JP5718117B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP5718117B2
JP5718117B2 JP2011065362A JP2011065362A JP5718117B2 JP 5718117 B2 JP5718117 B2 JP 5718117B2 JP 2011065362 A JP2011065362 A JP 2011065362A JP 2011065362 A JP2011065362 A JP 2011065362A JP 5718117 B2 JP5718117 B2 JP 5718117B2
Authority
JP
Japan
Prior art keywords
light emitting
blue
light
glass plate
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011065362A
Other languages
Japanese (ja)
Other versions
JP2012204438A (en
Inventor
聡二 大和田
聡二 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011065362A priority Critical patent/JP5718117B2/en
Publication of JP2012204438A publication Critical patent/JP2012204438A/en
Application granted granted Critical
Publication of JP5718117B2 publication Critical patent/JP5718117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は発光素子及び発光素子からの光の一部を異なる波長の光に変換する波長変換層を有する発光装置及びその製造方法に関する。 The present invention relates to a light emitting device, a light emitting device having a wavelength conversion layer that converts part of light from the light emitting device into light of different wavelengths, and a method for manufacturing the same.

発光素子たとえばGaN青色発光ダイオード(LED)素子及び波長変換部材(たとえばYAG蛍光体)を含有した波長変換層(樹脂層)を有し、発光素子からの光の一部を波長変換層によって異なる波長の光に変換し、発光素子からの光と合成して白色光を得る発光装置が知られている。この場合、複数の発光素子を一列に配列して明度を稼いでいる。 It has a wavelength conversion layer (resin layer) containing a light emitting element such as a GaN blue light emitting diode (LED) element and a wavelength conversion member (for example, YAG phosphor), and a part of the light from the light emitting element varies depending on the wavelength conversion layer There is known a light-emitting device that converts white light into light and combines it with light from a light-emitting element to obtain white light. In this case, brightness is increased by arranging a plurality of light emitting elements in a line.

図17は本願出願人が既に提案した発光装置を示し、(A)は発光面を示す上面図、(B)は断面図である(参照:特許文献1)。 17A and 17B show a light emitting device already proposed by the applicant of the present application, in which FIG. 17A is a top view showing a light emitting surface, and FIG. 17B is a cross-sectional view (refer to Patent Document 1).

図17においては、窒化アルミニウム(AlN)等よりなる配線基板1上に4つのフリップチップ型の青色の発光素子2−1,2−2,2−3,2−4をバンプ3を介して実装してある。また、発光素子2−1,2−2,2−3,2−4の上面及び側面に波長変換層4が設けられ、この波長変換層4上に板状のガラスプレート5が設けられている。この場合、波長変換層4及びガラスプレート5は矩形をなしている。また、波長変換層4は発光素子2−1、2−4の側面からガラスプレート5の端面に向う傾斜面4aを有する。さらに、配線基板1の周辺にセラミックあるいは樹脂よりなる枠6が設けられ、枠6と発光素子2−1,2−2,2−3,2−4、波長変換層4及びガラスプレート5との間に反射部材としての白色樹脂層7が設けられる。白色樹脂層7はたとえば酸化チタン、酸化亜鉛等の白色顔料を含有したシリコーン樹脂よりなる。 In FIG. 17, four flip-chip blue light emitting elements 2-1, 2-2, 2-3 and 2-4 are mounted on a wiring substrate 1 made of aluminum nitride (AlN) or the like via bumps 3. It is. Moreover, the wavelength conversion layer 4 is provided in the upper surface and side surface of the light emitting elements 2-1, 2-2, 2-3, 2-4, and the plate-shaped glass plate 5 is provided on the wavelength conversion layer 4. . In this case, the wavelength conversion layer 4 and the glass plate 5 are rectangular. Moreover, the wavelength conversion layer 4 has the inclined surface 4a which faces the end surface of the glass plate 5 from the side surface of the light emitting elements 2-1, 2-4. Further, a frame 6 made of ceramic or resin is provided around the wiring substrate 1, and the frame 6 is connected to the light emitting elements 2-1, 2-2, 2-3, 2-4, the wavelength conversion layer 4 and the glass plate 5. A white resin layer 7 as a reflecting member is provided therebetween. The white resin layer 7 is made of a silicone resin containing a white pigment such as titanium oxide or zinc oxide.

図17の発光装置において、発光素子1の上面から出射した光は波長変換層4を介してガラスプレート5から出射する。また、発光素子2−1,2−2,2−3,2−4の側面から出射した多くの光も波長変換層4の傾斜面4aに対応する白色樹脂層7の傾斜面もしくは素子間隙部Y1、Y2、Y3の湾曲面4bにおいて反射して波長変換層4を介してガラスプレート5から出射する。これにより、光の取り出し効率が向上する。 In the light emitting device of FIG. 17, light emitted from the upper surface of the light emitting element 1 is emitted from the glass plate 5 through the wavelength conversion layer 4. In addition, a large amount of light emitted from the side surfaces of the light emitting elements 2-1, 2-2, 2-3 and 2-4 is also inclined surfaces of the white resin layer 7 corresponding to the inclined surfaces 4 a of the wavelength conversion layer 4 or element gap portions. The light is reflected from the curved surfaces 4 b of Y 1, Y 2, and Y 3 and is emitted from the glass plate 5 through the wavelength conversion layer 4. Thereby, the light extraction efficiency is improved.

特願2010−173852号明細書、図面Japanese Patent Application No. 2010-173852 specification, drawing

しかしながら、上述の既に提案した発光装置においては、発光素子2−1,2−2,2−3,2−4の側面から照射され、傾斜面4aまたは湾曲面4bに接している白色樹脂層7によって反射されることでガラスプレート5へ出射される光が波長変換層4内を通る光路長は、発光素子2−1,2−2,2−3,2−4の上面から照射され白色樹脂層7に反射されることなく直接ガラスプレート5へ出射される光が波長変換層4内を通る光路長よりも長い。たとえば、発光素子2−1,2−2,2−3,2−4の上面の波長変換層4の厚さを50μm、発光素子2−1,2−2,2−3,2−4の厚さを100μmとすれば、前者の光路長は後者の光路長より100μm程度長い。従って、波長変換層4の蛍光体濃度が均一であれば、ガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3で励起される蛍光体は素子直上部Zで励起される蛍光体より多くなり、ガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3が蛍光体の発光色である黄色味を生じ、この結果、発光素子直上の領域の発光とは色むらが生ずるという課題がある。 However, in the light emitting device already proposed, the white resin layer 7 is irradiated from the side surfaces of the light emitting elements 2-1, 2-2, 2-3 and 2-4 and is in contact with the inclined surface 4 a or the curved surface 4 b. The light path length through which the light emitted to the glass plate 5 by being reflected by the light passes through the wavelength conversion layer 4 is irradiated from the upper surface of the light emitting elements 2-1, 2-2, 2-3 and 2-4, and is white resin. The light emitted directly to the glass plate 5 without being reflected by the layer 7 is longer than the optical path length passing through the wavelength conversion layer 4. For example, the thickness of the wavelength conversion layer 4 on the upper surface of the light emitting elements 2-1, 2-2, 2-3, 2-4 is 50 μm, and If the thickness is 100 μm, the former optical path length is about 100 μm longer than the latter optical path length. Therefore, if the phosphor concentration of the wavelength conversion layer 4 is uniform, the phosphor excited at the glass plate edge portions X1, X2, X3, and X4 and the element gap portions Y1, Y2, and Y3 is excited at the Z immediately above the element. The glass plate edges X1, X2, X3, and X4 and the element gaps Y1, Y2, and Y3 produce a yellowish color that is the emission color of the phosphor, and as a result, light is emitted in the region immediately above the light emitting element. There is a problem that uneven color occurs.

尚、ガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3に対して素子直上部Zを避けつつ選択的に色度調整の方法として、つまり青色光を吸収せずに黄色光を選択的に吸収する方法として、ガラスプレート5を装着する前に予めガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3の位置に対して青色光を吸収する酸化鉄あるいは赤色蛍光体及び赤色顔料を用いた場合には、発光素子の発光色である青色そのものも吸収してしまい、また、酸化鉄あるいは赤色蛍光体及び赤色顔料の位置ずれが生じ、この結果、ガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3はさらに黄色味を帯びて色むらはかえって増加する。   As a method of selectively adjusting the chromaticity while avoiding the portion immediately above the element Z with respect to the glass plate edge portions X1, X2, X3, and X4 and the element gap portions Y1, Y2, and Y3, that is, without absorbing blue light. As a method for selectively absorbing yellow light, blue light is absorbed in advance at the positions of the glass plate edge portions X1, X2, X3, and X4 and the element gap portions Y1, Y2, and Y3 before the glass plate 5 is mounted. When iron oxide or red phosphor and red pigment are used, blue color itself, which is the emission color of the light emitting element, is absorbed, and the position shift of iron oxide or red phosphor and red pigment occurs. The glass plate edge portions X1, X2, X3, and X4 and the element gap portions Y1, Y2, and Y3 are further yellowish, and the color unevenness is increased.

上述の課題を解決するために、本発明に係る発光装置は、配線基板と、配線基板上に実装された青色の発光素子と、発光素子の上面及び側面に設けられた波長変換層と、波長変換層上に設けられた板状光学部材とを具備し、波長変換層は発光素子側面と板状光学部材を結ぶ傾斜面を形成し、さらに、傾斜面に接して設けられ、発光素子からの光を吸収せずに波長変換層からの光を選択的に吸収する青色樹脂層を具備するものである。これにより、発光素子の側面から板状光学部材の縁部での発光の黄色味が青色樹脂層によって選択的に吸収される。 In order to solve the above-described problems, a light emitting device according to the present invention includes a wiring board, a blue light emitting element mounted on the wiring board, a wavelength conversion layer provided on an upper surface and a side surface of the light emitting element, and a wavelength. A plate-like optical member provided on the conversion layer, and the wavelength conversion layer forms an inclined surface connecting the side surface of the light-emitting element and the plate-like optical member, and is further provided in contact with the inclined surface . A blue resin layer that selectively absorbs light from the wavelength conversion layer without absorbing light is provided . Thereby, the yellowishness of light emission at the edge of the plate-like optical member from the side surface of the light emitting element is selectively absorbed by the blue resin layer.

また、本発明に係る発光装置の製造方法は、配線基板上に青色の発光素子を実装する発光素子実装工程と、発光素子上に波長変換部材を含有した樹脂をポッティングするポッティング工程と、波長変換部材を含有した樹脂上に板状光学部材を、波長変換部材を含有した樹脂が発光素子側面と板状光学部材とを結ぶ傾斜面が形成されるように装着する板状光学部材装着工程と、傾斜面に接するように、発光素子からの光を吸収せずに波長変換部材からの光を選択的に吸収する青色樹脂を注入する青色樹脂注入工程とを具備するものである。 The method for manufacturing a light emitting device according to the present invention includes a light emitting element mounting step for mounting a blue light emitting element on a wiring substrate, a potting step for potting a resin containing a wavelength conversion member on the light emitting element, and a wavelength conversion. A plate-shaped optical member mounting step of mounting the plate-shaped optical member on the resin containing the member, and mounting the resin containing the wavelength conversion member so that an inclined surface connecting the light emitting element side surface and the plate-shaped optical member is formed; A blue resin injection step of injecting a blue resin that selectively absorbs light from the wavelength conversion member without absorbing light from the light emitting element so as to be in contact with the inclined surface .

本発明によれば、板状光学部材の縁部の色むらを緩和できる。 According to the present invention, uneven color at the edge of the plate-like optical member can be reduced.

本発明に係る発光装置の第1の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 図1の青色樹脂層の青色顔料に用いられるフタロシアニンの吸収光スペクトル及び通常の白色LED素子の発光スペクトルを示す図である。It is a figure which shows the absorption spectrum of the phthalocyanine used for the blue pigment of the blue resin layer of FIG. 1, and the emission spectrum of a normal white LED element. 図1の発光装置、図17の発光装置及び比較例として青色樹脂層、白色樹脂層もない樹脂なしの発光装置の素子直上部の全面積の色度の平均値に対するガラスプレート縁部、素子間隙部の色度差を示すテーブルである。The light emitting device of FIG. 1, the light emitting device of FIG. 17, and a glass plate edge with respect to the average value of the chromaticity of the entire area immediately above the element of the light emitting device without a resin having no blue resin layer or white resin layer as a comparative example, It is a table which shows the chromaticity difference of a part. 図1の発光装置の変更例を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows the example of a change of the light-emitting device of FIG. 1, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 図1の発光装置、図17の発光装置及び比較例として青色樹脂層、白色樹脂層もない樹脂なしの発光装置の素子直上部の全面積の色度の平均値に対する素子間隙部の輝度を説明するための図であって、(A)は発光面に対する素子間隙部を示す図、(B)は相対輝度を示すグラフ、(C)は平均相対輝度を示すグラフである。The light emitting device of FIG. 1, the light emitting device of FIG. 17, and the luminance of the element gap with respect to the average value of the chromaticity of the entire area immediately above the element of the light emitting device without resin as a blue resin layer and no white resin layer as a comparative example. (A) is a diagram showing an element gap with respect to the light emitting surface, (B) is a graph showing relative luminance, and (C) is a graph showing average relative luminance. 本発明に係る発光装置の第2の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 2nd Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 本発明に係る発光装置の第3の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 3rd Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 本発明に係る発光装置の第4の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 4th Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 本発明に係る発光装置の第5の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 5th Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). リフレクタタイプ灯具において図6の発光装置、図7の発光装置及び図8の発光装置の配光を水平方向に重ね合わせられた発光面を説明する図である。FIG. 9 is a diagram illustrating a light emitting surface in which light distributions of the light emitting device of FIG. 6, the light emitting device of FIG. 7, and the light emitting device of FIG. 図1の発光装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the light-emitting device of FIG. 図1の発光装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the light-emitting device of FIG. 本発明に係る発光装置の第6の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 6th Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 図1、図6、図7、図8、図9の発光装置における蛍光体による色むらを説明するための図であり、(A)はガラスプレート縁部の蛍光体を示す断面図、(B)は素子間隙部の蛍光体を示す断面図である。FIG. 10 is a diagram for explaining color unevenness due to the phosphor in the light emitting device of FIGS. 1, 6, 7, 8, and 9, wherein (A) is a cross-sectional view showing the phosphor on the edge of the glass plate; ) Is a cross-sectional view showing a phosphor in an element gap portion. 本発明に係る発光装置の第7の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 7th Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 本発明に係る発光装置の第8の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows 8th Embodiment of the light-emitting device based on this invention, (A) is a top view which shows a light emission surface, (B) is the BB sectional drawing of (A). 本出願人による既に提案した発光装置を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。It is a figure which shows the light-emitting device already proposed by this applicant, (A) is a top view which shows a light emission surface, (B) is a BB sectional drawing of (A).

図1は本発明に係る発光装置の第1の実施の形態を示す図であり、(A)は発光面を示す上面図、(B)は(A)のB−B線断面図である。   1A and 1B are diagrams showing a first embodiment of a light-emitting device according to the present invention. FIG. 1A is a top view showing a light-emitting surface, and FIG. 1B is a cross-sectional view taken along line BB in FIG.

図1においては、図17の白色樹脂層7の代わりに、低粘度の青色樹脂層8を設けてある。この場合、図1の(A)に示すごとく、青色樹脂層8はガラスプレート縁部X1、X2、X3、X4に位置する傾斜面4a及びその直上のガラスプレート側面に接するように、また、素子間隙部Y1、Y2、Y3に位置する湾曲面4bに接するように設けられている。   In FIG. 1, a low-viscosity blue resin layer 8 is provided instead of the white resin layer 7 of FIG. In this case, as shown in FIG. 1A, the blue resin layer 8 is in contact with the inclined surface 4a located at the glass plate edge portions X1, X2, X3, and X4 and the side surface of the glass plate immediately above the inclined surface 4a. It is provided so as to be in contact with the curved surface 4b located in the gaps Y1, Y2, and Y3.

青色樹脂層8は比較的濃度の低い青色顔料を混合したシリコーン樹脂よりなる。このシリコーン樹脂は耐熱性、耐光性に優れかつ常温において流動性を帯びている。つまり、低粘度である。また、青色顔料は黄色光の波長を選択的に吸収し、たとえばフタロシアニン、Co-Zn-Si系、Co-Si系、バナジウムシリコニウム等よりなる。さらに、反射性を向上させるために青色樹脂層8に酸化チタン、酸化亜鉛等よりなる白色顔料を加えている。以降、青色顔料を含有している樹脂を青色樹脂、顔料は白色顔料のみを含有し青色顔料を含有していない樹脂を白色樹脂とする。   The blue resin layer 8 is made of a silicone resin mixed with a blue pigment having a relatively low concentration. This silicone resin has excellent heat resistance and light resistance and is fluid at room temperature. That is, it has a low viscosity. Further, the blue pigment selectively absorbs the wavelength of yellow light, and is made of, for example, phthalocyanine, Co—Zn—Si series, Co—Si series, vanadium siliconium or the like. Further, a white pigment made of titanium oxide, zinc oxide or the like is added to the blue resin layer 8 in order to improve reflectivity. Hereinafter, a resin containing a blue pigment is referred to as a blue resin, a pigment containing only a white pigment, and a resin not containing a blue pigment as a white resin.

次に、青色顔料としてのフタロシアニンを説明する。フタロシアニンの吸収光スペクトルを示す図2(A)に示すように、フタロシアニンは主に550nm以上の波長の光を吸収する。通常、白色光を発射する白色LED素子の発光スペクトルは、図2の(B)に示すように、約400〜800nmの波長を有している。そのうち、青色が約400〜480nmであり、蛍光体に吸収されずに発光素子から出ている光からなり、黄色光の波長範囲は約480〜800nmであり、波長変換層4に含有されている蛍光体からの蛍光からなる。図2の(B)の点線の枠はフタロシアニンの吸収する波長範囲であり、フタロシアニンが発光素子からの青色発光は吸収せずに蛍光体からの黄色光を選択的に吸収することになる。   Next, phthalocyanine as a blue pigment will be described. As shown in FIG. 2A showing the absorption light spectrum of phthalocyanine, phthalocyanine mainly absorbs light having a wavelength of 550 nm or more. Usually, the emission spectrum of a white LED element that emits white light has a wavelength of about 400 to 800 nm, as shown in FIG. Among them, blue is about 400 to 480 nm, and is made of light emitted from the light emitting element without being absorbed by the phosphor. The wavelength range of yellow light is about 480 to 800 nm and is contained in the wavelength conversion layer 4. It consists of fluorescence from a phosphor. The dotted line frame in FIG. 2B is the wavelength range that phthalocyanine absorbs, and phthalocyanine selectively absorbs yellow light from the phosphor without absorbing blue light emission from the light emitting element.

図3は図1の発光装置、比較例として白色樹脂層7を使用した図17の発光装置、傾斜面4a及び湾曲面4bに白色樹脂層7もない樹脂なしの発光装置の素子直上部Zの全面積の色度の平均値に対するガラスプレート縁部X1、X2、X3、X4及び素子間隙部Y1、Y2、Y3の色度差を示す。   FIG. 3 shows the light emitting device of FIG. 1, the light emitting device of FIG. 17 using the white resin layer 7 as a comparative example, and the light emitting device without the white resin layer 7 on the inclined surface 4a and the curved surface 4b. The chromaticity differences of the glass plate edge portions X1, X2, X3, and X4 and the element gap portions Y1, Y2, and Y3 with respect to the average value of the chromaticity of the entire area are shown.

図3に示すように、図1の青色樹脂層8のガラスプレート縁部X1、X2、X3、X4における色度差の平均値0.035は、図17の白色樹脂層7のガラスプレート縁部X1、X2、X3、X4における色度差の平均値0.058及び樹脂なしのガラスプレート縁部X1、X2、X3、X4における色度差の平均値0.068よりも小さく、従って、色むらは緩和されていることが分かる。   As shown in FIG. 3, the average value 0.035 of the chromaticity difference at the glass plate edges X1, X2, X3, X4 of the blue resin layer 8 of FIG. 1 is the glass plate edge of the white resin layer 7 of FIG. Less than the average value of 0.058 chromaticity difference at X1, X2, X3, X4 and 0.068 the average value of chromaticity difference at the glass plate edges X1, X2, X3, X4 without resin. Can be seen to be relaxed.

他方、図3に示すように、図1の青色樹脂層8の素子間隙部Y1、Y2、Y3における色度の平均値0.081は、図17の白色樹脂層7の素子間隙部Y1、Y2、Y3における色度差の平均値0.64及び樹脂なしの素子間隙部Y1、Y2、Y3における色度差の平均値0.075より大きな値となったものの大差なく、従って、色むらも大差ない。また、図4に示すごとく、波長変換層4の樹脂の塗布量を減少させれば、湾曲面4bの曲率が大きくなり、図4の素子間隙部Y1、Y2、Y3の青色樹脂層8の素子底面からの湾曲面4bの頂点の高さdが大きくなり、この結果、素子間隙部における波長変換層4と青色樹脂層8との接触面積が増加するので、素子間隙部Y1、Y2、Y3における色度差の平均値は小さくなり、素子間隙部Y1、Y2、Y3の色むらは緩和されると考えられる。   On the other hand, as shown in FIG. 3, the average chromaticity value 0.081 in the element gap portions Y1, Y2, Y3 of the blue resin layer 8 in FIG. 1 is the element gap portions Y1, Y2 in the white resin layer 7 in FIG. The average value of the chromaticity difference at Y3 is 0.64 and the average value of the chromaticity difference at the element gap portions Y1, Y2, and Y3 without resin is larger than 0.075. Therefore, the color unevenness is also largely different. Absent. As shown in FIG. 4, if the amount of resin applied to the wavelength conversion layer 4 is decreased, the curvature of the curved surface 4b increases, and the elements of the blue resin layer 8 in the element gaps Y1, Y2, and Y3 of FIG. Since the height d of the apex of the curved surface 4b from the bottom surface increases, and as a result, the contact area between the wavelength conversion layer 4 and the blue resin layer 8 in the element gap increases, the element gaps Y1, Y2, and Y3 It is considered that the average value of the chromaticity difference becomes small and the color unevenness of the element gap portions Y1, Y2, and Y3 is alleviated.

図5は図1の発光装置、比較例として白色樹脂層7を使用した図17の発光装置、傾斜面4a及び湾曲面4bに白色樹脂層7もない樹脂なしの発光装置を使用したときの、素子直上部Zの全面積の色度の平均値に対する素子間隙部Y2の輝度を示す。すなわち、図5の(A)に示すP軸方向の断面輝度を比較した。尚、P軸はその水平線が発光面の中央部0点を通るように設定する。この結果、図5の(B)に示す相対輝度が得られた。尚、図5の(B)の相対輝度は、配線基板1の底面温度が70℃及び各発光素子2−1、2−2、2−3、2−4の電流が10mAの条件の基で得られた。図5の(B)に示す相対輝度の平均相対輝度を図5の(C)に示すように、白色樹脂層7の場合の平均相対輝度が最も大きく、他方、青色樹脂層8の場合及び樹脂なしの場合の平均相対輝度は小さく同等である。このように、青色樹脂層8を有する図1の発光装置の輝度は樹脂なし発光装置の輝度と同等であるものの、白色樹脂層7を有する図17の発光装置の輝度に及ばない。この理由は青色樹脂層8の青色顔料が黄色光を吸収することによると考えられる。従って、色むらをある程度緩和しつつ、青色樹脂層8を有する図1の発光装置の平均輝度を白色樹脂層7を有する図17の発光装置の平均輝度に近づけた発光装置を図6、図7、図8、図9を参照して説明する。   FIG. 5 shows the light emitting device of FIG. 1, the light emitting device of FIG. 17 using the white resin layer 7 as a comparative example, and the light emitting device without resin without the white resin layer 7 on the inclined surface 4a and the curved surface 4b. The brightness | luminance of the element gap | interval part Y2 with respect to the average value of chromaticity of the whole area of the element direct upper part Z is shown. That is, the cross-sectional luminances in the P-axis direction shown in FIG. The P axis is set so that the horizontal line passes through the center 0 point of the light emitting surface. As a result, the relative luminance shown in FIG. 5B was obtained. 5B is based on the condition that the bottom surface temperature of the wiring board 1 is 70 ° C. and the currents of the light emitting elements 2-1, 2-2, 2-3, 2-4 are 10 mA. Obtained. As shown in FIG. 5C, the average relative luminance of the relative luminance shown in FIG. 5B is the highest in the case of the white resin layer 7, while the case of the blue resin layer 8 and the resin The average relative luminance in the case of none is small and equivalent. As described above, the luminance of the light emitting device of FIG. 1 having the blue resin layer 8 is equivalent to the luminance of the light emitting device without resin, but does not reach the luminance of the light emitting device of FIG. The reason for this is considered that the blue pigment of the blue resin layer 8 absorbs yellow light. Accordingly, the light emitting device in which the average luminance of the light emitting device of FIG. 1 having the blue resin layer 8 is made close to the average luminance of the light emitting device of FIG. This will be described with reference to FIGS.

図6は本発明に係る発光装置の第2の実施の形態を示す。図6においては、青色樹脂層8はガラスプレート縁部X1、X2、X3に位置する傾斜面4a及びガラスプレート側面に接するように、また、素子間隙部Y1、Y2、Y3に位置する湾曲面4bに接するように設けられている。他方、ガラスプレート縁部X4に位置する傾斜面4aには白色樹脂層7を接するように設けてある。つまり、長方形の矩形である波長変換層4の短手方向の一端辺に白色樹脂層7を設けることにより、ガラスプレート縁部X1、X2、X3においては色むらの緩和を優先し、ガラスプレート縁部X4においては輝度の向上を優先させている。図6においては、ガラスプレート縁部X4では傾斜面4aを白色樹脂で覆い、ガラスプレート側面は青色樹脂で覆ったが、白色樹脂をガラスプレート上面の高さまで設け、ガラスプレート側面まで覆わせてもよい。   FIG. 6 shows a second embodiment of the light emitting device according to the present invention. In FIG. 6, the blue resin layer 8 is in contact with the inclined surface 4a located at the glass plate edge portions X1, X2, and X3 and the side surface of the glass plate, and the curved surface 4b located at the element gap portions Y1, Y2, and Y3. It is provided so that it may touch. On the other hand, the white resin layer 7 is provided in contact with the inclined surface 4a located at the glass plate edge X4. That is, by providing the white resin layer 7 on one side of the rectangular wavelength conversion layer 4 in the short direction, the glass plate edge X1, X2, X3 gives priority to alleviating color unevenness, and the glass plate edge In the part X4, priority is given to improving the luminance. In FIG. 6, the inclined surface 4a is covered with the white resin at the glass plate edge portion X4 and the glass plate side surface is covered with the blue resin. However, the white resin may be provided up to the height of the upper surface of the glass plate and covered to the glass plate side surface. Good.

図7は本発明に係る発光装置の第3の実施の形態を示す。図7においては、青色樹脂層8はガラスプレート縁部X1、X3に位置する傾斜面4a及びガラスプレート側面に接するように、また、素子間隙部Y1、Y2、Y3に位置する湾曲面4bに接するように設けられている。他方、ガラスプレート縁部X2、X4に位置する傾斜面4aには白色樹脂層7を接するように設けてある。つまり、長方形の矩形である波長変換層4の短手方向の両端辺に白色樹脂層7を設けることにより、ガラスプレート縁部X1、X3においては色むらの緩和を優先し、ガラスプレート縁部X2、X4においては輝度の向上を優先させている。図7においては、ガラスプレート縁部X2、X4では傾斜面4aを白色樹脂で覆い、ガラスプレート側面は青色樹脂で覆ったが、白色樹脂をガラスプレート上面の高さまで設け、ガラスプレート側面まで覆わせてもよい。   FIG. 7 shows a third embodiment of a light emitting device according to the present invention. In FIG. 7, the blue resin layer 8 is in contact with the inclined surface 4a located at the glass plate edge portions X1 and X3 and the side surface of the glass plate, and is in contact with the curved surface 4b located at the element gap portions Y1, Y2, and Y3. It is provided as follows. On the other hand, the white resin layer 7 is provided in contact with the inclined surface 4a located at the glass plate edge portions X2 and X4. That is, by providing the white resin layer 7 on both sides in the short direction of the wavelength conversion layer 4 which is a rectangular rectangle, priority is given to the relief of color unevenness at the glass plate edges X1 and X3, and the glass plate edge X2 , X4 is prioritized to improve luminance. In FIG. 7, at the glass plate edges X2 and X4, the inclined surface 4a is covered with white resin and the side surface of the glass plate is covered with blue resin, but the white resin is provided up to the height of the upper surface of the glass plate and covered to the side surface of the glass plate. May be.

図8は本発明に係る発光装置の第4の実施の形態を示す。図8においては、青色樹脂層8はガラスプレート縁部X1、X3、X4に位置する傾斜面4a及びガラスプレート側面に接するように、また、素子間隙部Y1、Y2、Y3に位置する湾曲面4bに接するように設けられている。他方、ガラスプレート縁部X2に位置する傾斜面4aには白色樹脂層7を接するように設けてある。つまり、長方形の矩形である波長変換層4の短手方向の一端辺に白色樹脂層7を設けることにより、ガラスプレート縁部X1、X3、X4においては色むらの緩和を優先し、ガラスプレート縁部X2においては輝度の向上を優先させている。図8においては、ガラスプレート縁部X2では傾斜面4aを白色樹脂で覆い、ガラスプレート側面は青色樹脂で覆ったが、白色樹脂をガラスプレート上面の高さまで設け、ガラスプレート側面まで覆わせてもよい。   FIG. 8 shows a fourth embodiment of a light emitting device according to the present invention. In FIG. 8, the blue resin layer 8 is in contact with the inclined surface 4a positioned at the glass plate edge portions X1, X3, and X4 and the side surface of the glass plate, and the curved surface 4b positioned at the element gap portions Y1, Y2, and Y3. It is provided so that it may touch. On the other hand, the white resin layer 7 is provided in contact with the inclined surface 4a located at the glass plate edge X2. That is, by providing the white resin layer 7 on one side of the rectangular wavelength conversion layer 4 in the short direction, priority is given to alleviating color unevenness at the glass plate edges X1, X3, and X4. In the part X2, priority is given to improving the luminance. In FIG. 8, at the glass plate edge X2, the inclined surface 4a is covered with white resin and the glass plate side surface is covered with blue resin. However, the white resin may be provided up to the height of the upper surface of the glass plate and covered to the glass plate side surface. Good.

図9は本発明に係る発光装置の第5の実施の形態を示す。図9においては、青色樹脂層8はガラスプレート縁部X1に位置する傾斜面4a及びガラスプレート側面に接するように、また、素子間隙部Y1、Y2、Y3に位置する湾曲面4bに接するように設けられている。他方、ガラスプレート縁部X2、X3、X4に位置する傾斜面4aには白色樹脂層7を接するように設けてある。つまり、長方形の矩形である波長変換層4の短手方向の両端辺及び長手方向の一端辺に白色樹脂層7を設けることにより、ガラスプレート縁部X1においては色むらの緩和を優先し、ガラスプレート縁部X2、X3、X4においては輝度の向上を優先させている。図9においては、ガラスプレート縁部X2、X3、X4では傾斜面4aを白色樹脂で覆い、ガラスプレート側面は青色樹脂で覆ったが、白色樹脂をガラスプレート上面の高さまで設け、ガラスプレート側面まで覆わせてもよい。   FIG. 9 shows a fifth embodiment of a light emitting device according to the present invention. In FIG. 9, the blue resin layer 8 is in contact with the inclined surface 4a located at the glass plate edge portion X1 and the side surface of the glass plate, and so as to be in contact with the curved surface 4b located at the element gap portions Y1, Y2, and Y3. Is provided. On the other hand, the white resin layer 7 is provided in contact with the inclined surface 4a located at the glass plate edge portions X2, X3, and X4. In other words, by providing the white resin layer 7 on both sides in the short direction and one end in the longitudinal direction of the wavelength conversion layer 4 that is a rectangular rectangle, priority is given to the relaxation of color unevenness at the glass plate edge X1, and the glass In the plate edge portions X2, X3, and X4, priority is given to improving the luminance. In FIG. 9, at the glass plate edges X2, X3, and X4, the inclined surface 4a is covered with white resin, and the glass plate side surface is covered with blue resin. However, the white resin is provided up to the height of the glass plate upper surface, up to the glass plate side surface. It may be covered.

従って、図6〜図9に示すように、傾斜面4aに接する樹脂は上面から見たときのその傾斜面が位置するガラスプレート縁部によって、青色樹脂と白色樹脂を選択することが可能である。青色樹脂を選択すれば、そのガラスプレート縁部からの発光は色むらの改善となり、白色樹脂を選択すれば、そのガラスプレート縁部からの発光の輝度の向上となる。   Accordingly, as shown in FIGS. 6 to 9, the resin in contact with the inclined surface 4a can be selected from the blue resin and the white resin depending on the edge of the glass plate where the inclined surface is located when viewed from above. . If a blue resin is selected, light emission from the edge of the glass plate will improve color unevenness, and if a white resin is selected, the luminance of light emission from the edge of the glass plate will be improved.

図10は、リフレクタタイプ灯具において図6の発光装置、図7の発光装置及び図8の発光装置を長手方向に並べたとき、重ね合わされた配光を説明する図である。この場合、重ね合わされた配光は領域A、B、Cに分けられる。長手方向のガラスプレート端部の発光が重なった領域A、Cにおいては、図6、図7、図8の発光装置はいずれも長手方向のガラスプレート縁部X1、X3の傾斜面4aには共に青色樹脂が接しているため個々の装置からの光は既に色度は改善されたものとなり、重ね合わさったあとも改善された色度で変化はない。他方、領域Bにおいては、素子直上部、短手方向のガラスプレート縁部及び素子間隙部からの発光色度は異なる各光が重なるので色度は平均化される。従って、配列されている発光装置の対向する辺に位置するガラスプレート縁部には白色樹脂を用いており黄色味を帯びた発光となるが、この領域上には素子直上部の光が重なるので、黄色味は緩和される。さらに、白色樹脂層を用いている領域は輝度が向上するので、P軸方向の平均輝度も向上する。つまり、あらかじめ個々の発光装置において発光装置の配列方向にあるガラスプレート縁部の傾斜面4aには青色顔料を適用し、配列される発光装置の対向する辺に位置するガラスプレート縁部には白色樹脂を適用することによって、複数の発光装置が重なり合った全体の発光としては輝度を向上させた上で色むらのないものとすることができる。複数の発光装置を配列させた場合においても配光の方向によって色むらを改善したい方向が決められているなら、発光装置の配列方向においても青色顔料はいずれか一方の領域のみの適用でもよい。たとえば、領域Aの色むらを改善し領域Cでは輝度を優先したいのなら、それぞれの発光装置のガラスプレート縁部X3に位置する傾斜面4aには白色樹脂が接していてもかまわない。このように、ガラスプレート縁部の光の色むらが緩和されることは上述のリフレクタタイプ灯具において有利である。   FIG. 10 is a diagram for explaining the light distribution superimposed when the light emitting device of FIG. 6, the light emitting device of FIG. 7, and the light emitting device of FIG. 8 are arranged in the longitudinal direction in the reflector type lamp. In this case, the superimposed light distribution is divided into regions A, B, and C. In the regions A and C where the light emission at the end of the glass plate in the longitudinal direction overlaps, the light emitting devices of FIGS. 6, 7 and 8 are both on the inclined surface 4a of the glass plate edge X1 and X3 in the longitudinal direction. Since the blue resin is in contact with each other, the light from each device has already been improved in chromaticity, and there is no change in the improved chromaticity after overlapping. On the other hand, in the region B, light of different emission chromaticities from the portion directly above the device, the edge of the glass plate in the short direction, and the device gap overlap, so the chromaticity is averaged. Therefore, white resin is used for the edge of the glass plate located on the opposite side of the arranged light emitting devices, and the light emission is yellowish, but the light directly above the element overlaps this area. The yellowish color is alleviated. Further, since the luminance of the region using the white resin layer is improved, the average luminance in the P-axis direction is also improved. That is, in each individual light emitting device, a blue pigment is applied to the inclined surface 4a of the glass plate edge in the arrangement direction of the light emitting devices in advance, and white is applied to the glass plate edge located on the opposite side of the arranged light emitting devices. By applying the resin, the entire light emission in which the plurality of light emitting devices overlap with each other can be improved in luminance and free from color unevenness. Even when a plurality of light emitting devices are arranged, if the direction in which the color unevenness is to be improved is determined by the direction of light distribution, the blue pigment may be applied to only one of the regions in the arrangement direction of the light emitting devices. For example, if it is desired to improve the color unevenness of the area A and prioritize the brightness in the area C, the white resin may be in contact with the inclined surface 4a located at the glass plate edge X3 of each light emitting device. Thus, it is advantageous in the above-described reflector type lamp that the color unevenness of the light at the edge of the glass plate is alleviated.

次に、図1の発光装置の製造方法を図11、図12を参照して説明する。   Next, a method for manufacturing the light emitting device of FIG. 1 will be described with reference to FIGS.

始めに、図11の(A)の実装工程を参照すると、配線基板1上に発光素子2−1、2−2、2−3、2−4をバンプ3を介して実装する。   First, referring to the mounting process of FIG. 11A, the light emitting elements 2-1, 2-2, 2-3, and 2-4 are mounted on the wiring substrate 1 via the bumps 3.

次に、図11の(B)のポッティング工程を参照すると、たとえばYAG蛍光体を分散含有したシリコーン樹脂4’をディスペンサ111で適量だけ滴下する。ポッティングされた樹脂は素子上面で表面張力を保ったままの状態となる。   Next, referring to the potting step in FIG. 11B, for example, an appropriate amount of silicone resin 4 ′ containing a YAG phosphor dispersed therein is dropped by a dispenser 111. The potted resin remains in a state where the surface tension is maintained on the upper surface of the element.

次に、図11の(C)のガラスプレート装着工程を参照すると、ガラスプレート5をコレットチャック112を用いて未硬化のシリコーン樹脂4’上にゆっくり接近させて押圧装着する。この結果、シリコーン樹脂4’はガラスプレート5の下面に濡れ拡がると共に、発光素子2−1、2−2、2−3、2−4の上面及び側面に濡れ拡がる。このとき、ガラスプレート5の縁部において、シリコーン樹脂4’がガラスプレート5の下面と発光素子の側面とを接続する傾斜面4aを、また、同時に、素子間隙部において、メニスカス形状の湾曲面4bが形成されるように、シリコーン樹脂4’の表面張力は保たせたままガラスプレートは装着される。ガラスプレート装着工程は、ガラスプレート5がシリコーン樹脂4’の一部に接した段階でコレットチャック112をはずしガラスプレート5の自重によりシリコーン樹脂4’を濡れ拡げることで行ってもよい。   Next, referring to the glass plate mounting step of FIG. 11C, the glass plate 5 is pressed and mounted on the uncured silicone resin 4 ′ slowly using the collet chuck 112. As a result, the silicone resin 4 ′ wets and spreads on the lower surface of the glass plate 5 and also spreads on the upper and side surfaces of the light emitting elements 2-1, 2-2, 2-3 and 2-4. At this time, at the edge of the glass plate 5, the silicone resin 4 ′ has the inclined surface 4 a connecting the lower surface of the glass plate 5 and the side surface of the light emitting element, and at the same time, the meniscus curved surface 4 b at the element gap. The glass plate is mounted while maintaining the surface tension of the silicone resin 4 ′. The glass plate mounting step may be performed by removing the collet chuck 112 when the glass plate 5 is in contact with a part of the silicone resin 4 ′ and spreading the silicone resin 4 ′ by the weight of the glass plate 5.

次に、図12の(A)の枠装着工程を参照すると、配線基板1の上面外周に枠6を接着剤を用いて装着する。   Next, referring to the frame mounting step in FIG. 12A, the frame 6 is mounted on the outer periphery of the upper surface of the wiring board 1 using an adhesive.

次に、図12の(B)の青色樹脂注入工程を参照すると、青色樹脂をディスペンサ113で、枠6と発光素子2−1、2−4、波長変換層4及びガラスプレート5との間に注入する。この結果、青色樹脂はガラスプレート5の縁部の下に充填され、傾斜面4a及びガラスプレート5の側面を覆う。また同時に、青色樹脂は上述のごとく、低粘度であるので、発光素子2−1、2−2、2−3、2−4の下部のバンプ3の周囲及び発光素子2−1、2−2、2−3、2−4間の素子間隙部の湾曲面4bにも密着するように充填される。青色樹脂を硬化処理により硬化すると、青色樹脂層8が形成される。   Next, referring to the blue resin injection step of FIG. 12B, the blue resin is dispensed between the frame 6 and the light emitting elements 2-1, 2-4, the wavelength conversion layer 4 and the glass plate 5 by the dispenser 113. inject. As a result, the blue resin is filled under the edge of the glass plate 5 and covers the inclined surface 4 a and the side surface of the glass plate 5. At the same time, since the blue resin has a low viscosity as described above, the periphery of the bump 3 below the light emitting elements 2-1, 2-2, 2-3, 2-4 and the light emitting elements 2-1, 2-2. It fills so that it may also contact | adhere also to the curved surface 4b of the element gap | interval part between 2-3 and 2-4. When the blue resin is cured by a curing process, a blue resin layer 8 is formed.

尚、図6、図7、図8、図9の発光装置を製造する際には、図12の(B)の青色樹脂注入工程の前に、白色樹脂層7を注入する白色樹脂注入工程を設ける。白色樹脂注入工程は白色樹脂を設けたいガラスプレート縁部にある傾斜面4aに沿って白色樹脂を充填することで行われる。この場合、白色樹脂注入工程に用いる白色樹脂は、硬化前であっても濡れ広がらないような高粘度のものを使用する。従って、所定のガラスプレート縁部の下のみに充填されるが、発光素子2−1、2−2、2−3、2−4の下部及び素子間隙部の下部には充填されない。   6, 7, 8, and 9, a white resin injection process for injecting the white resin layer 7 is performed before the blue resin injection process in FIG. Provide. The white resin injection step is performed by filling the white resin along the inclined surface 4a at the edge of the glass plate where the white resin is to be provided. In this case, the white resin used in the white resin injecting step is a highly viscous resin that does not spread out even before being cured. Therefore, it fills only under the predetermined glass plate edge, but does not fill the lower part of the light emitting elements 2-1, 2-2, 2-3, 2-4 and the lower part of the element gap.

図13は本発明に係る発光装置の第6の実施の形態を示す。短手方向の両端辺のガラスプレート縁部X2、X4において傾斜面4aには青色樹脂層8’が接し、ガラスプレート5側面には白色樹脂層7が接している。図13においては、青色樹脂層8’は図1、図6、図7、図8、図9の低粘度の青色樹脂層8と異なり、高粘度であり、ガラスプレート縁部X1、X2、X3、X4に設けられている。また、白色樹脂層7はガラスプレート5の側面に密着するように設けられている。これにより、ガラスプレート縁部X1、X2、X3、X4の色むらの緩和とガラスプレート5の側面の反射効果が得られる。 FIG. 13 shows a sixth embodiment of a light emitting device according to the present invention. The blue resin layer 8 ′ is in contact with the inclined surface 4 a and the white resin layer 7 is in contact with the side surface of the glass plate 5 at the glass plate edges X 2 and X 4 at both ends in the short direction. In FIG. 13, the blue resin layer 8 ′ has a high viscosity unlike the low viscosity blue resin layer 8 of FIGS. 1, 6, 7, 8, and 9, and the glass plate edges X1, X2, X3. , X4. The white resin layer 7 is provided so as to be in close contact with the side surface of the glass plate 5. Thereby, the relief of the color unevenness of the glass plate edge portions X1, X2, X3, and X4 and the reflection effect of the side surface of the glass plate 5 are obtained.

尚、図13の発光装置を製造する際には、図12の(B)の青色樹脂注入工程において、高粘度の青色樹脂を注入して硬化させる。青色樹脂注入工程は青色樹脂を設けたい領域にある傾斜面4aに沿って青色樹脂を充填することで行われる。さらに、この青色樹脂注入工程の後に、白色樹脂層7を注入する白色樹脂注入工程を設け、青色樹脂層8’上に白色樹脂をガラスプレート5の側面を覆うまで注入して硬化させる。この場合の白色樹脂層7は低粘度の樹脂を使用する。白色樹脂注入工程では、白色樹脂は素子下面のバンプ周りと素子間隙にまで注入される。さらに青色樹脂層8が設けられていなかったガラスプレート縁部X1、X3においては傾斜面4a及びガラスプレート側面を両方とも白色樹脂が覆う。図13においては、ガラスプレート縁部X2、X4としたが、傾斜面4aには青色樹脂層8’が接し、その上方のガラスプレート5側面には白色樹脂層7が接するようにするガラスプレート縁部の組合せはどのようなものでも良く、2辺だけのみならず1辺のみまたは3辺としても良い。ただし、高粘度の樹脂で4方向を囲むと低粘度の樹脂が素子下面のバンプの周辺及び素子間隙に入り込まないため4方向には適用しない。必ず1辺以上は低粘度の樹脂が進入する隙間となるよう開放する。 When the light emitting device of FIG. 13 is manufactured, a high viscosity blue resin is injected and cured in the blue resin injection step of FIG. The blue resin injection step is performed by filling the blue resin along the inclined surface 4a in the region where the blue resin is to be provided. Further, after the blue resin injection step, a white resin injection step for injecting the white resin layer 7 is provided, and the white resin is injected onto the blue resin layer 8 ′ until the side surface of the glass plate 5 is covered and cured. The white resin layer 7 in this case uses a low viscosity resin. In the white resin injection step, the white resin is injected up to the periphery of the bumps on the lower surface of the element and the element gap. Further, in the glass plate edge portions X1 and X3 where the blue resin layer 8 is not provided, the white resin covers both the inclined surface 4a and the glass plate side surface. In FIG. 13, the glass plate edges X2 and X4 are used. However, the glass plate edge is such that the blue resin layer 8 ' is in contact with the inclined surface 4a and the white resin layer 7 is in contact with the side surface of the glass plate 5 above. Any combination of parts may be used, and not only two sides but also one side or three sides may be used. However, if the four directions are surrounded by a high-viscosity resin, the low-viscosity resin does not enter the periphery of the bumps on the lower surface of the element and the element gap, so that the four directions are not applied. Be sure to open at least one side so that a low-viscosity resin enters.

上述の第1〜第6の実施の形態においては、ガラスプレート縁部X1、X2、X3、X4における色むらは緩和されているが、素子間隙部Y1、Y2、Y3における色むらは緩和されていない。この理由は、図14の(A)の黒丸で示すごとく、ガラスプレート縁部の波長変換層4の蛍光体は三角断面状に分布し、他方、図14の(B)の黒丸で示すごとく、素子間隙部の波長変換層4の蛍光体は四角断面状に分布し、この結果、素子間隙部の方が蛍光体含有量が多くなるためである。 In the first to sixth embodiments described above, the color unevenness in the glass plate edge portions X1, X2, X3, and X4 is alleviated, but the color unevenness in the element gap portions Y1, Y2, and Y3 is alleviated. Absent. The reason for this is that, as indicated by the black circles in FIG. 14A, the phosphors of the wavelength conversion layer 4 at the edge of the glass plate are distributed in a triangular cross-section, whereas, as indicated by the black circles in FIG. This is because the phosphor of the wavelength conversion layer 4 in the element gap is distributed in a square cross section, and as a result, the phosphor content in the element gap is greater.

図15は本発明に係る発光装置の第7の実施の形態を示す。図15においては、高濃度青色樹脂層8a及び低濃度青色樹脂層8bが設けられている。この場合、高濃度青色樹脂層8aは低粘度であるが、低濃度青色樹脂層8bは低粘度でも高粘度でもよい。尚、青色樹脂層の高濃度、低濃度は青色顔料たとえばフタロシアニンの濃度で決定される。   FIG. 15 shows a seventh embodiment of a light emitting device according to the present invention. In FIG. 15, a high density blue resin layer 8a and a low density blue resin layer 8b are provided. In this case, the high concentration blue resin layer 8a has a low viscosity, but the low concentration blue resin layer 8b may have a low viscosity or a high viscosity. The high concentration and low concentration of the blue resin layer are determined by the concentration of the blue pigment such as phthalocyanine.

低粘度の高濃度青色樹脂層8aは、発光素子2−1、2−2、2−3、2−4のバンプ3の周囲及び素子間隙部Y1、Y2、Y3の湾曲面4bに接するように形成され、これにより、素子間隙部Y1、Y2、Y3の色むらを緩和する。   The low-viscosity high-concentration blue resin layer 8a is in contact with the periphery of the bump 3 of the light-emitting elements 2-1, 2-2, 2-3, and 2-4 and the curved surface 4b of the element gaps Y1, Y2, and Y3. As a result, the color unevenness of the element gaps Y1, Y2, and Y3 is alleviated.

低濃度青色樹脂層8bは、高濃度青色樹脂層8a上の波長変換層4の傾斜面及びガラスプレート5の側面に形成される。これにより、ガラスプレート縁部X1、X2、X3、X4の色むらを緩和する。   The low concentration blue resin layer 8b is formed on the inclined surface of the wavelength conversion layer 4 and the side surface of the glass plate 5 on the high concentration blue resin layer 8a. Thereby, the color unevenness of the glass plate edge portions X1, X2, X3, and X4 is alleviated.

このようにして、図15においては、ガラスプレート縁部の色むらと素子間隙部の色むらを同時に緩和できる。   In this way, in FIG. 15, the uneven color at the edge of the glass plate and the uneven color at the element gap can be alleviated simultaneously.

尚、図15の発光装置を製造する際には、図12の(B)の青色樹脂注入工程において、始めに、低粘度の高濃度青色樹脂を、素子下面のバンプ周囲及び素子間隙の湾曲面4bに接し、かつ傾斜面4aは開放するように注入して硬化させ、高濃度青色樹脂層8aを形成する。次いで、低濃度青色樹脂を傾斜面4aと接するように注入して硬化させ、低濃度青色樹脂層8bを形成する。   When the light emitting device of FIG. 15 is manufactured, in the blue resin injecting step of FIG. 12B, first, a low-viscosity high-concentration blue resin is applied to the periphery of the bumps on the lower surface of the element and the curved surface of the element gap. The inclined surface 4a is in contact with 4b and is cured so as to be opened, thereby forming a high-density blue resin layer 8a. Next, a low-concentration blue resin is injected and cured so as to be in contact with the inclined surface 4a, thereby forming a low-concentration blue resin layer 8b.

図16は本発明に係る発光装置の第8の実施の形態を示す。図16においては、図15における高濃度青色樹脂層8aを設け、低濃度青色樹脂層8bの代りに高粘度の低濃度青色樹脂層8b’を設け、さらに、図13の白色樹脂層7が設けられている。   FIG. 16 shows an eighth embodiment of a light emitting device according to the present invention. In FIG. 16, the high density blue resin layer 8a in FIG. 15 is provided, the high viscosity low density blue resin layer 8b ′ is provided in place of the low density blue resin layer 8b, and the white resin layer 7 in FIG. 13 is further provided. It has been.

低粘度の高濃度青色樹脂層8aは、図15の場合と同様に、発光素子2−1、2−2、2−3、2−4のバンプ3の周囲及び素子間隙部Y1、Y2、Y3の湾曲面4bに接するように形成され、これにより、素子間隙部Y1、Y2、Y3の色むらを緩和する。   The low-viscosity high-concentration blue resin layer 8a is formed around the bumps 3 of the light emitting elements 2-1, 2-2, 2-3, 2-4 and the element gaps Y1, Y2, Y3, as in FIG. In this way, the uneven color of the element gap portions Y1, Y2, and Y3 is alleviated.

低濃度青色樹脂層8b’は、ガラスプレート縁部X1、X2、X3、X4の下部の波長変換層4の傾斜面4aに形成される。これにより、ガラスプレート縁部X1、X2、X3、X4の色むらを緩和する。尚、第8の実施の形態においては、第6の実施の形態とは異なり、はじめに素子下面及び素子間隙に樹脂を注入しているため低濃度の青色樹脂をガラスプレート縁部X1、X2、X3、X4の4方向に設けてかまわない。   The low-concentration blue resin layer 8b 'is formed on the inclined surface 4a of the wavelength conversion layer 4 below the glass plate edge portions X1, X2, X3, and X4. Thereby, the color unevenness of the glass plate edge portions X1, X2, X3, and X4 is alleviated. In the eighth embodiment, unlike the sixth embodiment, the resin is first injected into the lower surface of the element and the gap between the elements, so that low concentration blue resin is used for the glass plate edges X1, X2, X3. , X4 may be provided in four directions.

また、白色樹脂層7はガラスプレート5の側面及び低濃度青色樹脂層8bの側面と枠6との間に設けられ、ガラスプレート5の側面の反射効果が得られる。   The white resin layer 7 is provided between the side surface of the glass plate 5 and the side surface of the low-concentration blue resin layer 8 b and the frame 6, and a reflection effect on the side surface of the glass plate 5 is obtained.

このようにして、図16においても、ガラスプレート縁部の色むらと素子間隙部の色むらを同時に緩和できると共に、ガラスプレート5の側面の反射効果も奏することができる。   In this way, in FIG. 16 as well, the color unevenness at the edge of the glass plate and the color unevenness at the element gap can be alleviated at the same time, and the reflection effect of the side surface of the glass plate 5 can also be achieved.

尚、図16の発光装置を製造する際には、図12の(B)の青色樹脂注入工程において、始めに、低粘度の高濃度青色樹脂を注入して硬化させ、高濃度青色樹脂層8aを形成する。次いで、高粘度の低濃度青色樹脂を注入して硬化させ、低濃度青色樹脂層8b’を形成する。さらに、この青色樹脂注入工程の後に、白色樹脂注入工程を設け、枠6とガラスプレート5の側面及び低濃度青色樹脂層8b’の側面との間に白色樹脂層7を注入して硬化させる。この場合、白色樹脂層7は高粘度でも低粘度でもよい。   When the light emitting device of FIG. 16 is manufactured, in the blue resin injecting step of FIG. 12B, first, a low-concentration high-concentration blue resin is injected and cured, and then the high-concentration blue resin layer 8a. Form. Next, a high-viscosity low-concentration blue resin is injected and cured to form a low-concentration blue resin layer 8b '. Further, a white resin injection step is provided after the blue resin injection step, and the white resin layer 7 is injected between the frame 6 and the side surface of the glass plate 5 and the side surface of the low-concentration blue resin layer 8b 'to be cured. In this case, the white resin layer 7 may have a high viscosity or a low viscosity.

尚、上述の第1から6の実施の形態においては、複数の発光素子を設けているが、本発明は1つの発光素子にも適用し得る。この場合には、ガラスプレート縁部のみの色むらが緩和される。また、波長変換層4の蛍光体濃度は、均一であっても、下方が大きくてもよい。また、ガラスプレート5はガラスでなくとも板状の光学部材で、発光素子からの光と波長変換層で変換された光が透過することができる材料であればよい。   In the first to sixth embodiments described above, a plurality of light emitting elements are provided, but the present invention can also be applied to one light emitting element. In this case, color unevenness only at the edge of the glass plate is alleviated. Further, the phosphor concentration of the wavelength conversion layer 4 may be uniform or may be large in the lower part. Further, the glass plate 5 is not a glass but may be a plate-like optical member as long as it can transmit light from the light emitting element and light converted by the wavelength conversion layer.

1:配線基板
2−1、2−2、2−3、2−4:発光素子
3:バンプ
4:波長変換層
4a:傾斜面
4b:湾曲面
5:ガラスプレート
6:枠
7:白色樹脂層
8:低粘度の青色樹脂層
8’:高粘度の青色樹脂層
8a:低粘度の高濃度青色樹脂層
8b:低濃度青色樹脂層
8b’:高粘度の低濃度青色樹脂層
X1、X2、X3、X4:ガラスプレート縁部
Y1、Y2、Y3:素子間隙部
Z:素子直上部
1: Wiring board 2-1, 2-2, 2-3, 2-4: Light emitting element 3: Bump 4: Wavelength conversion layer 4a: Inclined surface 4b: Curved surface 5: Glass plate 6: Frame 7: White resin layer 8: Low viscosity blue resin layer 8 ′: High viscosity blue resin layer 8a: Low viscosity high density blue resin layer 8b: Low density blue resin layer 8b ′: High viscosity low density blue resin layer X1, X2, X3 , X4: Glass plate edge Y1, Y2, Y3: Element gap Z: Directly above the element

Claims (8)

配線基板と、
前記配線基板上に実装された青色の発光素子と、
前記発光素子の上面及び側面に設けられた波長変換層と、
前記波長変換層上に設けられた板状光学部材と
を具備し、
前記波長変換層は該発光素子側面と該板状光学部材とを結ぶ傾斜面を形成し、
さらに、前記傾斜面に接して設けられ、前記発光素子からの光を吸収せずに前記波長変換層からの光を選択的に吸収する第1の青色樹脂層を具備する発光装置。
A wiring board;
And blue light-emitting element mounted on the wiring substrate,
And a wavelength conversion layer provided on the upper and side surfaces of the light emitting element,
Comprising a plate-shaped optical member provided on said wavelength conversion layer,
The wavelength conversion layer forms an inclined surface connecting the light emitting element side surface and the plate-like optical member,
And a first blue resin layer that is provided in contact with the inclined surface and selectively absorbs light from the wavelength conversion layer without absorbing light from the light emitting element .
前記波長変換層が上面から見て4辺の前記傾斜面を形成する矩形をなし、
前記波長変換層の前記傾斜面の少なくとも一辺に接して設けられている白色樹脂層をさらに具備し、
前記第1の青色樹脂層は前記傾斜面の他の辺に接して設けられた請求項1に記載の発光装置。
The wavelength conversion layer has a rectangular shape that forms the inclined surfaces of four sides when viewed from above,
Further comprising a white resin layer provided in contact with at least one side of the inclined surface of the wavelength conversion layer,
The light emitting device according to claim 1, wherein the first blue resin layer is provided in contact with another side of the inclined surface.
さらに、前記第1の青色樹脂層上方の前記板状光学部材の側面に接して設けられ白色樹脂層を具備する請求項1に記載の発光装置。 2. The light emitting device according to claim 1, further comprising a white resin layer provided in contact with a side surface of the plate-like optical member above the first blue resin layer. 前記発光素子が複数であり
さらに、前記複数の発光素子の間隙部における前記配線基板と前記波長変換層との間に設けられた第2の青色樹脂層を具備し、
前記第2の青色樹脂層の濃度は前記第1の青色樹脂層の濃度より高い請求項1に記載の発光装置。
The light emitting element is a plurality of,
Furthermore, the second blue resin layer provided between the wiring substrate and the wavelength conversion layer in the gap portion of the plurality of light emitting elements,
The light emitting device according to claim 1, wherein a concentration of the second blue resin layer is higher than a concentration of the first blue resin layer.
配線基板上に青色の発光素子を実装する発光素子実装工程と、
前記発光素子上に波長変換部材を含有した樹脂をポッティングするポッティング工程と、
前記波長変換部材を含有した樹脂上に板状光学部材を、前記波長変換部材を含有した樹脂が前記発光素子側面と前記板状光学部材とを結ぶ傾斜面が形成されるように装着する板状光学部材装着工程と、
前記傾斜面に接するように、前記発光素子からの光を吸収せずに前記波長変換部材からの光を選択的に吸収する第1の青色樹脂を注入する第1の青色樹脂注入工程と
を具備する発光装置の製造方法。
A light emitting element mounting step of mounting a blue light emitting element on the wiring board;
A potting step of potting a resin containing a wavelength conversion member on the light emitting element;
A plate-like optical member is mounted on the resin containing the wavelength conversion member, and the plate-like optical member is mounted such that an inclined surface connecting the light-emitting element side surface and the plate-like optical member is formed by the resin containing the wavelength conversion member. An optical member mounting step;
A first blue resin injection step of injecting a first blue resin that selectively absorbs light from the wavelength conversion member without absorbing light from the light emitting element so as to be in contact with the inclined surface. A method for manufacturing a light emitting device.
さらに、前記第1の青色樹脂注入工程の前に、前記配線基板上の前記波長変換層の傾斜面の一部に接して白色樹脂層を注入する白色樹脂注入工程を具備する請求項5に記載の発光装置の製造方法。 6. The white resin injection step of injecting a white resin layer in contact with a part of the inclined surface of the wavelength conversion layer on the wiring board before the first blue resin injection step. Method for manufacturing the light emitting device. さらに、前記第1の青色樹脂注入工程の後に、前記配線基板上の前記板状光学部材の端部に接して白色樹脂層を注入する白色樹脂注入工程を具備する請求項5に記載の発光装置の製造方法。 6. The light emitting device according to claim 5, further comprising a white resin injection step of injecting a white resin layer in contact with an end portion of the plate-like optical member on the wiring board after the first blue resin injection step. Manufacturing method. 前記発光素子実装工程は複数の発光素子を実装し、
さらに、前記複数の発光素子の間隙部における前記配線基板と前記波長変換層との間に前記第1の青色樹脂よりも高い濃度の第2の青色樹脂を注入する第2の青色樹脂注入工程を具備する請求項5に記載の発光装置の製造方法。
The light emitting element mounting step mounts a plurality of light emitting elements,
And a second blue resin injection step of injecting a second blue resin having a higher concentration than the first blue resin between the wiring board and the wavelength conversion layer in the gaps of the plurality of light emitting elements. The manufacturing method of the light-emitting device of Claim 5 which comprises.
JP2011065362A 2011-03-24 2011-03-24 Light emitting device and manufacturing method thereof Active JP5718117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065362A JP5718117B2 (en) 2011-03-24 2011-03-24 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065362A JP5718117B2 (en) 2011-03-24 2011-03-24 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012204438A JP2012204438A (en) 2012-10-22
JP5718117B2 true JP5718117B2 (en) 2015-05-13

Family

ID=47185136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065362A Active JP5718117B2 (en) 2011-03-24 2011-03-24 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5718117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512201B2 (en) 2016-09-30 2019-05-15 日亜化学工業株式会社 Method of manufacturing linear light emitting device and linear light emitting device
JP6665851B2 (en) * 2017-12-25 2020-03-13 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
JP6760321B2 (en) 2018-03-20 2020-09-23 日亜化学工業株式会社 Light emitting device and manufacturing method of light emitting device
US11709297B2 (en) 2018-09-24 2023-07-25 Vitro Flat Glass Llc Articles coated with coatings containing light absorption materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992770B2 (en) * 1996-11-22 2007-10-17 日亜化学工業株式会社 Light emitting device and method for forming the same
JP5119610B2 (en) * 2006-05-26 2013-01-16 日亜化学工業株式会社 Light emitting diode
JP5278023B2 (en) * 2009-02-18 2013-09-04 日亜化学工業株式会社 Method for manufacturing light emitting device
JP5326705B2 (en) * 2009-03-17 2013-10-30 日亜化学工業株式会社 Light emitting device
US8651703B2 (en) * 2010-04-09 2014-02-18 Intellectual Discovery Co., Ltd. Light emitting device using filter element

Also Published As

Publication number Publication date
JP2012204438A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
US11791324B2 (en) Light emitting device
CN107039410B (en) Method for manufacturing light emitting device
US9305903B2 (en) Light-emitting device and method of manufacturing the same
US8963187B2 (en) Wavelength-converting light emitting diode (LED) chip and LED device equipped with chip
JP5635832B2 (en) Semiconductor light emitting device
US20140054621A1 (en) Semiconductor light-emitting device including transparent plate with slanted side surface
US9022633B2 (en) Linear light source device and planar light source device
WO2013015058A1 (en) Light-emitting device
US20070228390A1 (en) Semiconductor light-emitting device
JP5895598B2 (en) Light emitting device
JP2012156180A (en) Light-emitting device and manufacturing method thereof
US20100207511A1 (en) Semiconductor light emitting device
KR20170123644A (en) Light source assembly with improved color uniformity
JP2007180339A (en) Light emitting device and its process for fabrication
JP5718117B2 (en) Light emitting device and manufacturing method thereof
JP2013182917A (en) Light-emitting device
JP5330855B2 (en) Semiconductor light emitting device
JP2020061543A (en) Light-emitting device
US10700245B2 (en) Light-emitting device
JP5681532B2 (en) Light emitting device and manufacturing method thereof
JP5345414B2 (en) Semiconductor light emitting device
JP6561861B2 (en) Method for manufacturing light emitting device
JP2012212809A (en) Semiconductor light emitting device and manufacturing method of the same
TWI793234B (en) Light emitting device
JP2013026485A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5718117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250