コギング数は108となることが解った。すなわちスロット数S=18とポール数P=12の最小公倍数36の3倍になることが解った。
【0051】
【他の実施態様】
図21は他の実施態様の構成を示す図、図21はその各永久磁石ごとに作用するトルクと合成コギングトルクを示す図である。この実施態様はスロット数S=18、ポール数P=12のモータまたは発電機であり、ステータ10Bは前記図15に示したものと同じである。
【0052】
ロータ14Iは12個の永久磁石16Iを持つ。図21ではこれらの永久磁石16Iには、S1〜S6およびN1〜N6の極性と位置とを示す符号が付されている。永久磁石16Iは3個を1組として合計4組が周方向に並んでいる。
【0053】
すなわち、N1、S6、N6で第1組を形成する。S5、N5、S4で第2組を形成する。N4、S3、N3で第3組を形成する。S2、N2、S1で第4組を形成する。
【0054】
ここにこれら各組内の3つの永久磁石は周方向の配置ピッチ角度は28.3°で一定である。しかし各組の間のピッチ角度は変化している。すなわち第1組と第2組の間の角度(磁石N6とS5の間の角度)は33.3°である。第2組と第3組の間の角度(磁石S4とN4の間の角度)は28.3°である。第3組と第4組の間の角度(磁石N3とS2の間の角度)は33.3°である。第4組と第1組の間の角度(磁石S1とN1の間の角度)は38.3°である。
【0055】
この実施態様によりコンピュータ解析を行うと、各磁石に作用するトルクおよび合計したコギングトルクは図22に示すようになった。すなわちコギング数は216となった。これはスロット数S=18とポール数P=12の最小公倍数36の6倍である。従ってコギング数は前記図20の場合に比べて2倍になり、回転は一層円滑になることが解った。
【0056】
なおこの実施態様では永久磁石16Iの配置が不均等になるので、ロータ14Fには周方向の重量バランスをとるための重りを付しておくのがよい。また以上の実施態様で設定した角度は厳密なものでなくてもよく、設定した角度より僅かに変化したものであっても所期の効果が得られ、この発明はこのように前記した設定角度から僅かに変化させたものも包含する。
【0057】
【発明の効果】
請求項1の発明によれば、スロット数S=18、ポール数P=12とし、永久磁石を連続する3個づつを4組に分け各組の磁石を周方向に26.7°ピッチ角とし、隣り合う組の磁石間を36.6°ピッチ角となるようにロータの永久磁石を周方向に不均等に配設し、ステータはU、W、S相の同一相のコイルが周方向に隣接しないようにしたものであるから、コギング数をSとPの最小公倍数36の3倍すなわち108とすることができ、ロータのコギングトルクが小さくなる。このため発電機に用いる場合は駆動エンジンの出力を小さくすることができ、モータに用いる場合にはロータの回転変動が小さくなり滑らかに回転させることができる。
【0058】
また固定子の磁極を、U、V、W相の同相のコイルが周方向に隣接しないように周方向に分散させたから、ロータに加わる半径方向の力が不均一にならず、ロータの半径方向の振動が減る。このためロータ軸受の耐久性を向上させることができる。
【0061】
またスロット数S=18、ポール数P=12として、12個の永久磁石を周方向に連続する3個ずつの永久磁石からなる4つの組に分け、対称位置の2つの組に含まれる永久磁石の周方向のピッチ角度を26.7°とし、他の2つの組の磁石ピッチ角度を33.3°としても、同様にコギング数を前記最小公倍数36の3倍である108に増やすことができる(請求項2)。
【0062】
さらに4つの組に含まれる磁石のピッチ角度を全て28.3°とし、各組の間のピッチ角度を、33.3°、28.3°、33.3°、38.3°にすることにより、コギング数を最小公倍数36の6倍である216にさらに増大させることができる(請求項3)。
【図面の簡単な説明】
【図1】 本発明の参考例の構成を示す図
【図2】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図3】 固定子コイルの巻線構造を示す図
【図4】 永久磁石を等間隔に配置した比較例を示す図
【図5】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図6】 永久磁石を等間隔に配置した比較例を示す図
【図7】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図8】 永久磁石を等間隔に配置した比較例を示す図
【図9】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図10】 永久磁石を等間隔に配置した比較例を示す図
【図11】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図12】 他の従来例を示す図
【図13】 そのコギングトルク(A)と逆起電圧(B)を示す図
【図14】 同じくその磁束線図
【図15】 本発明の実施態様の構成を示す図
【図16】 そのコギングトルクを示す図
【図17】 その相/線電圧を示す図
【図18】 永久磁石を等間隔に配列した比較例を示す図
【図19】 そのコギングトルクを示す図
【図20】 他の実施態様の構成を示す図
【図21】 他の実施態様の構成を示す図
【図22】 そのコギングトルクを示す図
【符号の説明】
10、10A、10B 固定子
12 スロット
14、14A〜E、14F、14H、14I ロータ
16、16A〜E、16F、16H、16I 永久磁石
18 ロータ軸

Claims (3)

  1. 4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、
    複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、各組の3個の永久磁石の周方向の配置ピッチ角度を26.7°とし、各組に含まれる3個の永久磁石の前後に隣接する異なる組の永久磁石との間のピッチ角度を36.6°としたことを特徴とする永久磁石型回転電機。
  2. 4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、
    複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、対称位置の2つの組に含まれる各永久磁石の周方向の配置ピッチ角度を26.7°とし、対称位置の他の2つの組に含まれる各永久磁石の周方向の配置ピッチ角度を33.3°としたことを特徴とする永久磁石型回転電機
  3. 4個以上の永久磁石をそれらの隣接する極性が異なるように配置した永久磁石型ロータを用いる永久磁石型回転電機において、
    複数の永久磁石を周方向に不均等に配置した永久磁石型ロータを用い、ステータはU、V、W相の同一相のコイルが周方向に隣接しないように周方向に分散させる一方、スロット数Sが18、ポール数Pが12であり、12個の永久磁石を周方向に連続する3個の永久磁石からなる4つの組に分け、各組に含まれる3つの永久磁石の周方向の配置ピッチ角度を28.3°とし、周方向に隣接する異なる組の永久磁石の配置ピッチ角度を周方向に順に33.3°、28.3°、33.3°、38.3°に設定したことを特徴とする永久磁石型回転電機
JP2001344656A 2000-12-20 2001-11-09 永久磁石型回転電機 Expired - Fee Related JP3995450B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001344656A JP3995450B2 (ja) 2000-12-20 2001-11-09 永久磁石型回転電機
US09/683,286 US7102263B2 (en) 2000-12-20 2001-12-10 Permanent magnet type rotor and permanent magnet type rotary electrical machine
EP20010130195 EP1217713B1 (en) 2000-12-20 2001-12-19 Permanent magnet type rotor and permanent magnet type rotary electrical machine
DE60141269T DE60141269D1 (de) 2000-12-20 2001-12-19 Rotor des permanentmagnetischen Typs und rotatorische elektrische Maschine des permanentmagnetischen Typs
CNB011437650A CN100338849C (zh) 2000-12-20 2001-12-20 具有一转子和一定子的一永久磁铁型旋转电机

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000387361 2000-12-20
JP2000-387361 2000-12-20
JP2001344656A JP3995450B2 (ja) 2000-12-20 2001-11-09 永久磁石型回転電機

Publications (2)

Publication Number Publication Date
JP2002252941A JP2002252941A (ja) 2002-09-06
JP3995450B2 true JP3995450B2 (ja) 2007-10-24

Family

ID=26606196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344656A Expired - Fee Related JP3995450B2 (ja) 2000-12-20 2001-11-09 永久磁石型回転電機

Country Status (3)

Country Link
US (1) US7102263B2 (ja)
JP (1) JP3995450B2 (ja)
DE (1) DE60141269D1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106558B2 (en) 2008-09-19 2012-01-31 Yamaha Motor Electronics Co., Ltd. Three-phase magneto generator and transport apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240949B2 (ja) * 2002-08-09 2009-03-18 日立アプライアンス株式会社 永久磁石式回転電機の回転子
DE10303848A1 (de) * 2003-01-30 2004-08-19 Rexroth Indramat Gmbh Drehstrommaschine mit optimierten Laufeigenschaften
JP2004343886A (ja) * 2003-05-15 2004-12-02 Asmo Co Ltd 埋込磁石型モータ
JP2006174692A (ja) * 2004-11-19 2006-06-29 Nippon Densan Corp ブラシレスモータ
GB0607545D0 (en) * 2006-04-18 2006-05-24 Converteam Ltd Electrical machine with reduced cogging
US7791236B2 (en) 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
EP2131475A3 (de) * 2008-06-02 2017-09-20 Siemens Aktiengesellschaft Rotor für eine elektrische Maschine
EP2304863B1 (en) * 2008-07-30 2018-06-27 Regal Beloit America, Inc. Interior permanent magnet motor including rotor with unequal poles
US20100117475A1 (en) * 2008-11-11 2010-05-13 Ford Global Technologies, Llc Permanent Magnet Machine with Offset Pole Spacing
US8536748B2 (en) * 2008-11-11 2013-09-17 Ford Global Technologies, Llc Permanent magnet machine with different pole arc angles
JP2010279156A (ja) * 2009-05-28 2010-12-09 Fuji Electric Systems Co Ltd 永久磁石型回転機
US8461739B2 (en) * 2009-09-25 2013-06-11 Ford Global Technologies, Llc Stator for an electric machine
FI122303B (fi) * 2009-10-28 2011-11-30 Switch Drive Systems Oy Roottorisegmentti kestomagnetoidun sähkökoneen roottoria varten
CN101752922B (zh) * 2010-02-11 2012-05-09 华北电力大学(保定) 具有较宽扩速范围的永磁体牵引电机
CN102237735B (zh) * 2010-03-09 2014-04-16 中山大洋电机制造有限公司 一种永磁转子结构及其应用的电机
US8653711B2 (en) 2010-04-01 2014-02-18 Globe Motors, Inc. Parallel wound stator
CN102263445B (zh) * 2010-05-31 2016-07-06 德昌电机(深圳)有限公司 无刷电机
US8816546B2 (en) 2010-09-23 2014-08-26 Northern Power Systems, Inc. Electromagnetic rotary machines having modular active-coil portions and modules for such machines
US8912704B2 (en) 2010-09-23 2014-12-16 Northern Power Systems, Inc. Sectionalized electromechanical machines having low torque ripple and low cogging torque characteristics
US8789274B2 (en) 2010-09-23 2014-07-29 Northern Power Systems, Inc. Method and system for servicing a horizontal-axis wind power unit
US9359994B2 (en) 2010-09-23 2016-06-07 Northern Power Systems, Inc. Module-handling tool for installing/removing modules into/from an electromagnetic rotary machine having a modularized active portion
US9281731B2 (en) 2010-09-23 2016-03-08 Northem Power Systems, Inc. Method for maintaining a machine having a rotor and a stator
CN202127310U (zh) * 2011-02-08 2012-01-25 福杨久庆 高效率发电机
WO2016044925A1 (en) * 2014-09-24 2016-03-31 Tm4 Inc. Reluctance assisted external rotor pmsm
JP6711159B2 (ja) 2015-07-21 2020-06-17 株式会社デンソー モータ
WO2017014211A1 (ja) * 2015-07-21 2017-01-26 アスモ 株式会社 モータ
WO2017014212A1 (ja) * 2015-07-21 2017-01-26 アスモ 株式会社 モータ
JP6677029B2 (ja) * 2015-07-21 2020-04-08 株式会社デンソー モータ
JPWO2018025988A1 (ja) * 2016-08-05 2019-06-06 日本電産株式会社 ステータコアおよびモータ
CN107591964B (zh) * 2017-08-29 2020-04-24 广东工业大学 一种电机齿槽转矩的抑制方法及系统
US10505416B2 (en) * 2017-11-09 2019-12-10 Ford Global Technologies, Llc Patterned offset pole rotor
JP7061927B2 (ja) * 2018-05-22 2022-05-02 三菱電機株式会社 回転電機
US11171553B2 (en) * 2019-07-22 2021-11-09 Honeywell International Inc. High detent torque permanent magnet stepper motor
US20230361636A1 (en) * 2022-05-05 2023-11-09 Ge Aviation Systems Llc Electric machine having asymmetric magnet arrangement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752707A (en) 1986-02-06 1988-06-21 Morrill Wayne J Three-phase, one-third pitch motor
US4713569A (en) 1986-06-20 1987-12-15 501 Aeroflex Laboratories, Incorporated Low cogging motor
JPS633638A (ja) 1986-06-23 1988-01-08 Tamagawa Seiki Co Ltd ブラシレス直流モ−タ
US4774428A (en) * 1987-05-15 1988-09-27 Synektron Corporation Compact three-phase permanent magnet rotary machine having low vibration and high performance
US5107159A (en) * 1989-09-01 1992-04-21 Applied Motion Products, Inc. Brushless DC motor assembly with asymmetrical poles
DE4133723A1 (de) 1991-10-11 1993-04-15 Zahnradfabrik Friedrichshafen Drehfeldmotor
US5444316A (en) 1992-07-31 1995-08-22 Ishikawajima Harima Heavy Industries Co., Ltd. Hybrid stepping motor, driving method for the same and coil winding method for the same
JPH07194079A (ja) 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd 永久磁石直流モータ
JPH0823664A (ja) 1994-05-02 1996-01-23 Aisin Aw Co Ltd モータ
JP3376373B2 (ja) * 1995-06-07 2003-02-10 ミネベア株式会社 モータ構造
JP3430839B2 (ja) * 1997-03-03 2003-07-28 松下電器産業株式会社 固定子の結線構造
JP3428896B2 (ja) 1998-05-07 2003-07-22 オークマ株式会社 トルクリップルを低減したモータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106558B2 (en) 2008-09-19 2012-01-31 Yamaha Motor Electronics Co., Ltd. Three-phase magneto generator and transport apparatus

Also Published As

Publication number Publication date
US7102263B2 (en) 2006-09-05
DE60141269D1 (de) 2010-03-25
US20020074887A1 (en) 2002-06-20
JP2002252941A (ja) 2002-09-06

Similar Documents

Publication Publication Date Title
JP3995450B2 (ja) 永久磁石型回転電機
JP2652080B2 (ja) ハイブリッド形ステッピングモータ
JP3131403B2 (ja) ステッピングモータ
US7417346B2 (en) Permanent magnet rotating electric machine
KR100899913B1 (ko) 모터
US7327062B2 (en) Rotor for rotary electric machine
US20050179336A1 (en) Axial gap electric rotary machine
US20110278978A1 (en) Consequent pole permanent magnet motor
KR20050065384A (ko) 엑셜 갭형 전동기
JPH0686527A (ja) ハイブリッド形ステッピングモータ
US7109624B2 (en) Synchronous electric machine
JP2003018777A (ja) 電動機
EP1217713B1 (en) Permanent magnet type rotor and permanent magnet type rotary electrical machine
CN102780288B (zh) 电动机
JP3604577B2 (ja) 直流モータ
JP3762981B2 (ja) 永久磁石式回転電機
US6836044B2 (en) Permanent magnet type rotary electric device
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP2000166135A (ja) ブラシレスモータ
JP4169357B2 (ja) 永久磁石式回転電機
JP2006025486A (ja) 回転電機
EP4329153A1 (en) Permanent magnet rotor with reduced torque ripple
JPH07222419A (ja) 回転電機
WO2012071569A2 (en) Virtual pole electric motor
JP4584228B2 (ja) ステッピングモータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees