JP3992770B2 - Light emitting device and method for forming the same - Google Patents

Light emitting device and method for forming the same Download PDF

Info

Publication number
JP3992770B2
JP3992770B2 JP31160496A JP31160496A JP3992770B2 JP 3992770 B2 JP3992770 B2 JP 3992770B2 JP 31160496 A JP31160496 A JP 31160496A JP 31160496 A JP31160496 A JP 31160496A JP 3992770 B2 JP3992770 B2 JP 3992770B2
Authority
JP
Japan
Prior art keywords
light
led chip
emitting device
translucent
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31160496A
Other languages
Japanese (ja)
Other versions
JPH10151794A (en
Inventor
元量 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP31160496A priority Critical patent/JP3992770B2/en
Publication of JPH10151794A publication Critical patent/JPH10151794A/en
Application granted granted Critical
Publication of JP3992770B2 publication Critical patent/JP3992770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本願発明は、LED表示器、光通信機器、光プリンターヘッドや光センサーなどの各種制御機器に用いられる光源などに利用される発光装置に関し、特に、量産性が良く且つ使用環境下によらず信頼性が高い発光装置に関する。
【0002】
【従来の技術】
今日、LSIなどのシリコンテクノロジーや光通信技術等の発展により、大量の情報を高速に処理及び伝送することが可能となった。これに伴い、多量な画像情報が処理可能なフルカラー化や高精細化した光プリンタヘッド、表示装置や各種制御機器に用いられる光センサーなどに対する社会の要求がますます高まりを見せている。特に、特性が安定し小型化された発光装置については極めて要求が高く種々開発されてきている。このような発光装置として特開平7−231120号や特開平7−22651号などが挙げられる。
【0003】
発光装置の具体的一例を図5に示す。LEDチップ502の一方の電極をリードフレーム上に、Agペースト504などを用いて接続すると共にLEDチップの他方の電極を導電性ワイヤー503であるAu線などで別途電気的に接続させてある。発光装置はLEDチップからの光を集光させ効率的に取り出すためにLEDチップ上にエポキシ樹脂などによりレンズ形状501にモールドされている。導電性ワイヤーを用いて電気的接続を行うと共にモールド部材で被覆する発光装置は、比較的簡単に歩留まり良く小型に形成させることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、発光面側に導電性ワイヤーなどがあるとLEDチップが発光した光が導電性ワイヤー、導電性ワイヤーのボンディング部や電極の陰になる。LEDチップに設けられた発光面側の電極下部などで発光した光などが有効に外部にでてこないという問題がある。また、LEDチップを感光紙などの記録媒体に照射させる場合、LEDチップと記録媒体間に少なくとも導電性ワイヤー分の厚みが余分にいる。そのため導電性ワイヤーが邪魔で近接できない。また、アパチャーなどの遮光部材を用いてLEDチップが発光した光をスポット光とする場合においても、導電性ワイヤーなどが陰になる場合もある。このため、均一な光特性が得られず製品としては不良になるものもあった。発光素子の一方の面側に正極及び負極の電極など複数の電極を形成した場合は、上述の導電性ワイヤーが増えるために遮光などの問題がさらに顕著な傾向となる。
【0005】
また、LEDチップからの光を集光させる場合LEDチップに樹脂などをモールド成形し一体にレンズ部などを形成させる。レンズ部により集光力をより高めようとするとLEDチップ表面からレンズ部の頂点であるモールド部の厚みが厚くなる場合がある。導電性ワイヤーで電気的に接続させたLEDチップをモールド部材で一体成形させるとモールド部材の厚みが厚くなるにつれ温度差の極めて激しい使用環境下においては発光装置の特性が劣化する傾向にある。特に、導電性ワイヤーの接続部が多い発光装置においては顕著になる。
【0006】
さらに気泡などの混入を防ぎ発光特性を安定化させ、集光力を高めるためにはトランスファー成形などにより形成させたレンズを用いることが好ましい。しかしながら樹脂成形時に比較的高圧で所望の形状に成形させる。冷却硬化時に生じる樹脂収縮などの形成諸条件から導電性ワイヤーで電気的接続を取ったLEDチップを一体成形させることが難しい。レンズ部と発光素子とを密着して小型に形成させることができないという問題を有する。
【0007】
したがって、より優れた発光特性が求められる今日においては上記構成の発光装置では十分ではなく、更なる特性向上が求められている。本願発明はかかる問題に鑑み、導電性ワイヤーによって外部電極と電気的に接続されたLEDチップを持つ発光装置において、使用環境によらず発光特性が安定、光利用効率、歩留まりが高く小型に形成しうる発光装置とすることである。
【0008】
【課題を解決するための手段】
本願発明は、透光性接着剤を介して透光性支持体上にLEDチップを配し、該LEDチップの前記透光性接着剤と接した面と対向する面側に有する電極と、前記透光性支持体に設けられた外部電極と、を導電性ワイヤーによって電気的に接続された発光装置である。また、LEDチップは透光性絶縁基板に形成された半導体上にそれぞれ正極及び負極の電極を有する発光装置であり、導電性ワイヤーを保護するための保護部材と、該保護部材上の反射部材と、を有する発光装置でもある。また、透光性接着剤に蛍光物質が含有されている発光装置である。透光性支持体上に少なくとも一箇所の開口部を有する遮光部材を設けた発光装置でもある。さらに、透光性支持体がLEDチップからの光の少なくとも一部を集光するレンズ部を有する発光装置でもある。
すなわち、本発明に係る請求項1記載の発光装置は、外部電極が設けられた透光性支持体と、該透光性支持体上に透光性接着剤を介して配されたLEDチップと、前記透光性接着剤と接した面と対向する面側に設けられた電極と、前記外部電極と前記電極とを電気的に接続する導電性ワイヤーと、前記LEDチップと前記導電性ワイヤーを封止して保護するための封止部材を有し、前記封止部材上に反射部材を有することを特徴とする。
また、請求項2記載の発光装置は、請求項1記載の発光装置おいて、前記反射部材は、酸化チタン及び/又はチタン酸バリウムを含む樹脂からなることを特徴とする。
さらに、請求項3記載の発光装置は、外部電極が設けられた透光性支持体と、該透光性支持体上に透光性接着剤を介して配されたLEDチップと、前記透光性接着剤と接した面と対向する面側に設けられた電極と、前記外部電極と前記電極とを電気的に接続する導電性ワイヤーと、前記導電性ワイヤーを保護し、かつ前記LEDチップから放出された光を反射させる保護部材兼反射部材を有し、前記LEDチップは前記保護部材兼反射部材に被覆されることを特徴とする。
またさらに、請求項4記載の発光装置は、請求項3記載の発光装置において、前記保護部材兼反射部材は、酸化チタン及び/又はチタン酸バリウムを含む樹脂からなることを特徴とする。
また、請求項5記載の発光装置は、請求項1〜4のうちのいずれか1つに記載の発光装置において、前記LEDチップは透光性絶縁基板に形成された半導体上にそれぞれ正極及び負極の電極を有することを特徴とする。
さらに、請求項6記載の発光装置は、請求項1〜5のうちのいずれか1つに記載の発光装置において、前記透光性接着剤に蛍光物質が含有されていることを特徴とする。
さらにまた、請求項7記載の発光装置は、請求項1〜6のうちのいずれか1つに記載の発光装置において、前記LEDチップからの光を取り出す光取り出し部側の透光性支持体と、前記導電性ワイヤーが接続された電気的接続部とを別体で形成したことを特徴とする。
また、請求項8記載の発光装置は、請求項1〜7のうちのいずれか1つに記載の発光装置において、前記透光性支持体上に少なくとも一箇所の開口部を有することを特徴とする。
また、請求項9記載の発光装置は、請求項1〜8のうちのいずれか1つに記載の発光装置において、前記透光性支持体に設けられた外部電極に金属メッキが施され、LEDチップが放出した光に対する反射率が向上されたことを特徴とする。
また、請求項10記載の発光装置は、請求項1〜9のうちのいずれか1つに記載の発光装置において、前記透光性支持体が前記LEDチップからの光の少なくとも一部を集光するレンズ部を有することを特徴とする。
【0009】
さらにまた、透光性支持体の凹部に透光性接着剤を介してLEDチップを固定する工程と、LEDチップの電極と、透光性支持体に設けられた外部電極と、を導電性ワイヤーによりワイヤーボンディングさせる工程と、透光性支持体の凹部内に配された導電性ワイヤー、LEDチップ上に反射部材を形成する工程と、を有する発光装置の形成方法でもある。
【0010】
【作用】
光取り出し部側と電気的接続部側とをLEDチップに対してそれぞれ機能分離して形成させることにより電気的接続部を導電性ワイヤーによって比較的容易に信頼性を高く形成させることができる。光り取り出し部の形成などに伴う圧力や封止部材の内部応力による電気的接続部材の断線などを防いだ発光装置とすることができる。また、特に透光性接着剤を介して固定させることにより効率よく光を導くと共に光軸を合わせることができる。さらに、光取り出し部材を別途形成させることができる。これにより、光取り出し部を気泡の混入などが極めて少なく集光力に優れた発光装置とさせることもできる。
【0011】
【発明の実施の形態】
本願発明者は種々の実験の結果、光の取り出し部位と導電性ワイヤー形成部位とを機能分離させることにより量産性が良く、且つ使用環境によらず発光特性が安定な発光装置とすることができることを見いだし、これに基づいて本願発明を成すに到った。
【0012】
光の取り出し部位と導電性ワイヤー形成部位とを分離させることにより、使用環境によらず発光特性が安定となる理由は定かではないが導電性ワイヤーによって電気的に接続されたLEDチップと一体成形させる光の取りだし部位に関係すると考えられる。
【0013】
即ち、LEDチップからの光を効率よく集光させるためにモールド部材をレンズ形状とさせ一体成形などさせると、集光率を高めるにつれ高温湿度サイクル下においては寿命が短くなるものがある。特に、LEDチップ表面からレンズを形成する部材の厚みが厚くなるにつれ内部応力が大きくなる。そのため、温度差の大きい使用環境下においてはLEDチップを構成する導電性ワイヤーがレンズ部を形成するモールド部材の内部応力により断線するためと考えられる。また、より集光能力の高いレンズを形成させる場合には、樹脂の種類などにもよるが150〜200kg/cm2ほどの成形圧力がかかるトランスファー成形などを使用することが好ましい。この場合、LEDチップの電極などと電気的に接続された導電性ワイヤーは透光性支持体成型時における圧力で断線などが生じる場合もある。
【0014】
本願発明は、LEDチップからの光を取り出す透光性支持体と導電性ワイヤーで接続された部位とを別体に形成させる。具体的には、図1(B)にチップタイプLEDの一例を示す。図1に(B)は、集光能力の高いレンズを形成させるためにトランスファー成形によりレンズ部が一体成形された透光性支持体101を用いてある。透光性支持体101中には、外部電極105となる銀メッキされた銅板が埋め込まれている。また、レンズ部と反対側の透光性支持体上には、LEDチップが配される凹部が形成されている。凹部内にはさらに底辺が外部に向かって凸形状の凹部が設けられている。透光性支持体101のレンズ部と光軸が合うように透光性接着剤104としてエポキシ樹脂を用いてLEDチップを凹部内にダイボンディングさせてある。ダイボンド樹脂を硬化後、透光性支持体101中から凹部内に露出した外部電極105と、サファイア基板上に窒化ガリウム系化合物半導体を有するLEDチップ102の電極と、を導電性ワイヤー103である金線を用いてそれぞれワイヤーボンディングさせた。その後、凹部内のLEDチップ102、導電性ワイヤー103及び外部電極105などをチタン酸バリウムを含有させたシリコンゴムを塗布硬化させた保護部材兼反射部材106を設けることにより発光装置を形成させた。
【0015】
このような発光装置の構成とすることによって光の取り出し部位と、導電性ワイヤー形成部位と、を分離させ高温度サイクルにおいても発光特性の安定した発光装置とすることができる。特に、本願発明においては集光能力を向上させた光取り出し部位とさせることができる。透光性接着剤を介して透光性支持体とLEDチップとを接続させることによりLEDチップからの光を効率よく導くと共に発光装置の光軸を容易に合わせることもできる。以下本願発明の各構成について詳述する。
【0016】
(透光性支持体101、201、301、401)
本願発明に用いられる透光性支持体101としては、半導体発光素子であるLEDチップ102を積置できると共にLEDチップ102からの発光波長の少なくとも一部或いはLEDチップ102からの光を利用した発光波長に対して実質的に透光性を有するものである。
【0017】
このような透光性支持体101は、用途や所望に応じて種々の形状、材料を用いることができる。具体的には、透光性支持体101に凸レンズや凹レンズを種々形成させることができる。また、透光性支持体に凹状や半円状などの窪みを形成させLEDチップ102の積置に利用させることもできる。このような窪みを利用することによってレンズ効果を持たせることもできる。従って、凹部内の底辺の少なくとも一部を凸形状や凹形状など種々の形状にし所望の配光特性を得ることができる。また、凹部を所望の大きさや形状に形成させることによって透光性支持体101上に積置されるLEDチップ102を固定させる透光性接着材104の量を種々制御させることもできる。透光性支持体上にはLEDチップ302を1個以上配置させても良い。この場合、それぞれ独立して駆動させるためにはLEDチップ302間に遮光部材310を配置させたり着色させておくことが望ましい。
【0018】
本願発明の透光性支持体101は、特にLEDチップの電気的接続部である導電性ワイヤーとは別に自由に設計することができるため成形圧力がかかる圧縮成形やトランスファー成形などを用いて形成することができる。即ち、透光性支持体101自体に優れた光学特性を持つレンズ部などを形成させることができる。
【0019】
透光性支持体101は、LEDチップなどからの熱の影響をうけた場合、透光性接着剤104との密着性を考慮して熱膨張率の小さい物が好ましい。透光性支持体101の内部表面は、エンボス加工させて接着面積を増やしたり、プラズマ処理して透光性接着剤104との密着性を向上させることもできる。
【0020】
このような透光性支持体101としてポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、イミド樹脂、PBT樹脂等の樹脂を用いることができる。
【0021】
本願発明の透光性支持体101を形成させる方法は、種々の方法を用いることができるがトランスファー成形や圧縮成形などによって好適に形成させることができる。
【0022】
トランスファー成形は、熱硬化性プラスチック材料の成型法の一種である。材料をポット内で余熱軟化しこれをプランジャーによってオリフィスを通して密閉、加熱した金型に比較的高い成形圧で押し込む。プラスチック材料を金型内で熱硬化させ形成させる。そのため均一な硬化、寸法が正確であり本願発明の透光性支持体の一部をレンズに成形などした場合に好適に用いることができる。
【0023】
一方、圧縮成形は成形材料を金型中に仕込み金型を加熱プレスにより加圧し熱と圧力によって可塑性流動を起こさせ成形材料をキャビティ内に均一に充填させることによって所望形状の透光性支持体を形成させることができる。
【0024】
なお、本願発明において透光性とは、LEDチップからの発光波長の少なくとも一部或いはLEDチップからの光を利用した発光波長が実質的に透過できることをいう。また、LEDチップからの発光波長の少なくとも一部に対して透光性を有するとは、LEDチップから照射された光が実質的に全て透光性支持体を透過する場合はもちろん、透光性支持体に着色部材を含有させるなどLEDチップから放出された光に対してフィルター効果を持たせた場合を含むことを意味する。LEDチップからの光を利用した発光波長に対して透光性を有するとは、透光性支持体や透光性接着剤などに蛍光物質を含有させLEDチップから放出され蛍光物質で波長変換させた光が透光性支持体を透過する場合を含むことをも意味する。
【0025】
(発光素子102、202、302、402)
本願発明に用いられる発光素子であるLEDチップ102としては、液相成長法、MBE(分子線ビーム気相成長法)やMOVPE(有機金属気相成長法)等により基板上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlInGaP、InGaN、GaN、AlN、InN、AlInGaN等の半導体を発光層として形成させたLEDチップが好適に用いられる。半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものなどが挙げられる。半導体発光層の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。さらに、量子効果を持たせるため発光層を単一量子井戸構造、多重量子井戸構造とさせても良い。
【0026】
一般にLEDチップは、半導体基板上に設けられた発光層に電流を供給するため半導体を介して対向する面側に正極及び負極の電極を形成させる。このようなLEDチップを本願発明に利用する場合、一方のみを導電性ワイヤーによって電気的に接続させることができる。他方は、透光性支持体201に設けられた透光性の電極205上に透光性接着剤204を介して設置させる必要がある。また、窒化ガリウム系化合物半導体など結晶の質を向上させるなどためにアルミナ、サファイアなどの絶縁性基板上に半導体層を形成させた場合は、同一面側に正極及び負極の電極を形成させ電気的導通をとることとなる。したがって、導電性ワイヤーが少なくとも2本以上必要となるため特に本願発明の効果が顕著にあらわれることとなる。
【0027】
半導体に形成される電極は真空蒸着法や熱、光、放電エネルギーなどを利用した各種CVD法やスパッタリング法を用いて所望に形成させることができる。電極が形成された半導体ウエハーをダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る。あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割り半導体ウエハーからチップ状にカットさせるなどしてLEDチップ102を形成させることができる。
【0028】
(導電性ワイヤー103、203、303、403)
導電性ワイヤー103としては、LEDチップ102の電極及び外部電極105とのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm2/cm/℃以上が好ましく、より好ましくは0.5cal/cm2/cm/℃以上である。また、作業性などを考慮して導電性ワイヤー103の直径は、好ましくは、Φ10μm以上、Φ45μm以下である。このような導電性ワイヤー103として具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いたものが好適に挙げられる。このような導電性ワイヤー103は、各LEDチップ102の電極と、外部電極105と、をワイヤーボンディング機器によって容易に接続させることができる。
【0029】
(透光性接着剤104、204、304、404)
本願発明に用いられる透光性接着剤104とは、透光性支持体101と発光素子であるLEDチップ102とを固定すると共にLEDチップ102からの発光波長の少なくとも一部或いはLEDチップ102からの光を利用した発光波長に対して実質的に透光性を有するものである。したがって、透光性支持体101或いは外部電極205と密着性が良く所望の光の透過率が高いことが求められる。
【0030】
また、半導体を介して電極が対向して配置されたLEDチップにおいては、電極を介して光を放出させる必要がある。そのため、透光性支持体201上に設けられた外部電極205の少なくとも一部をSnO2、In23、ZnOやITOなどの透光性金属酸化物や金属薄膜とさせる。外部電極205上に積置されたLEDチップ202の電極を、透光性を有する電気伝導性部材を含有させた透光性接着剤204により固定と共に電気的接続を行うこともできる。
【0031】
さらに、透光性接着剤は、発光素子からの放熱をパッケージ電極へと伝導させるために熱伝導性がよいことが好ましい。熱伝導性を高めると共にLEDチップの一方の電極を透光性接着剤を介して電気的に接続させても良い。このような透光性接着剤としては、透光性導電性部材を含有させた樹脂バインダーが好ましい。上記要件を満たす具体的な導電性部材としてSnO2、In23、ZnOやITOなどが挙げられる。また、バインダーとしてエポキシ樹脂など種々のものが挙げられる。
透光性接着剤104中には蛍光物質及び/又は着色物質を含有させることもできる。蛍光物質を含有させることにより蛍光物質からの光又は蛍光物質とLEDチップからの光を所望に応じて発光させることができる。また、着色染料や着色顔料などの着色物質を含有させることによってLEDチップからの発光波長を所望に調節させるフィルター効果を持たせることもできる。
【0032】
また、透光性支持体101の凹部形状を凸レンズや凹レンズ形状とさせると共に透光性支持体101とは屈折率の異なる透光性接着剤104を注入させることにより所望の光学特性を持たせることもできる。このような透光性接着剤104として具体的にはエポシキ樹脂、シリコン樹脂や水ガラスなど種々のものが挙げられる。
【0033】
(外部電極105、205、305、405)
本願発明に用いられる外部電極105とは、透光性支持体101に設けられたLEDチップ102に外部から電力を供給させるために用いられるためのものである。外部電極105は、電気伝導性、放熱性や発光素子などの特性などから種々の大きさや形状に形成させることができる。外部電極105は、金属板を透光性支持体101内に挿入させたものでも良いし、透光性支持体101上に種々の方法で形成させたものでも良い。
【0034】
外部電極105は、透光性支持体101の形成時に金属板を入れることにより一体形成させることができる。また、透光性支持体301形成後に金属を蒸着、メッキやスパッタリングにより形成させることもできる。また、SnO2、In23、ZnOやITOなどの透光性金属酸化物などを外部電極105として利用することもできる。
【0035】
また、透光性支持体301上に複数のLEDチップ302を配置する場合は、LEDチップから放出された熱を外部に放熱させるため熱伝導性がよいことが好ましい。また、外部電極105の一部を利用して反射部材を形成させることにより光利用効率を高めることもできる。この場合、透光性支持体101上に設けられた外部電極105は、LEDチップが放出した光に対して反射率が高いことが好ましい。このような外部電極105としては、銅や青銅板表面に銀或いは金などの貴金属メッキを施したものが好適に用いられる。
【0036】
(保護部材106、406)
本願発明に用いられる保護部材106は、発光素子であるLEDチップ102やその電気的接続のための導電性ワイヤー103等を外部力、塵芥や水分などから保護するために設けられることが好ましい。したがって、保護部材106とLEDチップ102などとが密着して形成されていてもよいし、放熱性や応力緩和のため発光素子などと密着していなくとも良い。保護部材106とLEDチップ102や導電性ワイヤー103などが密着している場合は、導電性ワイヤーが内部応力などによって断線などしないように弾力性のある樹脂を用いることが望ましい。また、弾力性の少ない樹脂を用いる場合は薄く形成させることが望ましい。保護部材106としての具体的材料は、エポキシ樹脂、ユリア樹脂、シリコン樹脂、フッ素樹脂、ポリカーボネート樹脂などの耐候性に優れた樹脂が好適に用いられる。このような保護部材106は、LEDチップ102などを被覆するように透光性支持体の凹部にノズルから樹脂を注入させることなどによって簡単に形成させることができる。
【0037】
(反射部材107、407)
反射部材107とは、LEDチップ102から放出された光などを効率よく透光性支持体側に向かわせるために設けることが好ましい。反射部材107は、保護部材106上に形成させることもできるし、反射部材と保護部材とを兼用構造とさせることもできる。さらに、反射部材107のみを形成させることもできる。反射部材107は樹脂やガラス中などに酸化チタン、チタン酸バリウムなどの高反射率を有する部材を含有させることにより形成させることができる。また、金属を保護部材上に設け反射部材とさせても良い。
【0038】
反射部材107に用いられる材料は保護部材106と同じ部材としてもよい。また、反射部材107に用いられると、保護部材106に用いられる材料と、を応力、放熱性や屈折率の異なる部材などで形成させてもよい。
【0039】
(バックライト)
本願発明を用いて図2の如く液晶装置などに利用できるバックライト光源を構成することができる。図2には、本願発明の透光性支持体201をバックライト光源の導光板などと兼用することができるものを記載してある。ポリカーボネートで作成した導光板の主面及びLEDチップ202が積置された端面を除いて反射層210を形成させた。このような反射層210は、酸化チタンが含有されたエポキシ樹脂板などを張り合わせてある。反射層210を設けることによって、LEDチップ202から放出された光を効率よく導光板の主面から放出させることができる。
【0040】
ここで、発光素子としてSiC基板上に窒化ガリウム系化合物半導体を形成させたLEDチップ202を用いた。LEDチップ202はSiC基板面側及び半導体発光層を介してSiC基板に対向する半導体面側にはそれぞれスパッタリング法によりアルミニウムの正極及び負極の電極を形成させてある。SiC基板面側に設けられた電極は発光層で発光した光が透過できるよう薄く形成させてある。
【0041】
導光板のLEDチップ202が積置される端面には外部電極205として透光性を有するITOとその上に形成されたAl膜をそれぞれ所望の形状にスッパタリング法により形成させてある。LEDチップ202の電極が形成されたSiC基板面側と、少なくともLEDチップ下が透光性を有する外部電極205と、をSnO2が含有された透光性接着剤204で固着すると共に電気的に導通をとる。これによりLEDチップ202が積置された部位以外の外部電極205は、ITO上にAlを積層してあり反射層として働くと共に導電性を向上させることができる。LEDチップ202の半導体面側に設けられた他方の電極は、導電性ワイヤー203を用いて導光板に設けられた別の外部電極とワイヤーボンディングしてある。こうして形成されたバックライト上に不示図の液晶装置を配置することによって液晶表示装置を形成させることができる。
【0042】
(書き込み/読み込み光源)
本願発明を用いて図3及び図4の如く光プリンターヘッドやイメージスキャナーの光源などを構成することができる。
本願発明の発光装置を図3の如き光プリンターヘッドなどの書き込み光源用に利用したものを示す。透光性支持体301としては、長尺のガラスを用いた。LEDチップ302にはサファイア基板上に窒化ガリウム系化合物半導体を形成させたものを用いてある。LEDチップ302上には半導体の同一平面側にP型電極及びN型電極が形成されている。ガラス上に遮光部材310としてCu膜を蒸着により形成させた。遮光部材310には、少なくとも一箇所の開口部が設けられておりアパーチャーとしての役割を果たす。また、透光性支持体301を介して遮光部材310が設けられた面と対向する面側には外部電極305としてCuの導電性パターンが形成されてある。
【0043】
LEDチップ302のサファイア基板は、透光性支持体301の外部電極305が設けられた面側に透光性接着剤304であるエポキシ樹脂を用いて接着させた。図3では、透光性支持体301上に2個のLEDチップ302が配置されており、一方のLEDチップ302のP型半導体に設けられた電極と、外部電極と、をAuワイヤー303を用いてワイヤーボンディングにより接続されている。同様に、他方の隣接するLEDチップのN型半導体に設けられた電極と、別の外部電極と、をそれぞれワイヤーボンディングしてある。
【0044】
LEDチップ302間は、直列接続させるために一方のLEDチップのN型半導体上に設けられた電極と、他方のLEDチップのP型半導体上に設けられた電極と、を直接ワイヤーボンディングし直列接続とさせてある。こうして直列接続されたLEDチップに電力を供給させるとLEDチップ302から透光性接着剤304、アパーチャーが設けられた透光性支持体301を介して点発光される。これにより光取り出し部と、ワイヤーが重なり陰になることもなくなり、また、感光紙などに密着露光させることもできる。
【0045】
また、本願発明の発光装置を図4の如きフルカラー光プリンターヘッドとして利用する場合、RGB各発光波長を同一の窒化ガリウム系化合物半導体などを利用したLEDチップ402によってそれぞれ形成させることができる。即ち、窒化ガリウム系化合物半導体の組成を代えることによって、青色系及び緑色系がそれぞれ発光可能なLEDチップを形成する。レンズが形成されRGBごとに光学的に分離された透光性支持体401の凹部にエポキシ樹脂などの透光性接着剤404によってLEDチップ402を固定させてある。赤色系発光部に相当する透光性支持体の凹部には、LEDチップからの光によって励起され赤色系が発光可能な蛍光物質をエポキシ樹脂中に含有させた透光性接着剤411を用いてLEDチップのサファイヤ基板側で接着させてある。透光性支持体401の裏面側には、各LEDチップを駆動させるための外部電極405が形成されている。各外部電極405とLEDチップの電極とは、導電性ワイヤー403である金線などでワイヤーボンドさせてある。同様に、青色系及び緑色系は透光性接着剤に蛍光物質を含有させない以外は同様に構成してある。LEDチップ上の背面側には使用状況に応じて保護部材406としての封止樹脂やリフレクターである反射部材407を設けてもよい。
【0046】
透光性支持体の凹部中に蛍光物質が含有された樹脂などの透光性接着剤411を含有させることによって、接着剤量や厚み等を制御することができるため歩留まりが向上するという利点がある。特に、蛍光物質を含有させたときは含有量、分布厚みなどを凹部形状などによって制御しやすい。
【0047】
また、赤色系が発光可能な蛍光物質として具体的にはaMgO・bLi2O・Sb23:cMn、eMgO・fTiO2:gMn、pMgO・qMgF2・GeO2:rMnなどが好適に挙げられる(但し、2≦a≦6、2≦b≦4、0.001≦c≦0.05、1≦e≦3、1≦f≦2、0.001≦g≦0.05、2.5≦p≦4.0、0≦q≦1、0.003≦r≦0.05である。)。このような蛍光物質に加えてセリウム付活イットリウム・アルミニウム・ガーネットなどの他の蛍光物質を混合させることもできる。また他の色は、セリウム付活イットリウム・アルミニウム・ガーネットである(RE1-xSmx3(Al1-yGay512:Ce蛍光物質(但し、0≦x<1、0≦y≦1、REは、Y、Gd、Laからなる群から選択される少なくとも一種の元素である。)など他の蛍光物質のみで構成させることもできる。
【0048】
また、センサー用光源として利用する場合は、RGBを光学的に分離することなくRGBに相当する各LEDチップを近接し白色系が発光可能なように配置することができる。各LEDチップから放出された光は、文字、写真や図などが記載された紙などの媒体に照射される。媒体で反射された光をそれぞれRGBに対応したカラフィルターを介して単結晶や非単結晶シリコンなどで構成された光センサー中に入るよう光学的に構成させてある。長尺光センサーなどに入射された光はRGBそれぞれの光に対応した電気信号として読みとることができる。
【0049】
読み込み光源であるセンサー用光源などは、光源自身を発光させていなくとも待機時間中に生ずる予熱などにより光源の温度が昇温する場合がある。各LEDチップを構成する半導体が異なった材質から形成させていると、発光出力や発光波長などの温度特性が異なる。そのため一定温度時に白色光に調整させたとしても、温度変化によって色調がずれ正確な情報を読みとることができない場合がある。同一系材料を用いた半導体発光素子を利用して多色発光させることもできるために温度依存性が極めて少ない発光装置とすることができる利点がある。以下、本願発明の具体的実施例について詳述するが本願発明はこの具体的実施例のみに限定されるものでないことは言うまでもない。
【0050】
【実施例】
(実施例1)
発光装置としてチップタイプLEDを形成させた。チップタイプLEDには発光ピークが450nmのIn0.05Ga0.95N半導体を利用したLEDチップを用いた。LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させた。
【0051】
ドーパントガスとしてSiH4とCp2Mgと、を切り替えることによって所望の導電型を形成させてある。N型導電性を有する窒化ガリウム半導体であるコンタクト層、クラッド層と、P型導電性を有する窒化ガリウム半導体であるクラッド層、コンタクト層との間にInGaNの活性層を形成しPN接合を形成させた。(なお、サファイヤ基板上には低温で窒化ガリウム半導体を形成させバッファ層とさせてある。また、P型半導体は、成膜後400℃以上でアニールさせてある。)
【0052】
エッチングによりPN各半導体表面を露出させた後、スパッタリングにより各電極をそれぞれ形成させた。こうして出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ発光素子としてLEDチップを形成させた。
【0053】
一方、ポリカーボネートを用いトランスファー成形により図1(A)の如くレンズ部を有する透光性支持体を形成させた。形成した透光性支持体には外部電極がインサートされている。この透光性支持体の凹部内にLEDチップのサファイア基板面がレンズ部に向くように光軸を合わせエポキシ樹脂でダイボンディングさせ150℃2時間で硬化させた。その後、透光性支持体の外部電極と、LEDチップの各電極と、をAuワイヤーを用いてそれぞれワイヤーボンディングさせた。透光性支持体の凹部内のLEDチップ、Auワイヤーなどを保護するためにシリコン樹脂で封止し保護部材を形成させた。保護部材上にはチタン酸バリウムを含有させたシリコン樹脂を塗布硬化し反射部材を設けることにより発光装置を形成させた。なお、レンズ部の頂点とLEDチップ表面からの距離dが3mm(指向角60°)、6mm(指向角30°)、9mm(指向角15°)とさせた以外は全く同様の発光装置を100個ずつ形成させた。
【0054】
こうして形成された発光装置を100個形成し、平均軸上光度を測定した。また、5min以内に−40℃30min、100℃30minとした熱衝撃を1000サイクル繰り返し気相熱衝撃試験を行った。
【0055】
(比較例1)
図5の如く外部電極を延長した上にLEDチップを積置させ電気的接続を行ったものに樹脂を一体成形させ、それ以外は実施例1と同様にしてレンズ部の頂点とLEDチップ表面からの距離dが3mm(指向角60°)、6mm(指向角30°)、9mm(指向角15°)の発光装置をそれぞれ100個ずつ形成させた。実施例1と同様にして平均軸上光度を測定し、実施例1と共に表1に示した。また、気相熱衝撃試験を行い導電性ワイヤーの断線した発光装置の個数を調べ実施例1と共に表2に示した。
【0056】
【発明の効果】
上述の如く本願発明の請求項1に記載の構成とすることによって、光取り出し部と導電性ワイヤーを用いた電気的接続部とを別体に形成することができるため発光素子を比較的容易に信頼性を高く形成させることができる。特に、光取り出し部である透光性支持体の形成などに伴う圧力や内部応力による電気的接続部材の断線などを防いだ発光装置とすることができる。また、光取り出し部を気泡の混入などが極めて少なく集光力に優れた発光装置とさせることもできる。
【0057】
本願発明の請求項2に記載の構成とすることによって、より簡便で信頼性の高い高輝度発光装置とすることができる。
【0058】
本願発明の請求項3に記載の構成とすることによって、外部環境下からの影響を少なくし信頼性を高めると共により光取りだし効率の高い発光素子とすることができる。
【0059】
本願発明の請求項4に記載の構成とすることによって、LEDチップから放出された光を波長変換させることができる。凹部内に蛍光物質を含有させると共に接着させるため所望の蛍光物質含有量とさせることができ発光波長のバラツキの少ない発光装置とすることができる。特に発光面側に均一に一定量の蛍光物質を含有させることができるため発光面における色むらが少ない発光装置とすることができる。
【0060】
本願発明の請求項5に記載の構成とすることによって、より小さな点光源とさせることができる。これにより隣接した発光装置の影響を極めて小さくさせた光プリンターヘッドなどに好適に用いることができる。したがって、発光装置を小型化することができると共に導電性ワイヤーによって発光部が導電性ワイヤーによって陰になることがなく光取り出し効率の高い発光装置とすることができる。
【0061】
本願発明の請求項6に記載の構成とすることによって、より集光力の高い発光装置とすることができる。特に、光取り出し側に相当する透光性支持体にレンズ部を形成させることによって導電性ワイヤーの密着性とは関係なく集光力を向上させることができる。
【0062】
本願発明の請求項7に記載の工程とすることによって、容易に信頼性の高く、光取り出し効率の高い小型化可能な発光装置を形成させることができる。
【0063】
【図面の簡単な説明】
【図1】本願発明の発光装置の模式図を示し、図1(A)は、本願発明のチップタイプLEDの概略断面図であり、図1(B)は本願発明の他のチップタイプLEDの概略断面図である。
【図2】本願発明の発光装置をバックライト光源として構成させた概略断面図である。
【図3】図3は、本願発明の発光装置を用いた光プリンターヘッドの模式的断面図である。
【図4】図4は、本願発明の別の発光装置を用いたフルカラー光プリンターヘッドの模式的断面図である。
【図5】図5は、本願発明と比較のために示した発光素子の模式的断面図を示す。
【符号の説明】
101、201、301、401・・・透光性支持体
102、202、302、402・・・LEDチップ
103、203、303、403・・・導電性ワイヤー
104、204、304、404・・・透光性接着剤
105、205、305、405・・・外部電極
106、406・・・保護部材
107、407・・・反射部材
210・・・反射層
310、410・・・遮光部材
411・・・蛍光物質が含有された透光性接着剤
501・・・レンズ部
502・・・LEDチップ
503・・・導電性ワイヤー
504・・・導電性接着剤
505・・・外部電極
【表1】

Figure 0003992770
【表2】
Figure 0003992770
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device used for a light source used in various control devices such as an LED display, an optical communication device, an optical printer head, and an optical sensor, and is particularly good in mass production and reliable regardless of the use environment. The present invention relates to a light emitting device with high performance.
[0002]
[Prior art]
Today, with the development of silicon technology such as LSI and optical communication technology, a large amount of information can be processed and transmitted at high speed. Along with this, there is an increasing demand from society for full-color and high-definition optical printer heads capable of processing a large amount of image information, optical sensors used in display devices and various control devices, and the like. In particular, light emitting devices with stable characteristics and reduced size have been extremely demanded and have been developed in various ways. Examples of such a light emitting device include JP-A-7-231120 and JP-A-7-22651.
[0003]
A specific example of the light-emitting device is shown in FIG. One electrode of the LED chip 502 is connected to the lead frame using an Ag paste 504 or the like, and the other electrode of the LED chip is separately electrically connected using an Au wire or the like as the conductive wire 503. The light emitting device is molded into a lens shape 501 with an epoxy resin or the like on the LED chip in order to collect light from the LED chip and efficiently extract the light. A light-emitting device that performs electrical connection using a conductive wire and is covered with a mold member can be formed relatively easily with a high yield and a small size.
[0004]
[Problems to be solved by the invention]
However, when there is a conductive wire or the like on the light emitting surface side, the light emitted from the LED chip is behind the conductive wire, the bonding portion of the conductive wire, or the electrode. There is a problem that the light emitted from the lower part of the electrode on the light emitting surface side provided in the LED chip does not come out effectively. Further, when the LED chip is irradiated onto a recording medium such as photosensitive paper, there is an extra thickness of at least a conductive wire between the LED chip and the recording medium. For this reason, the conductive wire cannot be approached due to obstruction. Further, even when the light emitted from the LED chip using a light blocking member such as an aperture is used as spot light, the conductive wire or the like may be shaded. For this reason, uniform optical characteristics cannot be obtained, and some products become defective. When a plurality of electrodes such as a positive electrode and a negative electrode are formed on one surface side of the light emitting element, problems such as light shielding tend to become more prominent because the above-described conductive wires increase.
[0005]
Further, when condensing light from the LED chip, a resin or the like is molded on the LED chip to integrally form a lens portion or the like. If the lens portion is intended to increase the light collecting power, the thickness of the mold portion that is the apex of the lens portion from the LED chip surface may increase. When LED chips electrically connected with conductive wires are integrally formed with a mold member, the characteristics of the light-emitting device tend to deteriorate under a use environment where the temperature difference is extremely severe as the thickness of the mold member increases. This is particularly noticeable in light-emitting devices with many conductive wire connections.
[0006]
Furthermore, it is preferable to use a lens formed by transfer molding or the like in order to prevent mixing of bubbles and the like, stabilize the light emission characteristics, and increase the light collecting power. However, it is formed into a desired shape at a relatively high pressure during resin molding. It is difficult to integrally form an LED chip that is electrically connected with a conductive wire from various conditions such as resin shrinkage that occurs during cooling and curing. There is a problem that the lens portion and the light emitting element cannot be formed in close contact with each other.
[0007]
Therefore, in the present day when more excellent light emission characteristics are required, the light emitting device having the above configuration is not sufficient, and further improvement of characteristics is required. In view of such a problem, the present invention is a light emitting device having an LED chip electrically connected to an external electrode by a conductive wire. The light emitting characteristics are stable regardless of the use environment, the light use efficiency, the yield is high, and the light emitting device is small. The light emitting device can be made.
[0008]
[Means for Solving the Problems]
The present invention provides an electrode having an LED chip disposed on a translucent support through a translucent adhesive and having a surface facing the surface of the LED chip in contact with the translucent adhesive; A light-emitting device in which an external electrode provided on a translucent support is electrically connected by a conductive wire. The LED chip is a light emitting device having a positive electrode and a negative electrode on a semiconductor formed on a translucent insulating substrate, respectively, a protective member for protecting the conductive wire, a reflective member on the protective member, , A light emitting device having In addition, the light-emitting device includes a translucent adhesive containing a fluorescent substance. It is also a light-emitting device provided with a light-shielding member having at least one opening on a translucent support. Furthermore, the translucent support is also a light emitting device having a lens portion that collects at least part of the light from the LED chip.
That is, the light emitting device according to claim 1 according to the present invention includes a translucent support provided with an external electrode, and an LED chip disposed on the translucent support via a translucent adhesive. An electrode provided on the surface facing the surface in contact with the translucent adhesive; a conductive wire that electrically connects the external electrode and the electrode; With the LED chip The conductive wire Seal To protect Sealing Having a member, Sealing A reflection member is provided on the member.
The light emitting device according to claim 2 is characterized in that, in the light emitting device according to claim 1, the reflecting member is made of a resin containing titanium oxide and / or barium titanate.
Furthermore, the light-emitting device according to claim 3 is a translucent support provided with an external electrode, an LED chip disposed on the translucent support via a translucent adhesive, and the translucent An electrode provided on the surface facing the surface in contact with the adhesive, a conductive wire that electrically connects the external electrode and the electrode, protects the conductive wire, and from the LED chip A protective member / reflective member for reflecting emitted light is provided, and the LED chip is covered with the protective member / reflective member.
Furthermore, the light emitting device according to claim 4 is the light emitting device according to claim 3, wherein the protective member / reflective member is made of a resin containing titanium oxide and / or barium titanate.
The light-emitting device according to claim 5 is the light-emitting device according to any one of claims 1 to 4, wherein the LED chip is formed on a semiconductor formed on a light-transmitting insulating substrate, respectively, on a positive electrode and a negative electrode. It has the electrode of characterized by the above-mentioned.
Furthermore, the light-emitting device according to claim 6 is the light-emitting device according to any one of claims 1 to 5, wherein the translucent adhesive contains a fluorescent substance.
Furthermore, the light-emitting device according to claim 7 is the light-emitting device according to any one of claims 1 to 6, and a light-transmitting support on the light extraction portion side that extracts light from the LED chip. The electrical connection portion to which the conductive wire is connected is formed separately.
The light-emitting device according to claim 8 is the light-emitting device according to any one of claims 1 to 7, wherein the light-emitting device has at least one opening on the translucent support. To do.
The light emitting device according to claim 9 is the light emitting device according to any one of claims 1 to 8, wherein the external electrode provided on the translucent support is provided. The metal plating is applied to the LED to improve the reflectivity for the light emitted from the LED chip. It is characterized by that.
The light-emitting device according to claim 10 is the light-emitting device according to any one of claims 1 to 9, wherein the translucent support collects at least part of light from the LED chip. It has the lens part to perform.
[0009]
Furthermore, the step of fixing the LED chip to the concave portion of the translucent support via the translucent adhesive, the electrode of the LED chip, and the external electrode provided on the translucent support are electrically conductive wires. It is also a method for forming a light-emitting device having a step of wire bonding, a step of forming a reflective member on a conductive wire and an LED chip disposed in a recess of a translucent support.
[0010]
[Action]
By forming the light extraction portion side and the electrical connection portion side separately from each other with respect to the LED chip, the electrical connection portion can be relatively easily formed with high reliability by the conductive wire. A light-emitting device can be obtained in which disconnection of the electrical connection member due to the pressure accompanying the formation of the light extraction portion or the internal stress of the sealing member is prevented. Further, in particular, the light can be efficiently guided and the optical axis can be adjusted by fixing through a translucent adhesive. Furthermore, a light extraction member can be formed separately. Thereby, it is possible to make the light extraction portion a light emitting device that has very little light bubbles and has excellent light collecting power.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experiments, the inventor of the present application can provide a light-emitting device having good mass productivity by functionally separating the light extraction site and the conductive wire formation site and having stable light emission characteristics regardless of the use environment. As a result, the present invention has been made based on this.
[0012]
By separating the light extraction site and the conductive wire formation site, it is not clear why the light emission characteristics are stable regardless of the usage environment, but it is integrally formed with the LED chip electrically connected by the conductive wire. It is thought to be related to the light extraction site.
[0013]
That is, when the mold member is formed into a lens shape and is integrally molded in order to efficiently collect the light from the LED chip, the lifetime may be shortened under a high temperature and humidity cycle as the light collection rate is increased. In particular, as the thickness of the member forming the lens from the LED chip surface increases, the internal stress increases. For this reason, it is considered that the conductive wire constituting the LED chip is disconnected due to the internal stress of the mold member forming the lens part in a use environment having a large temperature difference. In addition, when forming a lens having a higher light collecting ability, it depends on the type of resin, but 150 to 200 kg / cm. 2 It is preferable to use transfer molding or the like that requires a moderate molding pressure. In this case, the conductive wire electrically connected to the electrode of the LED chip or the like may be disconnected due to pressure at the time of molding the translucent support.
[0014]
In the present invention, a translucent support that extracts light from the LED chip and a portion connected by a conductive wire are formed separately. Specifically, an example of a chip type LED is shown in FIG. FIG. 1B uses a translucent support 101 in which a lens portion is integrally formed by transfer molding in order to form a lens having a high light collecting ability. In the translucent support 101, a silver-plated copper plate to be the external electrode 105 is embedded. Moreover, the recessed part by which an LED chip is arrange | positioned is formed on the translucent support body on the opposite side to a lens part. In the recess, a recess having a convex shape whose bottom is outward is provided. The LED chip is die-bonded in the recess using an epoxy resin as the translucent adhesive 104 so that the optical axis of the lens portion of the translucent support 101 is aligned. After the die bond resin is cured, the external electrode 105 exposed in the recess from the translucent support 101 and the electrode of the LED chip 102 having the gallium nitride compound semiconductor on the sapphire substrate are made of a conductive wire 103. Wire bonding was performed using wires. Then, the light emitting device was formed by providing the protective member / reflecting member 106 in which silicon rubber containing barium titanate was applied to the LED chip 102, the conductive wire 103, the external electrode 105, and the like in the recess.
[0015]
By adopting such a structure of the light emitting device, the light extraction site and the conductive wire forming site can be separated to provide a light emitting device having stable light emission characteristics even in a high temperature cycle. In particular, in the present invention, a light extraction portion with improved light collecting ability can be obtained. By connecting the translucent support and the LED chip through the translucent adhesive, light from the LED chip can be efficiently guided and the optical axis of the light emitting device can be easily aligned. Hereinafter, each configuration of the present invention will be described in detail.
[0016]
(Translucent support 101, 201, 301, 401)
As the translucent support 101 used in the present invention, an LED chip 102 which is a semiconductor light emitting element can be stacked, and at least a part of the emission wavelength from the LED chip 102 or the emission wavelength using light from the LED chip 102 Is substantially translucent.
[0017]
Such a translucent support 101 can be formed in various shapes and materials according to the use and desired. Specifically, various convex lenses and concave lenses can be formed on the translucent support 101. In addition, a concave shape such as a concave shape or a semicircular shape may be formed on the translucent support, and the LED chip 102 may be used for stacking. A lens effect can be given by using such a depression. Therefore, it is possible to obtain a desired light distribution characteristic by making at least a part of the base in the concave portion into various shapes such as a convex shape and a concave shape. In addition, the amount of the translucent adhesive 104 for fixing the LED chip 102 placed on the translucent support 101 can be controlled in various ways by forming the recesses in a desired size and shape. One or more LED chips 302 may be disposed on the translucent support. In this case, in order to drive each independently, it is desirable to arrange or color the light shielding member 310 between the LED chips 302.
[0018]
The translucent support 101 of the present invention can be freely designed separately from the conductive wire, which is an electrical connection part of the LED chip, and is formed using compression molding or transfer molding that requires molding pressure. be able to. That is, a lens portion having excellent optical characteristics can be formed on the translucent support 101 itself.
[0019]
The light-transmitting support 101 is preferably a material having a low coefficient of thermal expansion in consideration of adhesion to the light-transmitting adhesive 104 when it is affected by heat from an LED chip or the like. The inner surface of the translucent support 101 can be embossed to increase the adhesion area, or can be plasma treated to improve the adhesion with the translucent adhesive 104.
[0020]
As such a translucent support 101, resins such as polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, epoxy resin, phenol resin, acrylic resin, imide resin, and PBT resin can be used. .
[0021]
Various methods can be used for forming the translucent support 101 of the present invention, but it can be suitably formed by transfer molding or compression molding.
[0022]
Transfer molding is a kind of molding method for thermosetting plastic materials. The material is preheated in the pot and sealed with a plunger through an orifice and pressed into a heated mold at a relatively high molding pressure. A plastic material is formed by thermosetting in a mold. Therefore, uniform curing and accurate dimensions are possible, and it can be suitably used when a part of the translucent support of the present invention is molded into a lens.
[0023]
On the other hand, in compression molding, a molding material is charged into a mold, the mold is pressurized by a hot press, a plastic flow is caused by heat and pressure, and the molding material is uniformly filled in the cavity, thereby transmitting the transparent support having a desired shape. Can be formed.
[0024]
In the present invention, translucency means that at least part of the emission wavelength from the LED chip or the emission wavelength using the light from the LED chip can be substantially transmitted. In addition, having translucency with respect to at least a part of the emission wavelength from the LED chip means that the light emitted from the LED chip is transmitted through the translucent support, as a matter of course. It means to include a case where a filter effect is given to light emitted from the LED chip, for example, a coloring member is contained in the support. Translucency with respect to the emission wavelength using light from the LED chip means that a fluorescent substance is contained in a transparent support or a transparent adhesive, and is emitted from the LED chip and wavelength-converted with the fluorescent substance. It also means that the light transmitted through the translucent support is included.
[0025]
(Light emitting element 102, 202, 302, 402)
As the LED chip 102 which is a light emitting element used in the present invention, GaAlN, ZnS, ZnSe is formed on a substrate by a liquid phase growth method, MBE (molecular beam vapor phase epitaxy), MOVPE (organic metal vapor phase epitaxy) or the like. An LED chip in which a semiconductor such as SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlN, InN, or AlInGaN is formed as a light emitting layer is preferably used. Examples of the semiconductor structure include a homo structure having a MIS junction, a PIN junction, and a PN junction, a hetero structure, and a double hetero structure. Various emission wavelengths from ultraviolet light to infrared light can be selected depending on the material of the semiconductor light emitting layer and the degree of mixed crystal. Furthermore, the light emitting layer may have a single quantum well structure or a multiple quantum well structure in order to give a quantum effect.
[0026]
In general, in order to supply current to a light emitting layer provided on a semiconductor substrate, an LED chip is formed with a positive electrode and a negative electrode on opposite sides through a semiconductor. When such an LED chip is used in the present invention, only one of them can be electrically connected by a conductive wire. On the other hand, it is necessary to install the light-transmitting electrode 205 on the light-transmitting support 201 via a light-transmitting adhesive 204. In addition, when a semiconductor layer is formed on an insulating substrate such as alumina or sapphire in order to improve the quality of a crystal such as a gallium nitride compound semiconductor, a positive electrode and a negative electrode are formed on the same surface side to electrically It will be conductive. Accordingly, since at least two conductive wires are required, the effect of the present invention is particularly prominent.
[0027]
The electrodes formed on the semiconductor can be formed as desired using various vapor deposition methods such as vacuum vapor deposition, heat, light, discharge energy, or sputtering. The semiconductor wafer on which the electrode is formed is either fully cut directly by a dicing saw with a blade having a diamond cutting edge, or a groove having a width wider than the cutting edge width is cut (half cut), and the semiconductor wafer is removed by an external force. Divide. Or, after drawing a very thin scribe line (meridian line) on the semiconductor wafer with a scriber in which the diamond needle at the tip moves linearly, for example, in a grid pattern, the wafer is split by external force and cut into chips from the semiconductor wafer. Chip 102 can be formed.
[0028]
(Conductive wire 103, 203, 303, 403)
The conductive wire 103 is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrode of the LED chip 102 and the external electrode 105. The thermal conductivity is 0.01 cal / cm 2 / Cm / ° C. or higher is preferable, and more preferably 0.5 cal / cm 2 / Cm / ° C. or higher. In consideration of workability and the like, the diameter of the conductive wire 103 is preferably Φ10 μm or more and Φ45 μm or less. Specific examples of such a conductive wire 103 include those using metals such as gold, copper, platinum, and aluminum, and alloys thereof. Such a conductive wire 103 can easily connect the electrode of each LED chip 102 and the external electrode 105 by a wire bonding apparatus.
[0029]
(Translucent adhesive 104, 204, 304, 404)
The translucent adhesive 104 used in the present invention fixes the translucent support 101 and the LED chip 102 which is a light emitting element, and at least part of the emission wavelength from the LED chip 102 or from the LED chip 102. It is substantially translucent to the emission wavelength using light. Therefore, it is required to have good adhesion to the translucent support 101 or the external electrode 205 and to have high desired light transmittance.
[0030]
In addition, in an LED chip in which electrodes are arranged to face each other through a semiconductor, it is necessary to emit light through the electrodes. Therefore, at least a part of the external electrode 205 provided on the translucent support 201 is SnO. 2 , In 2 O Three A light-transmitting metal oxide such as ZnO or ITO or a metal thin film is used. The electrodes of the LED chip 202 placed on the external electrode 205 can be fixed and electrically connected by a light-transmitting adhesive 204 containing a light-transmitting electrically conductive member.
[0031]
Furthermore, the translucent adhesive preferably has good thermal conductivity in order to conduct heat radiation from the light emitting element to the package electrode. The thermal conductivity may be increased and one electrode of the LED chip may be electrically connected via a light-transmitting adhesive. As such a translucent adhesive, a resin binder containing a translucent conductive member is preferable. SnO as a specific conductive member that satisfies the above requirements 2 , In 2 O Three ZnO, ITO and the like. Moreover, various things, such as an epoxy resin, are mentioned as a binder.
The translucent adhesive 104 may contain a fluorescent substance and / or a coloring substance. By containing the fluorescent material, light from the fluorescent material or light from the fluorescent material and the LED chip can be emitted as desired. Moreover, the filter effect which adjusts the light emission wavelength from a LED chip as desired can also be given by containing coloring substances, such as coloring dye and a coloring pigment.
[0032]
Further, the concave shape of the translucent support 101 is changed to a convex lens or concave lens, and a desired optical characteristic is given by injecting a translucent adhesive 104 having a refractive index different from that of the translucent support 101. You can also. Specific examples of such translucent adhesive 104 include epoxy resin, silicon resin, and water glass.
[0033]
(External electrodes 105, 205, 305, 405)
The external electrode 105 used in the present invention is used for supplying electric power to the LED chip 102 provided on the translucent support 101 from the outside. The external electrode 105 can be formed in various sizes and shapes depending on characteristics such as electrical conductivity, heat dissipation, and light emitting elements. The external electrode 105 may be a metal plate inserted in the translucent support 101 or may be formed on the translucent support 101 by various methods.
[0034]
The external electrode 105 can be integrally formed by inserting a metal plate when the translucent support 101 is formed. Further, after forming the translucent support 301, a metal can be formed by vapor deposition, plating or sputtering. SnO 2 , In 2 O Three Alternatively, a light-transmitting metal oxide such as ZnO or ITO can be used as the external electrode 105.
[0035]
In addition, when a plurality of LED chips 302 are arranged on the translucent support 301, it is preferable that the heat conductivity is good in order to dissipate the heat released from the LED chips to the outside. In addition, by using a part of the external electrode 105 to form the reflecting member, the light use efficiency can be increased. In this case, it is preferable that the external electrode 105 provided on the translucent support 101 has a high reflectance with respect to the light emitted from the LED chip. As such an external electrode 105, a surface obtained by plating a surface of copper or bronze plate with a noble metal such as silver or gold is preferably used.
[0036]
(Protective members 106, 406)
The protective member 106 used in the present invention is preferably provided to protect the LED chip 102 which is a light emitting element, the conductive wire 103 for electrical connection thereof, and the like from external force, dust, moisture and the like. Therefore, the protective member 106 and the LED chip 102 may be formed in close contact with each other, or may not be in close contact with the light emitting element for heat dissipation and stress relaxation. When the protective member 106 is in close contact with the LED chip 102, the conductive wire 103, and the like, it is desirable to use an elastic resin so that the conductive wire does not break due to internal stress or the like. Moreover, when using resin with little elasticity, it is desirable to form thinly. As a specific material for the protective member 106, a resin having excellent weather resistance such as an epoxy resin, a urea resin, a silicon resin, a fluororesin, and a polycarbonate resin is preferably used. Such a protective member 106 can be easily formed by injecting a resin from a nozzle into the concave portion of the translucent support so as to cover the LED chip 102 and the like.
[0037]
(Reflection members 107 and 407)
The reflecting member 107 is preferably provided to efficiently direct light emitted from the LED chip 102 toward the translucent support. The reflection member 107 can be formed on the protection member 106, or the reflection member and the protection member can be combined. Furthermore, only the reflection member 107 can be formed. The reflecting member 107 can be formed by including a member having a high reflectance such as titanium oxide or barium titanate in a resin or glass. Further, a metal may be provided on the protective member to be a reflecting member.
[0038]
The material used for the reflection member 107 may be the same member as the protection member 106. Further, when used for the reflecting member 107, the material used for the protective member 106 may be formed of a member having different stress, heat dissipation property, or refractive index.
[0039]
(Backlight)
By using the present invention, a backlight light source that can be used in a liquid crystal device or the like as shown in FIG. 2 can be configured. FIG. 2 shows what the translucent support 201 of the present invention can be used also as a light guide plate of a backlight light source. The reflective layer 210 was formed except for the main surface of the light guide plate made of polycarbonate and the end surface on which the LED chip 202 was stacked. Such a reflective layer 210 is laminated with an epoxy resin plate containing titanium oxide. By providing the reflective layer 210, the light emitted from the LED chip 202 can be efficiently emitted from the main surface of the light guide plate.
[0040]
Here, an LED chip 202 in which a gallium nitride compound semiconductor was formed on a SiC substrate was used as a light emitting element. The LED chip 202 has aluminum positive and negative electrodes formed by sputtering on the SiC substrate surface and the semiconductor surface facing the SiC substrate via the semiconductor light emitting layer, respectively. The electrode provided on the SiC substrate surface side is formed thin so that light emitted from the light emitting layer can be transmitted.
[0041]
On the end face of the light guide plate on which the LED chip 202 is stacked, a transparent ITO as the external electrode 205 and an Al film formed thereon are formed in a desired shape by a sputtering method. The SiC substrate surface side on which the electrode of the LED chip 202 is formed and the external electrode 205 having translucency at least under the LED chip are SnO. 2 Is fixed by a translucent adhesive 204 containing selenium and electrically conductive. As a result, the external electrode 205 other than the portion where the LED chip 202 is stacked has Al laminated on the ITO, and can act as a reflective layer and improve conductivity. The other electrode provided on the semiconductor surface side of the LED chip 202 is wire-bonded to another external electrode provided on the light guide plate using a conductive wire 203. A liquid crystal display device can be formed by disposing a liquid crystal device (not shown) on the backlight thus formed.
[0042]
(Writing / reading light source)
By using the present invention, an optical printer head, a light source of an image scanner, and the like can be configured as shown in FIGS.
The light-emitting device of the present invention is used for a writing light source such as an optical printer head as shown in FIG. As the translucent support 301, long glass was used. The LED chip 302 is formed by forming a gallium nitride compound semiconductor on a sapphire substrate. On the LED chip 302, a P-type electrode and an N-type electrode are formed on the same plane side of the semiconductor. A Cu film was formed as a light shielding member 310 on the glass by vapor deposition. The light shielding member 310 is provided with at least one opening and serves as an aperture. In addition, a conductive pattern of Cu is formed as the external electrode 305 on the surface facing the surface on which the light shielding member 310 is provided via the translucent support 301.
[0043]
The sapphire substrate of the LED chip 302 was bonded to the surface side of the translucent support 301 provided with the external electrode 305 using an epoxy resin as the translucent adhesive 304. In FIG. 3, two LED chips 302 are arranged on a translucent support 301, and an Au wire 303 is used to connect an electrode provided on a P-type semiconductor of one LED chip 302 and an external electrode. Connected by wire bonding. Similarly, an electrode provided on the N-type semiconductor of the other adjacent LED chip and another external electrode are respectively wire-bonded.
[0044]
Between the LED chips 302, an electrode provided on the N-type semiconductor of one LED chip and an electrode provided on the P-type semiconductor of the other LED chip are directly wire-bonded and connected in series for series connection. It is assumed. When power is supplied to the LED chips connected in series in this way, point light is emitted from the LED chip 302 via the light-transmitting adhesive 304 and the light-transmitting support 301 provided with the aperture. As a result, the light extraction portion and the wire do not overlap and become shaded, and it is also possible to perform contact exposure on photosensitive paper or the like.
[0045]
When the light-emitting device of the present invention is used as a full-color optical printer head as shown in FIG. 4, the RGB emission wavelengths can be formed by the LED chip 402 using the same gallium nitride compound semiconductor or the like. That is, by changing the composition of the gallium nitride compound semiconductor, LED chips capable of emitting blue and green light are formed. A LED chip 402 is fixed to a concave portion of a translucent support 401 formed with a lens and optically separated for each RGB by a translucent adhesive 404 such as an epoxy resin. In the concave portion of the translucent support corresponding to the red light emitting portion, a translucent adhesive 411 containing a fluorescent material that is excited by light from the LED chip and can emit red light in an epoxy resin is used. The LED chip is bonded on the sapphire substrate side. External electrodes 405 for driving each LED chip are formed on the back side of the translucent support 401. Each external electrode 405 and the electrode of the LED chip are wire-bonded with a gold wire or the like that is a conductive wire 403. Similarly, the blue color and the green color are configured in the same manner except that the fluorescent material is not contained in the translucent adhesive. A reflection member 407 that is a sealing resin or a reflector as the protection member 406 may be provided on the back side of the LED chip according to the usage situation.
[0046]
By including a light-transmitting adhesive 411 such as a resin containing a fluorescent substance in the concave portion of the light-transmitting support, the amount and thickness of the adhesive can be controlled, so that the yield is improved. is there. In particular, when a fluorescent material is contained, the content, distribution thickness, and the like can be easily controlled by the concave shape.
[0047]
Further, as a fluorescent material capable of emitting red light, specifically, aMgO · bLi 2 O ・ Sb 2 O Three : CMn, eMgO.fTiO 2 : GMn, pMgO · qMgF 2 ・ GeO 2 : RMn and the like are preferred (where 2 ≦ a ≦ 6, 2 ≦ b ≦ 4, 0.001 ≦ c ≦ 0.05, 1 ≦ e ≦ 3, 1 ≦ f ≦ 2, 0.001 ≦ g) ≦ 0.05, 2.5 ≦ p ≦ 4.0, 0 ≦ q ≦ 1, 0.003 ≦ r ≦ 0.05. In addition to such fluorescent materials, other fluorescent materials such as cerium activated yttrium, aluminum, and garnet can be mixed. Other colors are cerium activated yttrium, aluminum and garnet (RE 1-x Sm x ) Three (Al 1-y Ga y ) Five O 12 : Ce fluorescent material (where 0 ≦ x <1, 0 ≦ y ≦ 1, RE is at least one element selected from the group consisting of Y, Gd, and La) and other fluorescent materials only It can also be made.
[0048]
Moreover, when using as a sensor light source, each LED chip corresponding to RGB can be arranged close to each other and capable of emitting white light without optically separating RGB. Light emitted from each LED chip is applied to a medium such as paper on which characters, photographs, drawings, and the like are written. The light reflected by the medium is optically configured so as to enter an optical sensor made of single crystal, non-single crystal silicon, or the like through color filters corresponding to RGB. Light incident on a long light sensor or the like can be read as an electrical signal corresponding to each of RGB light.
[0049]
A light source for a sensor that is a reading light source may increase in temperature due to preheating or the like that occurs during a standby time even if the light source itself does not emit light. When the semiconductors constituting each LED chip are made of different materials, temperature characteristics such as light emission output and light emission wavelength are different. For this reason, even if white light is adjusted at a constant temperature, the color tone may be shifted due to a temperature change, and accurate information may not be read. Since it is possible to emit multicolor light using a semiconductor light emitting element using the same material, there is an advantage that a light emitting device having extremely low temperature dependence can be obtained. Hereinafter, specific embodiments of the present invention will be described in detail, but it goes without saying that the present invention is not limited to these specific embodiments.
[0050]
【Example】
Example 1
A chip type LED was formed as a light emitting device. Chip type LED has an emission peak of 450 nm. 0.05 Ga 0.95 An LED chip using N semiconductor was used. For LED chips, a TMG (trimethylgallium) gas, TMI (trimethylindium) gas, nitrogen gas, and a dopant gas are allowed to flow along with a carrier gas on a cleaned sapphire substrate, and a gallium nitride compound semiconductor film is formed by MOCVD. Formed.
[0051]
SiH as dopant gas Four And Cp 2 A desired conductivity type is formed by switching between Mg and Mg. An InGaN active layer is formed between a contact layer and a cladding layer, which are gallium nitride semiconductors having N-type conductivity, and a cladding layer, which is a gallium nitride semiconductor having P-type conductivity, to form a PN junction. It was. (Note that a gallium nitride semiconductor is formed on the sapphire substrate at a low temperature to serve as a buffer layer. The P-type semiconductor is annealed at 400 ° C. or higher after film formation.)
[0052]
After exposing the surface of each PN semiconductor by etching, each electrode was formed by sputtering. The semiconductor wafer thus completed was drawn with a scribe line and then divided by an external force to form an LED chip as a light emitting element.
[0053]
On the other hand, a translucent support having a lens portion was formed by transfer molding using polycarbonate as shown in FIG. External electrodes are inserted into the formed translucent support. The optical axis was aligned so that the sapphire substrate surface of the LED chip would face the lens portion in the recess of the translucent support, and die-bonded with an epoxy resin and cured at 150 ° C. for 2 hours. Then, the external electrode of the translucent support body and each electrode of the LED chip were each wire-bonded using an Au wire. In order to protect the LED chip, Au wire, etc. in the recess of the translucent support, it was sealed with a silicon resin to form a protective member. A light-emitting device was formed by coating and curing a silicon resin containing barium titanate on the protective member and providing a reflective member. It should be noted that the same light emitting device is used except that the distance d from the apex of the lens portion to the LED chip surface is 3 mm (directivity angle 60 °), 6 mm (directivity angle 30 °), 9 mm (directivity angle 15 °). Individually formed.
[0054]
100 light emitting devices thus formed were formed, and the average on-axis light intensity was measured. In addition, a thermal shock at −40 ° C. for 30 min and 100 ° C. for 30 min within 5 min was repeated 1000 cycles to conduct a gas phase thermal shock test.
[0055]
(Comparative Example 1)
As shown in FIG. 5, the resin is integrally formed with the LED chip stacked and electrically connected to the external electrode as shown in FIG. 5, except that the resin is integrally formed in the same manner as in Example 1 from the apex of the lens portion and the LED chip surface. 100 light emitting devices each having a distance d of 3 mm (directivity angle 60 °), 6 mm (directivity angle 30 °), and 9 mm (directivity angle 15 °) were formed. The average on-axis luminous intensity was measured in the same manner as in Example 1 and is shown in Table 1 together with Example 1. Further, a gas phase thermal shock test was conducted to determine the number of light emitting devices in which the conductive wires were disconnected, and the results are shown in Table 2 together with Example 1.
[0056]
【The invention's effect】
As described above, by adopting the configuration described in claim 1 of the present invention, the light extraction portion and the electrical connection portion using the conductive wire can be formed separately, so that the light emitting element can be made relatively easy. High reliability can be formed. In particular, a light-emitting device that prevents disconnection of an electrical connection member due to pressure or internal stress associated with formation of a translucent support that is a light extraction portion can be provided. In addition, the light extraction unit can be a light emitting device that has very little light bubbles and has excellent light collecting power.
[0057]
By adopting the configuration described in claim 2 of the present invention, it is possible to provide a simpler and more reliable high-luminance light emitting device.
[0058]
By adopting the configuration described in claim 3 of the present invention, it is possible to reduce the influence from the external environment, increase the reliability, and obtain a light emitting element with higher light extraction efficiency.
[0059]
With the configuration according to claim 4 of the present invention, the wavelength of light emitted from the LED chip can be converted. Since the fluorescent material is contained and adhered in the recess, the desired fluorescent material content can be obtained, and a light emitting device with less variation in emission wavelength can be obtained. In particular, since a certain amount of fluorescent material can be uniformly contained on the light emitting surface side, a light emitting device with little color unevenness on the light emitting surface can be obtained.
[0060]
By adopting the configuration described in claim 5 of the present invention, a smaller point light source can be obtained. Accordingly, it can be suitably used for an optical printer head or the like in which the influence of adjacent light emitting devices is extremely reduced. Therefore, the light emitting device can be reduced in size, and the light emitting portion is not shaded by the conductive wire due to the conductive wire, and the light emitting device can have high light extraction efficiency.
[0061]
By adopting the configuration according to claim 6 of the present invention, a light-emitting device with higher light collecting power can be obtained. In particular, the light collecting power can be improved regardless of the adhesion of the conductive wire by forming the lens portion on the translucent support corresponding to the light extraction side.
[0062]
By adopting the process according to claim 7 of the present invention, it is possible to easily form a light-emitting device that is highly reliable and has high light extraction efficiency and can be miniaturized.
[0063]
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a light emitting device according to the present invention. FIG. 1 (A) is a schematic cross-sectional view of a chip type LED according to the present invention, and FIG. 1 (B) is a diagram of another chip type LED according to the present invention. It is a schematic sectional drawing.
FIG. 2 is a schematic cross-sectional view in which the light-emitting device of the present invention is configured as a backlight light source.
FIG. 3 is a schematic cross-sectional view of an optical printer head using the light emitting device of the present invention.
FIG. 4 is a schematic cross-sectional view of a full-color optical printer head using another light emitting device of the present invention.
FIG. 5 is a schematic cross-sectional view of a light-emitting element shown for comparison with the present invention.
[Explanation of symbols]
101, 201, 301, 401 ... translucent support
102, 202, 302, 402 ... LED chip
103, 203, 303, 403 ... conductive wire
104, 204, 304, 404 ... translucent adhesive
105, 205, 305, 405 ... External electrode
106, 406 ... Protective member
107, 407 ... reflective member
210 ... reflective layer
310, 410 ... light shielding member
411... Translucent adhesive containing fluorescent substance
501 ... Lens part
502 ... LED chip
503: Conductive wire
504... Conductive adhesive
505 ... External electrode
[Table 1]
Figure 0003992770
[Table 2]
Figure 0003992770

Claims (10)

外部電極が設けられた透光性支持体と、該透光性支持体上に透光性接着剤を介して配されたLEDチップと、前記透光性接着剤と接した面と対向する面側に設けられた電極と、前記外部電極と前記電極とを電気的に接続する導電性ワイヤーと、前記LEDチップと前記導電性ワイヤーを封止して保護するための封止部材を有し、前記封止部材上に反射部材を有することを特徴とする発光装置。A translucent support provided with an external electrode, an LED chip disposed on the translucent support via a translucent adhesive, and a surface facing the surface in contact with the translucent adhesive An electrode provided on the side, a conductive wire that electrically connects the external electrode and the electrode, and a sealing member for sealing and protecting the LED chip and the conductive wire, A light emitting device comprising a reflective member on the sealing member. 前記反射部材は、酸化チタン及び/又はチタン酸バリウムを含む樹脂からなる請求項1記載の発光装置。  The light emitting device according to claim 1, wherein the reflecting member is made of a resin containing titanium oxide and / or barium titanate. 外部電極が設けられた透光性支持体と、該透光性支持体上に透光性接着剤を介して配されたLEDチップと、前記透光性接着剤と接した面と対向する面側に設けられた電極と、前記外部電極と前記電極とを電気的に接続する導電性ワイヤーと、前記導電性ワイヤーを保護し、かつ前記LEDチップから放出された光を反射させる保護部材兼反射部材を有し、前記LEDチップは前記保護部材兼反射部材に被覆されることを特徴とする発光装置。  A translucent support provided with an external electrode, an LED chip disposed on the translucent support via a translucent adhesive, and a surface facing the surface in contact with the translucent adhesive An electrode provided on the side, a conductive wire that electrically connects the external electrode and the electrode, and a protective member and a reflection that protects the conductive wire and reflects light emitted from the LED chip A light emitting device comprising: a member, wherein the LED chip is covered with the protective member / reflecting member. 前記保護部材兼反射部材は、酸化チタン及び/又はチタン酸バリウムを含む樹脂からなる請求項3記載の発光装置。  The light-emitting device according to claim 3, wherein the protective member / reflective member is made of a resin containing titanium oxide and / or barium titanate. 前記LEDチップは透光性絶縁基板に形成された半導体上にそれぞれ正極及び負極の電極を有する請求項1〜4のうちのいずれか1つに記載の発光装置。  The light emitting device according to claim 1, wherein the LED chip has a positive electrode and a negative electrode on a semiconductor formed on a light-transmitting insulating substrate. 前記透光性接着剤に蛍光物質が含有されている請求項1〜5のうちのいずれか1つに記載の発光装置。  The light emitting device according to any one of claims 1 to 5, wherein the translucent adhesive contains a fluorescent substance. 前記LEDチップからの光を取り出す光取り出し部側の透光性支持体と、前記導電性ワイヤーが接続された電気的接続部とを別体で形成した請求項1〜6のうちのいずれか1つに記載の発光装置。  The translucent support body by the side of the light extraction part which takes out the light from the said LED chip, and the electrical connection part to which the said conductive wire was connected were formed in the separate body, The any one of Claims 1-6 The light-emitting device as described in one. 前記透光性支持体上に少なくとも一箇所の開口部を有する遮光部材を設けた請求項1〜7のうちのいずれか1つに記載の発光装置。  The light emitting device according to claim 1, wherein a light shielding member having at least one opening is provided on the translucent support. 前記透光性支持体に設けられた外部電極に金属メッキが施され、LEDチップが放出した光に対する反射率が向上された請求項1〜8のうちのいずれか1つに記載の発光装置。The light-emitting device according to claim 1, wherein the external electrode provided on the translucent support is subjected to metal plating, and the reflectance with respect to the light emitted from the LED chip is improved . 前記透光性支持体が前記LEDチップからの光の少なくとも一部を集光するレンズ部を有する請求項1〜9のうちのいずれか1つに記載の発光装置。  The light-emitting device according to claim 1, wherein the translucent support has a lens unit that collects at least a part of light from the LED chip.
JP31160496A 1996-11-22 1996-11-22 Light emitting device and method for forming the same Expired - Fee Related JP3992770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31160496A JP3992770B2 (en) 1996-11-22 1996-11-22 Light emitting device and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31160496A JP3992770B2 (en) 1996-11-22 1996-11-22 Light emitting device and method for forming the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP11337844A Division JP2000164939A (en) 1999-01-01 1999-11-29 Light emitting device
JP2004278872A Division JP3852462B2 (en) 2004-09-27 2004-09-27 Light emitting device and method for forming the same

Publications (2)

Publication Number Publication Date
JPH10151794A JPH10151794A (en) 1998-06-09
JP3992770B2 true JP3992770B2 (en) 2007-10-17

Family

ID=18019257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31160496A Expired - Fee Related JP3992770B2 (en) 1996-11-22 1996-11-22 Light emitting device and method for forming the same

Country Status (1)

Country Link
JP (1) JP3992770B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785820B2 (en) 1998-08-03 2006-06-14 豊田合成株式会社 Light emitting device
JP3400958B2 (en) * 1999-07-07 2003-04-28 株式会社シチズン電子 Multicolor light emitting diode
CN1224112C (en) 1999-06-23 2005-10-19 西铁城电子股份有限公司 Light emitting diode
CN1196203C (en) * 1999-07-29 2005-04-06 西铁城电子股份有限公司 Light-emitting diode
JP2001077430A (en) * 1999-09-02 2001-03-23 Citizen Electronics Co Ltd Light-emitting diode
US6680568B2 (en) 2000-02-09 2004-01-20 Nippon Leiz Corporation Light source
JP2001223388A (en) * 2000-02-09 2001-08-17 Nippon Leiz Co Ltd Light source device
US7053419B1 (en) * 2000-09-12 2006-05-30 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US7064355B2 (en) * 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
JP2002141556A (en) * 2000-09-12 2002-05-17 Lumileds Lighting Us Llc Light emitting diode with improved light extraction efficiency
JP2002124705A (en) * 2000-10-17 2002-04-26 Citizen Electronics Co Ltd Light emitting diode and its manufacturing method
JP3972670B2 (en) 2002-02-06 2007-09-05 豊田合成株式会社 Light emitting device
KR20040020240A (en) * 2002-08-30 2004-03-09 엘지이노텍 주식회사 Light Emitting Diode Lamp and method for fabricating thereof
JP2004158557A (en) * 2002-11-05 2004-06-03 Shurai Kagi Kofun Yugenkoshi Similar flip chip type light emitting diode device package
US7009213B2 (en) * 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
DE10351397A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh LED chip
JP2005159296A (en) * 2003-11-06 2005-06-16 Sharp Corp Package structure of optodevice
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
KR100576866B1 (en) 2004-06-16 2006-05-10 삼성전기주식회사 Light emitting diode and fabrication method thereof
JP3863169B2 (en) * 2005-10-03 2006-12-27 東芝電子エンジニアリング株式会社 Light emitting device
JP3863174B2 (en) * 2006-05-08 2006-12-27 東芝電子エンジニアリング株式会社 Light emitting device
WO2009066430A1 (en) * 2007-11-19 2009-05-28 Panasonic Corporation Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR101438826B1 (en) 2008-06-23 2014-09-05 엘지이노텍 주식회사 Light emitting device
KR20100008620A (en) * 2008-07-16 2010-01-26 삼성전기주식회사 Light emitting device and backlight unit comprising the same
JP5326705B2 (en) * 2009-03-17 2013-10-30 日亜化学工業株式会社 Light emitting device
JP5689225B2 (en) * 2009-03-31 2015-03-25 日亜化学工業株式会社 Light emitting device
JP2010245481A (en) * 2009-04-10 2010-10-28 Sharp Corp Light emitting device
US9385285B2 (en) * 2009-09-17 2016-07-05 Koninklijke Philips N.V. LED module with high index lens
JP5572013B2 (en) * 2010-06-16 2014-08-13 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2012033823A (en) 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP5588368B2 (en) * 2011-01-24 2014-09-10 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5647028B2 (en) * 2011-02-14 2014-12-24 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5681532B2 (en) * 2011-03-07 2015-03-11 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5718117B2 (en) * 2011-03-24 2015-05-13 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2013038187A (en) * 2011-08-05 2013-02-21 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same
JP6029188B2 (en) * 2012-03-26 2016-11-24 富士機械製造株式会社 LED package and manufacturing method thereof
JP6097489B2 (en) * 2012-03-30 2017-03-15 古河電気工業株式会社 Sealing resin film for light emitting diode and light emitting diode package
KR102221599B1 (en) 2014-06-18 2021-03-02 엘지이노텍 주식회사 Light Emitting Device Package
DE102014110470A1 (en) * 2014-07-24 2016-01-28 Osram Opto Semiconductors Gmbh lighting module
JP2015099940A (en) * 2015-02-23 2015-05-28 日亜化学工業株式会社 Light-emitting device
EP3271295B1 (en) * 2015-03-20 2021-07-07 Signify Holding B.V. Uv-c water purification device
JP6274240B2 (en) * 2016-03-28 2018-02-07 日亜化学工業株式会社 Light emitting device
DE102016106270A1 (en) * 2016-04-06 2017-10-12 Osram Opto Semiconductors Gmbh PREPARATION OF A SEMICONDUCTOR CONSTRUCTION ELEMENT
JP6955135B2 (en) 2016-10-19 2021-10-27 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP7032645B2 (en) * 2018-03-26 2022-03-09 日亜化学工業株式会社 Light emitting module and its manufacturing method
EP3905347B1 (en) * 2018-12-27 2024-02-21 Denka Company Limited Light-emitting substrate, and lighting device

Also Published As

Publication number Publication date
JPH10151794A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3992770B2 (en) Light emitting device and method for forming the same
US10043955B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US10297725B2 (en) Light emitting package having phosphor layer over a transparent resin layer
EP3444856B1 (en) Light emitting device package
JP2003332634A (en) Semiconductor device and its manufacturing method
US10497827B2 (en) Light emitting device package
US10763398B2 (en) Light emitting device package
US9142735B2 (en) Light emitting device
KR101575655B1 (en) Light emitting device package and backlight unit
EP2725630B1 (en) Light emitting device
JP3852465B2 (en) Light emitting device and method for forming the same
JP2000164939A (en) Light emitting device
US11342486B2 (en) Light-emitting device package and lighting device having same
KR101891620B1 (en) Light emitting device package and light unit having the same
JP3852462B2 (en) Light emitting device and method for forming the same
JP4820133B2 (en) Light emitting device
CN106067506B (en) The manufacturing method of light emitting device package, back light unit and light-emitting device
KR20190034016A (en) Light emitting device package and lighting module
JP2006237652A (en) Translucent adhesive
US10672954B2 (en) Light emitting device package
KR101831283B1 (en) Light Emitting Diode Package
KR20190049506A (en) Light emitting device package and lighting apparatus having thereof
KR20190034043A (en) Light emitting device package
KR102610607B1 (en) Light emitting device package
KR102515603B1 (en) Light emitting device package and light module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees