JP3989974B2 - Multilayer printed wiring board and manufacturing method thereof - Google Patents

Multilayer printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP3989974B2
JP3989974B2 JP365295A JP365295A JP3989974B2 JP 3989974 B2 JP3989974 B2 JP 3989974B2 JP 365295 A JP365295 A JP 365295A JP 365295 A JP365295 A JP 365295A JP 3989974 B2 JP3989974 B2 JP 3989974B2
Authority
JP
Japan
Prior art keywords
copper foil
metal foil
conductive bump
conductive
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP365295A
Other languages
Japanese (ja)
Other versions
JPH08195561A (en
Inventor
一安 田中
洋 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP365295A priority Critical patent/JP3989974B2/en
Publication of JPH08195561A publication Critical patent/JPH08195561A/en
Application granted granted Critical
Publication of JP3989974B2 publication Critical patent/JP3989974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、多層印刷配線板及びその製造方法に関する。
【0002】
【従来の技術】
周知の通り、電子機器には多くの半導体装置や電子部品等が印刷配線板に搭載・固定されて組み込まれている。こうした印刷配線板は、電子機器の小形化や高機能化などの点から高集積・高機能化した半導体装置を高密度で実装するために多層化した構成のものが用いられている。
【0003】
以下、多層化した構成の印刷配線板、すなわち多層印刷配線板の従来の技術を図11乃至図15を参照して説明する。図11乃至図15は各製造工程における断面図であり、製造工程に従って順に説明する。
【0004】
先ず、図11に示す第1の工程において、第1の銅箔1上に合成樹脂と銀粉とからなる導電ペーストによって略円錐形の導電性バンプ2を所定位置に形成する。そして導電性バンプ2上に配線板の基体となるガラス織布等で強化した第1の合成樹脂シート3と第2の銅箔4を重ね合わせる。
【0005】
次に図12に示す第2の工程において、前工程で重ね合わせたものを加熱加圧して一体化し、第1の銅箔1と第1の合成樹脂シート3、第2の銅箔4とを積層し三層構造の基板5を形成する。この時の加熱加圧によって導電性バンプ2が第1の合成樹脂シート3を貫通して第2の銅箔4に固着し、第1の銅箔1と第2の銅箔4とを接続する。
【0006】
続いて図13に示す第3の工程において、三層構造の基板5の第1の銅箔1と第2の銅箔4とを所定のパターン形状となるようにエッチングする。
【0007】
次に図14に示す第4の工程において、第3の銅箔6及び第4の銅箔7のそれぞれの所定位置に合成樹脂と銀粉とからなる導電ペーストによって略円錐形の導電性バンプ8,9を形成する。そして各導電性バンプ8,9が、基板5のエッチングされた第1の銅箔1及び第2の銅箔4の所定の部位と、同じく配線板の基体となるガラス織布等で強化した第2の合成樹脂シート10及び第3の合成樹脂シート11を間に介在させながら対向するように配置し、第3の銅箔6と基板5及び第4の銅箔7を重ね合わせる。
【0008】
次に図15に示す第5の工程において、前工程で重ね合わせたものを加熱加圧して第3の銅箔6と第2の合成樹脂シート10及び三層構造の基板5、さらに第3の合成樹脂シート11、第4の銅箔7とを一体化する。この時の加熱加圧によって導電性バンプ8,9が第2の合成樹脂シート10及び第3の合成樹脂シート11をそれぞれ貫通して第1の銅箔1と第2の銅箔4に固着し、第1の銅箔1と第3の銅箔6、また第2の銅箔4と第4の銅箔7とを接続する。
【0009】
続いて表裏両面の第3の銅箔6と第4の銅箔7とを所定のパターン形状となるようにエッチングし、両外表面にそれぞれパッド12,13を備えるようにする。これにより第1の銅箔1と第2の銅箔4を内層導体とし、これらと表層のパッド12,13とを導電性バンプ2,8,9で固着し接続した多層印刷配線板14が形成される。
【0010】
しかしながら、上記の各工程を経て製造された多層印刷配線板14に、そのパッド12,13に電子部品等を半田付けによって実装した場合、パッド12,13の固着強度が弱く、パッド12,13が剥がれて電子部品等が脱落してしまう虞があった。このため、パッド12,13の固着強度を強くし電子部品等の脱落を防止するようパッド12,13の寸法を大きくする必要があった。また逆にパッド12,13の寸法を大きくすることでパッド12,13間の距離や配線間の距離も広がってしまい、実装密度を上げることが困難な状況にあった。
【0011】
【発明が解決しようとする課題】
上記のように多層印刷配線板の表面に設けられたパッドの固着強度が弱く、実装した電子部品等がパッドと共に脱落してしまう虞があり、またこれを防止しようとパッド寸法を大きくすると配線間の距離等が小さくならず、実装密度を高くすることができない。このような状況に鑑みて本発明はなされたもので、その目的とするところは実装した電子部品等の脱落を防止することができると共に実装密度を高くすることができるようにした多層印刷配線板及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の多層印刷配線板及びその製造方法は、合成樹脂製の錐台状の導電性バンプを貫通するように備えた複数の基体を積層し、内設した内層金属箔間及び内層金属箔と表層に設けたパッドとを前記導電性バンプでそれぞれ接続してなる多層印刷配線板において、前記内層金属箔と表層のパッドを接続する導電性バンプが、小面積側の底面を前記パッドに固着し、大面積側の底面を前記内層金属箔に固着しており、かつ積層した前記基体の最上部及び最下部の基体が、それぞれ該基体の上下面上に前記内層金属箔と表層のパッドとを設けていることを特徴とするものであり、
さらに、基体の主部がエポキシ樹脂等の合成樹脂でなると共に、導電性バンプが銀粉末とエポキシ樹脂等の合成樹脂とからなるものであることを特徴とするものであり、
さらに、導電性バンプが円錐台状に形成されていることを特徴とするものであり、
また、第1の銅箔面の片方面に導電性ペーストによる印刷によって略円錐形の第1の導電性バンプを形成する第1の工程と、前記第1の銅箔の前記第1の導電性バンプ側に第1の合成樹脂シートと第2の銅箔を重ね合わせた後に加熱加圧して一体化し、前記第1の導電性バンプを前記第1の合成樹脂シートを貫通させ、該第1の導電性バンプの先端部を前記第2の銅箔面に固着する第2の工程と、前記第1及び第2の銅箔の少なくとも内設される前記第1の銅箔を所定パターンとなるようエッチングして第1の基板を形成する第3の工程と、前記第1の基板の所定パターンとした前記第1の銅箔の他方面に導電性ペーストによる印刷によって略円錐形の第2の導電性バンプを形成する第4の工程と、第3の銅箔面の片方面に導電性ペーストによる印刷によって略円錐形の第3の導電性バンプを形成する第5の工程と、前記第3の銅箔の前記第3の導電性バンプ側に第2の合成樹脂シートと第4の銅箔を重ね合わせた後に加熱加圧して一体化し、前記第3の導電性バンプを前記第2の合成樹脂シートを貫通させ該第3の導電性バンプの先端部を前記第4の銅箔面に固着する第6の工程と、前記第3及び第4の銅箔の少なくとも内設される前記第3の銅箔を所定パターンとなるようエッチングして第2の基板を形成する第7の工程と、前記第1の基板の第2の導電性バンプ側に第3の合成樹脂シートと前記第2の基板を重ね合わせた後に加熱加圧して一体化し、前記第2の導電性バンプを前記第3の合成樹脂シートを貫通させ該第2の導電性バンプの先端部を前記第2の基板の第3の銅箔面に固着する第8の工程とを備えて多層化することを特徴とする製造方法であり、
また、第1表面に部分的に第1の金属箔が配置され、第2表面に第2の金属箔が配置された第1の基体と、前記第1の基体を貫通して前記第1の金属箔と前記第2の金属箔とを小面積面を該第2の金属箔側として接続する錐台状の第1の導電性バンプと、第1表面に部分的に第3の金属箔が配置され、第2表面に第4の金属箔が配置された第2の基体と、前記第2の基体を貫通して前記第3の金属箔と前記第4の金属箔とを小面積面を該第4の金属箔側として接続する錐台状の第2の導電性バンプと、前記第1の基体と前記第2の基体の間に、前記第1の金属箔と前記第3の金属箔とを第1、第2表面にそれぞれ埋め込むようにして密着して設けられた第3の基体と、前記第3の基体を貫通して前記第1の金属箔と前記第3の金属箔とを接続する第3の導電性バンプとを備えていることを特徴とするものである。
【0013】
【作用】
上記のように構成された多層印刷配線板及びその製造方法は、合成樹脂製の錐台状の導電性バンプの小面積側の底面を表層のパッドに固着し、大面積側の底面を複数の基体を積層し内設した内層導体に固着するようしたので、表層のパッドは固着力の弱い導電性バンプとの固着面積を少なくし、固着力の強い基体との固着面積を多くすることができ、これによってパッド全体の固着強度が増加する。その結果、パッドに半田付けによって実装した電子部品等の脱落が防止でき、さらにパッド間あるいは配線間距離を小さくできて電子部品等の実装密度を高くすることができる。
【0014】
【実施例】
以下、本発明の実施例を図1乃至図10を参照して説明する。図1乃至図8は第1の実施例の各製造工程における断面図であり、図9及び図10は第2の実施例の製造工程における断面図である。
【0015】
先ず、第1の実施例を製造工程に従って順に説明する。
図1に示す第1の工程において、厚さ35μmの表裏両面を粗化した第1の銅箔21の片方面に、エポキシ樹脂と銀粉末とからなる導電ペーストを用いて所定の第1のパターンのスクリーン印刷を行い、これを乾燥させた後、再び導電ペーストを用い同一のパターンのスクリーン印刷・乾燥を5回繰り返す。その後、180℃のオーブンで導電ペーストを加熱硬化させ、第1の銅箔21の片方面の所定位置に高さ0.3mm、底面径0.35mmの略円錐形の導電性バンプ22を形成する。
【0016】
そして導電性バンプ22に、未硬化のエポキシ樹脂と強化用のガラス織布あるいはガラス不織布等でなり配線板の基体となる第1の合成樹脂シート23と厚さ35μmの第2の銅箔24を重ね合わせる。
【0017】
次に図2に示す第2の工程において、前工程で重ね合わせたものを100℃に加熱し、合成樹脂シート23が軟化した状態でプレスを用いて2MPaで重ね合わせ方向に加圧する。さらに、この圧力を保持したままの状態で170℃まで昇温し、1時間保持した後に冷却し、第1の銅箔21と第1の合成樹脂シート23、第2の銅箔24とを積層し三層構造の第1の基板25を形成する。この時の加熱加圧によって導電性バンプ22が第1の合成樹脂シート23を貫通し、さらに導電性バンプ22の先端部が変形して第2の銅箔24の粗化した片方面に固着し、第1の銅箔21と第2の銅箔24とを接続する。
【0018】
続いて図3に示す第3の工程において、三層構造の第1の基板25の第1の銅箔21と第2の銅箔24の表面にそれぞれエッチングレジスト膜を形成し、さらにこれを所定のパターンとなるようにする。その後、塩化第二鉄溶液を用いて第1の銅箔21と第2の銅箔24を所定のパターン形状となるようにエッチングする。
【0019】
また同様に、図4に示す第4の工程において、厚さ35μmの表裏両面を粗化した第3の銅箔26の片方面に、エポキシ樹脂と銀粉末とからなる導電ペーストを用いて例えば第1の工程における第1のパターンと裏返しの関係となる所定の第2のパターンのスクリーン印刷を行い、これを乾燥させた後、再び導電ペーストを用い同一のパターンのスクリーン印刷・乾燥を5回繰り返す。その後、180℃のオーブンで導電ペーストを加熱硬化させ、第3の銅箔26の片方面の所定位置に高さ0.3mm、底面径0.35mmの略円錐形の導電性バンプ27を形成する。
【0020】
そして導電性バンプ27の先端側に未硬化のエポキシ樹脂と強化用のガラス織布あるいはガラス不織布等でなり同じく配線板の基体となる第2の合成樹脂シート28と厚さ35μmの第4の銅箔29を重ね合わせる。
【0021】
次に図5に示す第5の工程において、前工程で重ね合わせたものを100℃に加熱し、第2の合成樹脂シート28が軟化した状態でプレスを用いて2MPaで重ね合わせ方向に加圧する。さらに、この圧力を保持したままの状態で170℃まで昇温し、1時間保持した後に冷却し、第3の銅箔26と第2の合成樹脂シート28、第4の銅箔29とを積層し三層構造の第2の基板30を形成する。この時の加熱加圧によって導電性バンプ27が第2の合成樹脂シート28を貫通し、さらに導電性バンプ27の先端部が変形して第4の銅箔29の粗化した片方面に固着し、第3の銅箔26と第4の銅箔29とを接続する。
【0022】
続いて図6に示す第6の工程において、三層構造の第2の基板30の第3の銅箔26と第4の銅箔29の表面にそれぞれエッチングレジスト膜を形成し、さらにこれを所定のパターンとなるようにする。その後、塩化第二鉄溶液を用いて第3の銅箔26と第4の銅箔29を所定のパターン形状となるようにエッチングする。
【0023】
次に図7に示す第7の工程において、第2の基板30に形成されている第3の銅箔26の他方面に、エポキシ樹脂と銀粉末とからなる導電ペーストを用いて例えば第1の工程におけるのと同様の第1のパターンのスクリーン印刷を行い、これを乾燥させた後、再び導電ペーストを用い同一のパターンのスクリーン印刷・乾燥を5回繰り返す。その後、180℃のオーブンで導電ペーストを加熱硬化させ、第3の銅箔26の他方面の所定位置に高さ0.3mm、底面径0.35mmの略円錐形の導電性バンプ31を形成する。
【0024】
そして導電性バンプ31の先端側に、未硬化のエポキシ樹脂と強化用のガラス織布あるいはガラス不織布等でなり同じく配線板の基体となる第3の合成樹脂シート32を間に介在させ、第1の銅箔21の他方面が対向するように第1の基板25を配置して重ね合わせる。
【0025】
次に図8に示す第8の工程において、前工程で重ね合わせたものを100℃に加熱し、第3の合成樹脂シート32が軟化した状態でプレスを用いて2MPaで重ね合わせ方向に加圧する。さらに、この圧力を保持したままの状態で170℃まで昇温し、1時間保持した後に冷却し、第1の基板25と第3の合成樹脂シート32、第2の基板30とを積層して多層印刷配線板33とする。この時の加熱加圧によって導電性バンプ31が第3の合成樹脂シート32を貫通し、さらに導電性バンプ31の先端部が変形して第1の銅箔21の粗化した他方面に固着し、第1の銅箔21と第3の銅箔26とを接続する。
【0026】
こうして形成された多層印刷配線板33では、外表面に露出した第2の銅箔24と第4の銅箔29がそれぞれ半導体装置や電子部品を実装するためのパッドPを構成する。そして表層のパッドPと内層導体となっている第1の銅箔21及び第3の銅箔26とは、それぞれに固着した導電性バンプ22,27,31を介して接続される。
【0027】
また、第2の銅箔24と第4の銅箔29の構成するパッドPは、円錐台状となった導電性バンプ22,27の小面積側の底面に固着していると共に、パッドPの残りの面は第1の合成樹脂シート23及び第2の合成樹脂シート28に固着した状態になっている。
【0028】
次に、上記のように構成された多層印刷配線板33のパッドPの固着強度を測定し、従来のものと比較した。比較は、表層のパッドを1mm角に形成し、これに直径0.8mmの錫めっき銅線を半田付けし、この銅線をパッドPに対し垂直方向に引き剥がすように引っ張りパッドが剥がれる力を測定した。
【0029】
この結果、本実施例の多層印刷配線板33のパッドPは、1kg/mm2 までの力では剥がれず、1kg/mm2 以上の固着強度を示した。これに対し、従来技術による多層印刷配線板のパッドでは固着強度が、0.5kg/mm2 であった。
【0030】
これは、本実施例の多層印刷配線板33ではパッドPとの固着力の弱い導電性バンプ22,27に対しては固着面積が小さい小面積側の底面での固着とし、パッドPとの固着力の強い第1の合成樹脂シート23及び第2の合成樹脂シート28に対しては固着面積が大きくなるようにし、パッドP全体での固着力が増すように構成したことに基づいているからである。なお、従来技術による多層印刷配線板では導電性バンプのパッドに対する関係が逆となっている。
【0031】
さらに、多層印刷配線板33に対して熱サイクル試験や吸水試験等を行ったがそれぞれ十分な耐性を示し、実用的に何等問題ないことが確認された。
【0032】
そして、多層印刷配線板33にそのパッドPに電子部品等を半田付けし実装しても、パッドPの固着強度が強いためにパッドPが剥がれ電子部品等が脱落してしまう虞も少なくなり、パッドPを大きくする必要もない。また、パッドPの固着強度が同じであればその大きさを小さくすることができ、パッドP間の距離や配線間の距離も狭くすることができて実装密度を高くすることが可能となる。
【0033】
尚、上記の第1の実施例では2層の内層導体が内設されているが、1層もしくは3層以上内設されていてもよい。
【0034】
例えば、1層の内層導体を備えた多層印刷配線板については第2の実施例として図9及び図10に示すように、先ず図9に示す第1の工程で、上記第1の実施例の第4の工程乃至第6の工程を経て得た第2の基板28の第3の銅箔26の表面に、エポキシ樹脂と銀粉末とからなる導電ペーストを用いて所定パターンのスクリーン印刷を行い、これを乾燥させた後、再び導電ペーストを用い同一のパターンのスクリーン印刷・乾燥を5回繰り返す。その後、180℃のオーブンで導電ペーストを加熱硬化させ、第3の銅箔26の面に高さ0.3mm、底面径0.35mmの略円錐形の導電性バンプ41を形成する。
【0035】
そして導電性バンプ41の先端側に、未硬化のエポキシ樹脂と強化用のガラス織布あるいはガラス不織布等でなり配線板の基体となる合成樹脂シート42と厚さ35μmの銅箔43を重ね合わせる。
【0036】
次に図10に示す第2の工程において、前工程で重ね合わせたものを100℃に加熱し、合成樹脂シート42が軟化した状態でプレスを用いて2MPaで重ね合わせ方向に加圧する。さらに、この圧力を保持したままの状態で170℃まで昇温し、1時間保持した後に冷却し、第2の基板28と合成樹脂シート42、銅箔43とを積層して一体化する。この時の加熱加圧によって導電性バンプ41が合成樹脂シート42を貫通し、さらに導電性バンプ41の先端部が変形して銅箔43の面に固着し、第3の銅箔26と銅箔43とを接続する。
【0037】
そして銅箔43を所定のパターン形状となるようにエッチングすることで多層印刷配線板44を得る。なお、外表面に露出した第4の銅箔29と銅箔43がそれぞれ半導体装置や電子部品を実装するためのパッドPを構成し、表層のパッドPと内層導体となっている第3の銅箔26とは、それぞれに固着した導電性バンプ27,41を介して接続される。
【0038】
また、第4の銅箔29と銅箔43の構成するパッドPは、円錐台状となった導電性バンプ27,41の小面積側の底面に固着していると共に、パッドPの残りの面は第2の合成樹脂シート28及び合成樹脂シート42に固着した状態になっている。
【0039】
このため、上記のように構成した本実施例の多層印刷配線板44においても第1の実施例と同様の効果が得られる。
【0040】
さらに、3層以上の内層導体を備えた多層印刷配線板については、上記第1及び第2の実施例の各工程を適宜組み合わせ実施することによって得ることができる。
【0041】
また、上記の各実施例の多層印刷配線板33,44は両面実装の配線板であるが片面実装の配線板であってもよく、また配線板の基体としての合成樹脂シートについてもガラス織布あるいはガラス不織布等で強化したエポキシ樹脂に限るものではなく、ポリイミド樹脂やフェノール樹脂であってもよい。
【0042】
【発明の効果】
以上の説明から明らかなように本発明は、錐台状の導電性バンプの小面積側の底面を表層のパッドに固着し、大面積側の底面を複数の基体を積層し内設した内層導体に固着するよう構成したことにより、パッドの固着強度が増加し実装した電子部品等の脱落を防止することができ、さらに電子部品等の実装密度を高くすることができる等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例における第1の工程の断面図である。
【図2】本発明の第1の実施例における第2の工程の断面図である。
【図3】本発明の第1の実施例における第3の工程の断面図である。
【図4】本発明の第1の実施例における第4の工程の断面図である。
【図5】本発明の第1の実施例における第5の工程の断面図である。
【図6】本発明の第1の実施例における第6の工程の断面図である。
【図7】本発明の第1の実施例における第7の工程の断面図である。
【図8】本発明の第1の実施例における第8の工程の断面図である。
【図9】本発明の第2の実施例における第1の工程の断面図である。
【図10】本発明の第2の実施例における第2の工程の断面図である。
【図11】従来例における第1の工程の断面図である。
【図12】従来例における第2の工程の断面図である。
【図13】従来例における第3の工程の断面図である。
【図14】従来例における第4の工程の断面図である。
【図15】従来例における第5の工程の断面図である。
【符号の説明】
21,26…銅箔(内層導体)
22,27,31…導電性バンプ
23,28,32…合成樹脂シート(基体)
24,29…銅箔
33…多層印刷配線板
P…パッド
[0001]
[Industrial application fields]
The present invention relates to a multilayer printed wiring board and a method for manufacturing the same.
[0002]
[Prior art]
As is well known, many semiconductor devices, electronic components, and the like are mounted and fixed on a printed wiring board in an electronic device. As such a printed wiring board, a multilayered structure is used in order to mount a highly integrated and highly functional semiconductor device at a high density in terms of downsizing and high functionality of electronic equipment.
[0003]
Hereinafter, a conventional technique of a printed wiring board having a multilayered structure, that is, a multilayer printed wiring board will be described with reference to FIGS. 11 to 15 are cross-sectional views in each manufacturing process, which will be described in order according to the manufacturing process.
[0004]
First, in a first step shown in FIG. 11, a substantially conical conductive bump 2 is formed at a predetermined position on the first copper foil 1 with a conductive paste made of synthetic resin and silver powder. Then, the first synthetic resin sheet 3 reinforced with a glass woven cloth or the like serving as a substrate of the wiring board and the second copper foil 4 are superposed on the conductive bumps 2.
[0005]
Next, in the 2nd process shown in FIG. 12, what was piled up in the previous process is integrated by heating and pressing, and the first copper foil 1, the first synthetic resin sheet 3, and the second copper foil 4 are combined. A substrate 5 having a three-layer structure is formed by stacking. At this time, the conductive bump 2 penetrates the first synthetic resin sheet 3 and is fixed to the second copper foil 4 by heating and pressing at this time, and the first copper foil 1 and the second copper foil 4 are connected. .
[0006]
Subsequently, in the third step shown in FIG. 13, the first copper foil 1 and the second copper foil 4 of the substrate 5 having a three-layer structure are etched so as to have a predetermined pattern shape.
[0007]
Next, in a fourth step shown in FIG. 14, substantially conical conductive bumps 8 are formed at predetermined positions of the third copper foil 6 and the fourth copper foil 7 by a conductive paste made of synthetic resin and silver powder, 9 is formed. The conductive bumps 8 and 9 are reinforced with a predetermined portion of the etched first copper foil 1 and the second copper foil 4 of the substrate 5 and a glass woven cloth or the like that also serves as a substrate of the wiring board. The second synthetic resin sheet 10 and the third synthetic resin sheet 11 are arranged so as to face each other while being interposed therebetween, and the third copper foil 6, the substrate 5, and the fourth copper foil 7 are overlapped.
[0008]
Next, in the fifth step shown in FIG. 15, the superposed one in the previous step is heated and pressed to form the third copper foil 6, the second synthetic resin sheet 10, the three-layer substrate 5, and the third The synthetic resin sheet 11 and the fourth copper foil 7 are integrated. At this time, the conductive bumps 8 and 9 pass through the second synthetic resin sheet 10 and the third synthetic resin sheet 11 and are fixed to the first copper foil 1 and the second copper foil 4 by heating and pressing at this time. The first copper foil 1 and the third copper foil 6, and the second copper foil 4 and the fourth copper foil 7 are connected.
[0009]
Subsequently, the third copper foil 6 and the fourth copper foil 7 on both the front and back surfaces are etched so as to have a predetermined pattern shape, and pads 12 and 13 are provided on both outer surfaces, respectively. As a result, a multilayer printed wiring board 14 is formed in which the first copper foil 1 and the second copper foil 4 are used as inner layer conductors, and the pads 12 and 13 on the surface layer are fixedly connected by the conductive bumps 2, 8 and 9. Is done.
[0010]
However, when an electronic component or the like is mounted on the pads 12 and 13 by soldering on the multilayer printed wiring board 14 manufactured through the above steps, the bonding strength of the pads 12 and 13 is weak, and the pads 12 and 13 There is a risk that the electronic parts and the like may fall off due to peeling. For this reason, it is necessary to increase the dimensions of the pads 12 and 13 so as to increase the fixing strength of the pads 12 and 13 and prevent the electronic components from falling off. Conversely, increasing the dimensions of the pads 12 and 13 increases the distance between the pads 12 and 13 and the distance between the wirings, making it difficult to increase the mounting density.
[0011]
[Problems to be solved by the invention]
As mentioned above, the adhesive strength of the pads provided on the surface of the multilayer printed wiring board is weak, and there is a risk that the mounted electronic components may fall off with the pads. Therefore, the mounting density cannot be increased. SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and the object of the present invention is to provide a multilayer printed wiring board that can prevent the mounted electronic components from falling off and can increase the mounting density. And a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
The multilayer printed wiring board and the manufacturing method thereof according to the present invention are formed by laminating a plurality of bases provided so as to penetrate through a synthetic resin frustum-like conductive bump, and between inner metal foils and inner metal foils provided therein. in the multilayer printed wiring board formed by connecting each pad provided on a surface layer with said conductive bumps, conductive bumps which connect the inner metal foil and the surface layer of the pad, and secured to the bottom surface of the small area side on the pad , and fixing a bottom surface of the large-area side to the inner metal foil and the top and bottom of the substrate laminated with said substrate, said inner metal foil on the upper and lower surfaces of the respective base body and a surface layer pad It is characterized by providing,
Furthermore, the main part of the substrate is made of a synthetic resin such as an epoxy resin, and the conductive bumps are made of silver powder and a synthetic resin such as an epoxy resin,
Further, the conductive bump is formed in a truncated cone shape,
In addition, a first step of forming a first conductive bump having a substantially conical shape by printing with a conductive paste on one surface of the first copper foil surface, and the first conductivity of the first copper foil The first synthetic resin sheet and the second copper foil are overlapped on the bump side and then integrated by heating and pressing, and the first conductive bump is penetrated through the first synthetic resin sheet. A second step of fixing the front end of the conductive bump to the second copper foil surface, and the first copper foil provided at least in the first and second copper foils to have a predetermined pattern A third step of etching to form a first substrate; and a second conductive having a substantially conical shape by printing with a conductive paste on the other surface of the first copper foil having a predetermined pattern on the first substrate. A conductive paste on one side of the third copper foil surface and the fourth step of forming the conductive bump A fifth step of forming a substantially conical third conductive bump by printing, a second synthetic resin sheet and a fourth copper foil on the third conductive bump side of the third copper foil Are stacked together by heating and pressurizing, and the third conductive bump is made to penetrate the second synthetic resin sheet, and the tip of the third conductive bump is fixed to the fourth copper foil surface. And a seventh step of forming a second substrate by etching at least the third copper foil provided in the third and fourth copper foils into a predetermined pattern, The third synthetic resin sheet and the second substrate are overlapped on the second conductive bump side of the first substrate and then integrated by heating and pressing, and the second conductive bump is integrated with the third conductive bump. A second end of the second conductive bump is inserted through the synthetic resin sheet and the third copper of the second substrate is inserted. A manufacturing method characterized by a multilayer structure and a eighth step of fixing the surface,
In addition, the first metal foil is partially disposed on the first surface and the second metal foil is disposed on the second surface, and the first substrate penetrates the first substrate. A frustum-shaped first conductive bump connecting the metal foil and the second metal foil with the small area surface as the second metal foil side, and a third metal foil partially on the first surface A second base having a fourth metal foil disposed on the second surface, and passing through the second base, the third metal foil and the fourth metal foil having a small area surface. A frustum-like second conductive bump connected as the fourth metal foil side, and the first metal foil and the third metal foil between the first base and the second base. Are embedded in close contact with the first and second surfaces, respectively, and the first metal foil and the third metal foil are inserted through the third base. Connection And it is characterized in that it comprises a third conductive bumps that.
[0013]
[Action]
In the multilayer printed wiring board configured as described above and the manufacturing method thereof, the bottom surface on the small area side of the frustum-shaped conductive bump made of synthetic resin is fixed to the surface pad, and the bottom surface on the large area side is attached to a plurality of bottom surfaces. Since the base is laminated and fixed to the inner conductor, the surface pad can reduce the fixing area with the conductive bump with weak fixing force and increase the fixing area with the strong fixing base. This increases the adhesion strength of the entire pad. As a result, the electronic components mounted on the pads by soldering can be prevented from falling off, and the distance between the pads or the wiring can be reduced to increase the mounting density of the electronic components.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to FIGS. 1 to 8 are cross-sectional views in each manufacturing process of the first embodiment, and FIGS. 9 and 10 are cross-sectional views in the manufacturing process of the second embodiment.
[0015]
First, the first embodiment will be described in order according to the manufacturing process.
In the first step shown in FIG. 1, a predetermined first pattern is formed by using a conductive paste made of epoxy resin and silver powder on one side of the first copper foil 21 whose front and back surfaces are roughened with a thickness of 35 μm. After the screen printing is performed and dried, the same pattern screen printing and drying are repeated 5 times using the conductive paste again. Thereafter, the conductive paste is heated and cured in an oven at 180 ° C. to form a substantially conical conductive bump 22 having a height of 0.3 mm and a bottom surface diameter of 0.35 mm at a predetermined position on one side of the first copper foil 21. .
[0016]
Then, the conductive bump 22 is made of an uncured epoxy resin, a reinforcing glass woven fabric or a glass nonwoven fabric, and the like, and a first synthetic resin sheet 23 serving as a substrate of a wiring board and a second copper foil 24 having a thickness of 35 μm. Overlapping.
[0017]
Next, in the second step shown in FIG. 2, the superposed one in the previous step is heated to 100 ° C., and the synthetic resin sheet 23 is softened and pressed in the superposing direction at 2 MPa using a press. Further, while maintaining this pressure, the temperature was raised to 170 ° C., held for 1 hour, then cooled, and the first copper foil 21, the first synthetic resin sheet 23, and the second copper foil 24 were laminated. A first substrate 25 having a three-layer structure is formed. At this time, the conductive bump 22 penetrates the first synthetic resin sheet 23 by heating and pressing, and the tip of the conductive bump 22 is further deformed and fixed to the roughened one side of the second copper foil 24. The first copper foil 21 and the second copper foil 24 are connected.
[0018]
Subsequently, in a third step shown in FIG. 3, an etching resist film is formed on the surface of each of the first copper foil 21 and the second copper foil 24 of the first substrate 25 having the three-layer structure, and this is further formed in a predetermined manner To be the pattern. Then, the 1st copper foil 21 and the 2nd copper foil 24 are etched so that it may become a predetermined pattern shape using a ferric chloride solution.
[0019]
Similarly, in the fourth step shown in FIG. 4, for example, a conductive paste made of epoxy resin and silver powder is used on one side of the third copper foil 26 having a 35 μm thick roughened front and back surfaces. Screen printing of a predetermined second pattern that is reversed with respect to the first pattern in step 1 is performed, dried, and then screen printing and drying of the same pattern is repeated five times using the conductive paste again. . Thereafter, the conductive paste is heated and cured in an oven at 180 ° C. to form a substantially conical conductive bump 27 having a height of 0.3 mm and a bottom surface diameter of 0.35 mm at a predetermined position on one side of the third copper foil 26. .
[0020]
Then, a second synthetic resin sheet 28 which is made of uncured epoxy resin and reinforcing glass woven fabric or glass nonwoven fabric on the front end side of the conductive bump 27 and which is also the base of the wiring board, and a fourth copper having a thickness of 35 μm. The foil 29 is overlapped.
[0021]
Next, in the fifth step shown in FIG. 5, the superposed one in the previous step is heated to 100 ° C., and the second synthetic resin sheet 28 is softened and pressed in the superposing direction at 2 MPa using a press. . Further, while maintaining this pressure, the temperature was raised to 170 ° C., held for 1 hour, then cooled, and the third copper foil 26, the second synthetic resin sheet 28, and the fourth copper foil 29 were laminated. Then, the second substrate 30 having a three-layer structure is formed. At this time, the conductive bump 27 penetrates the second synthetic resin sheet 28 by heating and pressing, and the tip of the conductive bump 27 is further deformed and fixed to the roughened one side of the fourth copper foil 29. The third copper foil 26 and the fourth copper foil 29 are connected.
[0022]
Subsequently, in a sixth step shown in FIG. 6, an etching resist film is formed on the surface of each of the third copper foil 26 and the fourth copper foil 29 of the second substrate 30 having the three-layer structure, and this is further formed in a predetermined manner. To be the pattern. Then, the 3rd copper foil 26 and the 4th copper foil 29 are etched so that it may become a predetermined pattern shape using a ferric chloride solution.
[0023]
Next, in the seventh step shown in FIG. 7, for example, a first paste is formed on the other surface of the third copper foil 26 formed on the second substrate 30 using a conductive paste made of epoxy resin and silver powder. Screen printing of the same first pattern as in the process is performed, and after this is dried, screen printing and drying of the same pattern are repeated 5 times using the conductive paste again. Thereafter, the conductive paste is heated and cured in an oven at 180 ° C., and a substantially conical conductive bump 31 having a height of 0.3 mm and a bottom surface diameter of 0.35 mm is formed at a predetermined position on the other surface of the third copper foil 26. .
[0024]
Then, a third synthetic resin sheet 32 made of an uncured epoxy resin and a reinforcing glass woven fabric or glass nonwoven fabric, which is also the base of the wiring board, is interposed between the first bumps of the conductive bumps 31, The first substrate 25 is placed and overlapped so that the other surface of the copper foil 21 faces the other.
[0025]
Next, in the eighth step shown in FIG. 8, the superposed one in the previous step is heated to 100 ° C., and the third synthetic resin sheet 32 is softened and pressed in the superposing direction at 2 MPa using a press. . Further, while maintaining this pressure, the temperature is raised to 170 ° C., held for 1 hour, then cooled, and the first substrate 25, the third synthetic resin sheet 32, and the second substrate 30 are laminated. The multilayer printed wiring board 33 is used. The conductive bump 31 penetrates the third synthetic resin sheet 32 by heating and pressing at this time, and the tip of the conductive bump 31 is further deformed and fixed to the roughened other surface of the first copper foil 21. The first copper foil 21 and the third copper foil 26 are connected.
[0026]
In the multilayer printed wiring board 33 formed in this way, the second copper foil 24 and the fourth copper foil 29 exposed on the outer surface constitute pads P for mounting semiconductor devices and electronic components, respectively. Then, the surface layer pad P and the first copper foil 21 and the third copper foil 26 serving as the inner layer conductor are connected to each other through conductive bumps 22, 27, and 31 fixed thereto.
[0027]
Further, the pad P constituted by the second copper foil 24 and the fourth copper foil 29 is fixed to the bottom surface on the small area side of the conductive bumps 22 and 27 having a truncated cone shape. The remaining surface is fixed to the first synthetic resin sheet 23 and the second synthetic resin sheet 28.
[0028]
Next, the adhesion strength of the pad P of the multilayer printed wiring board 33 configured as described above was measured and compared with the conventional one. For comparison, a surface layer pad is formed into a 1 mm square, a tin-plated copper wire having a diameter of 0.8 mm is soldered thereto, and the pulling force of the pulling pad is peeled off so that the copper wire is peeled in a direction perpendicular to the pad P. It was measured.
[0029]
As a result, the pad P of the multilayer printed wiring board 33 of this embodiment is not peeling with a force of up to 1 kg / mm 2, it showed 1 kg / mm 2 or more bonding strength. On the other hand, the fixing strength of the pad of the multilayer printed wiring board according to the prior art was 0.5 kg / mm 2 .
[0030]
This is because the multi-layer printed wiring board 33 of this embodiment is fixed to the bottom surface on the small area side where the fixing area is small with respect to the conductive bumps 22 and 27 having a low fixing force with the pad P, and is fixed to the pad P. This is because the first synthetic resin sheet 23 and the second synthetic resin sheet 28 having strong adhesion force are configured to have a large fixing area so that the fixing force of the entire pad P is increased. is there. In the conventional multilayer printed wiring board, the relationship between the conductive bumps and the pads is reversed.
[0031]
Further, a heat cycle test and a water absorption test were performed on the multilayer printed wiring board 33, and each of them exhibited sufficient resistance, and it was confirmed that there was no practical problem.
[0032]
And even if an electronic component or the like is soldered and mounted on the pad P on the multilayer printed wiring board 33, the pad P is strong and the possibility that the electronic component or the like falls off due to the strong bonding strength of the pad P is reduced. There is no need to increase the pad P. Further, if the fixing strength of the pads P is the same, the size can be reduced, the distance between the pads P and the distance between the wirings can be reduced, and the mounting density can be increased.
[0033]
In the first embodiment described above, two layers of inner conductors are provided. However, one or more layers may be provided.
[0034]
For example, as shown in FIG. 9 and FIG. 10 as a second embodiment for a multilayer printed wiring board provided with one inner layer conductor, first, in the first step shown in FIG. Screen printing of a predetermined pattern is performed on the surface of the third copper foil 26 of the second substrate 28 obtained through the fourth to sixth steps using a conductive paste made of epoxy resin and silver powder, After drying this, screen printing / drying of the same pattern is repeated 5 times using the conductive paste again. Thereafter, the conductive paste is heated and cured in an oven at 180 ° C., and a substantially conical conductive bump 41 having a height of 0.3 mm and a bottom surface diameter of 0.35 mm is formed on the surface of the third copper foil 26.
[0035]
Then, a synthetic resin sheet 42 made of an uncured epoxy resin and a reinforcing glass woven fabric or glass nonwoven fabric and serving as a substrate of the wiring board and a copper foil 43 having a thickness of 35 μm are superimposed on the front end side of the conductive bump 41.
[0036]
Next, in the second step shown in FIG. 10, the superposed one in the previous step is heated to 100 ° C., and the synthetic resin sheet 42 is softened and pressed in the superposing direction at 2 MPa using a press. Further, while maintaining this pressure, the temperature is raised to 170 ° C., held for 1 hour, cooled, and the second substrate 28, the synthetic resin sheet 42, and the copper foil 43 are laminated and integrated. At this time, the conductive bump 41 penetrates the synthetic resin sheet 42 by heating and pressurization, and the tip of the conductive bump 41 is deformed and fixed to the surface of the copper foil 43, and the third copper foil 26 and the copper foil 43 is connected.
[0037]
Then, the multilayer printed wiring board 44 is obtained by etching the copper foil 43 so as to have a predetermined pattern shape. The fourth copper foil 29 and the copper foil 43 exposed on the outer surface constitute a pad P for mounting a semiconductor device or an electronic component, respectively, and a third copper serving as a surface layer pad P and an inner layer conductor. The foil 26 is connected via conductive bumps 27 and 41 fixed to the foil 26, respectively.
[0038]
Further, the pad P constituted by the fourth copper foil 29 and the copper foil 43 is fixed to the bottom surface of the conductive bumps 27 and 41 having a truncated cone shape on the small area side, and the remaining surface of the pad P Is fixed to the second synthetic resin sheet 28 and the synthetic resin sheet 42.
[0039]
For this reason, the multilayer printed wiring board 44 of the present embodiment configured as described above can achieve the same effects as those of the first embodiment.
[0040]
Furthermore, a multilayer printed wiring board having three or more inner layer conductors can be obtained by appropriately combining the steps of the first and second embodiments.
[0041]
In addition, the multilayer printed wiring boards 33 and 44 of the above embodiments are both-side mounted wiring boards, but they may be single-sided mounting boards. Also, a synthetic resin sheet as a substrate of the wiring board is also a glass woven fabric. Or it is not restricted to the epoxy resin reinforced with a glass nonwoven fabric etc., A polyimide resin and a phenol resin may be sufficient.
[0042]
【The invention's effect】
As is apparent from the above description, the present invention provides an inner-layer conductor in which the bottom surface on the small area side of the frustum-like conductive bump is fixed to the surface layer pad, and the bottom surface on the large area side is formed by laminating a plurality of substrates. By being configured so as to be fixed to the pad, it is possible to increase the fixing strength of the pad, prevent the mounted electronic component from falling off, and further increase the mounting density of the electronic component.
[Brief description of the drawings]
FIG. 1 is a sectional view of a first step in a first embodiment of the present invention.
FIG. 2 is a sectional view of a second step in the first embodiment of the present invention.
FIG. 3 is a sectional view of a third step in the first embodiment of the present invention.
FIG. 4 is a sectional view of a fourth step in the first embodiment of the present invention.
FIG. 5 is a sectional view of a fifth step in the first embodiment of the present invention.
FIG. 6 is a sectional view of a sixth step in the first embodiment of the present invention.
FIG. 7 is a sectional view of a seventh step in the first embodiment of the present invention.
FIG. 8 is a sectional view of an eighth step in the first embodiment of the present invention.
FIG. 9 is a sectional view of a first step in a second embodiment of the present invention.
FIG. 10 is a sectional view of a second step in the second embodiment of the present invention.
FIG. 11 is a sectional view of a first step in a conventional example.
FIG. 12 is a sectional view of a second step in the conventional example.
FIG. 13 is a sectional view of a third step in the conventional example.
FIG. 14 is a sectional view of a fourth step in the conventional example.
FIG. 15 is a sectional view of a fifth step in the conventional example.
[Explanation of symbols]
21, 26 ... Copper foil (inner layer conductor)
22, 27, 31 ... conductive bumps 23, 28, 32 ... synthetic resin sheet (substrate)
24, 29 ... copper foil 33 ... multilayer printed wiring board P ... pad

Claims (5)

合成樹脂製の錐台状の導電性バンプを貫通するように備えた複数の基体を積層し、内設した内層金属箔間及び内層金属箔と表層に設けたパッドとを前記導電性バンプでそれぞれ接続してなる多層印刷配線板において、前記内層金属箔と表層のパッドを接続する導電性バンプが、小面積側の底面を前記パッドに固着し、大面積側の底面を前記内層金属箔に固着しており、かつ積層した前記基体の最上部及び最下部の基体が、それぞれ該基体の上下面上に前記内層金属箔と表層のパッドとを設けていることを特徴とする多層印刷配線板。A plurality of bases provided so as to penetrate through the frustum-shaped conductive bumps made of synthetic resin are laminated, and the inner bumps provided between the inner metal foils and the inner metal foil and the pads provided on the surface layer are respectively provided by the conductive bumps. In the multilayer printed wiring board formed by connection, the conductive bumps connecting the inner layer metal foil and the surface layer pad have the bottom surface on the small area side fixed to the pad and the bottom surface on the large area side fixed to the inner layer metal foil. A multilayer printed wiring board characterized in that the uppermost and lowermost substrates of the laminated substrates are each provided with the inner layer metal foil and a surface layer pad on the upper and lower surfaces of the substrate . 基体の主部がエポキシ樹脂等の合成樹脂でなると共に、導電性バンプが銀粉末とエポキシ樹脂等の合成樹脂とからなるものであることを特徴とする請求項1記載の多層印刷配線板。2. The multilayer printed wiring board according to claim 1, wherein the main part of the substrate is made of a synthetic resin such as an epoxy resin, and the conductive bumps are made of silver powder and a synthetic resin such as an epoxy resin. 導電性バンプが円錐台状に形成されていることを特徴とする請求項1もしくは請求項2記載の多層印刷配線板。The multilayer printed wiring board according to claim 1 or 2, wherein the conductive bumps are formed in a truncated cone shape. 第1の銅箔面の片方面に導電性ペーストによる印刷によって略円錐形の第1の導電性バンプを形成する第1の工程と、A first step of forming a substantially conical first conductive bump on one side of the first copper foil surface by printing with a conductive paste;
前記第1の銅箔の前記第1の導電性バンプ側に第1の合成樹脂シートと第2の銅箔を重ね合わせた後に加熱加圧して一体化し、前記第1の導電性バンプを前記第1の合成樹脂シートを貫通させ、該第1の導電性バンプの先端部を前記第2の銅箔面に固着する第2の工程と、After the first synthetic resin sheet and the second copper foil are superposed on the first conductive bump side of the first copper foil, they are integrated by heating and pressing, and the first conductive bump is attached to the first copper bump. A second step of penetrating the synthetic resin sheet of 1 and fixing the tip of the first conductive bump to the second copper foil surface;
前記第1及び第2の銅箔の少なくとも内設される前記第1の銅箔を所定パターンとなるようエッチングして第1の基板を形成する第3の工程と、A third step of forming a first substrate by etching the first copper foil provided at least in the first and second copper foils into a predetermined pattern;
前記第1の基板の所定パターンとした前記第1の銅箔の他方面に導電性ペーストによる印刷によって略円錐形の第2の導電性バンプを形成する第4の工程と、A fourth step of forming a substantially conical second conductive bump on the other surface of the first copper foil having a predetermined pattern on the first substrate by printing with a conductive paste;
第3の銅箔面の片方面に導電性ペーストによる印刷によって略円錐形の第3の導電性バンプを形成する第5の工程と、A fifth step of forming a substantially conical third conductive bump by printing with a conductive paste on one side of the third copper foil surface;
前記第3の銅箔の前記第3の導電性バンプ側に第2の合成樹脂シートと第4の銅箔を重ね合わせた後に加熱加圧して一体化し、前記第3の導電性バンプを前記第2の合成樹脂シートを貫通させ該第3の導電性バンプの先端部を前記第4の銅箔面に固着する第6の工程と、The second synthetic resin sheet and the fourth copper foil are superposed on the third conductive bump side of the third copper foil, and then integrated by heating and pressing, and the third conductive bump is attached to the third copper bump. A sixth step of penetrating through the synthetic resin sheet of 2 and fixing the tip of the third conductive bump to the fourth copper foil surface;
前記第3及び第4の銅箔の少なくとも内設される前記第3の銅箔を所定パターンとなるようエッチングして第2の基板を形成する第7の工程と、A seventh step of forming a second substrate by etching the third copper foil provided at least in the third and fourth copper foils into a predetermined pattern;
前記第1の基板の第2の導電性バンプ側に第3の合成樹脂シートと前記第2の基板を重ね合わせた後に加熱加圧して一体化し、前記第2の導電性バンプを前記第3の合成樹脂シートを貫通させ該第2の導電性バンプの先端部を前記第2の基板の第3の銅箔面に固着する第8の工程とThe third synthetic resin sheet and the second substrate are overlapped on the second conductive bump side of the first substrate and then integrated by heating and pressing, and the second conductive bump is integrated with the third conductive bump. An eighth step of passing through the synthetic resin sheet and fixing the tip of the second conductive bump to the third copper foil surface of the second substrate;
を備えて多層化することを特徴とする多層印刷配線板の製造方法。A multilayer printed wiring board manufacturing method characterized by comprising a multilayer.
第1表面に部分的に第1の金属箔が配置され、第2表面に第2の金属箔が配置された第1の基体と、A first substrate in which a first metal foil is partially disposed on a first surface and a second metal foil is disposed on a second surface;
前記第1の基体を貫通して前記第1の金属箔と前記第2の金属箔とを小面積面を該第2の金属箔側として接続する錐台状の第1の導電性バンプと、A frustum-shaped first conductive bump penetrating the first base and connecting the first metal foil and the second metal foil with a small area surface as the second metal foil side;
第1表面に部分的に第3の金属箔が配置され、第2表面に第4の金属箔が配置された第2の基体と、A second substrate in which a third metal foil is partially disposed on the first surface and a fourth metal foil is disposed on the second surface;
前記第2の基体を貫通して前記第3の金属箔と前記第4の金属箔とを小面積面を該第4の金属箔側として接続する錐台状の第2の導電性バンプと、A frustum-shaped second conductive bump that penetrates the second base and connects the third metal foil and the fourth metal foil with the small area surface as the fourth metal foil side;
前記第1の基体と前記第2の基体の間に、前記第1の金属箔と前記第3の金属箔とを第1、第2表面にそれぞれ埋め込むようにして密着して設けられた第3の基体と、A third layer provided between the first base and the second base in close contact with the first metal foil and the third metal foil so as to be embedded in the first and second surfaces, respectively. A base of
前記第3の基体を貫通して前記第1の金属箔と前記第3の金属箔とを接続する第3の導電性バンプとA third conductive bump penetrating the third base and connecting the first metal foil and the third metal foil;
を備えていることを特徴とする多層印刷配線板。A multilayer printed wiring board comprising:
JP365295A 1995-01-13 1995-01-13 Multilayer printed wiring board and manufacturing method thereof Expired - Fee Related JP3989974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP365295A JP3989974B2 (en) 1995-01-13 1995-01-13 Multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP365295A JP3989974B2 (en) 1995-01-13 1995-01-13 Multilayer printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08195561A JPH08195561A (en) 1996-07-30
JP3989974B2 true JP3989974B2 (en) 2007-10-10

Family

ID=11563412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP365295A Expired - Fee Related JP3989974B2 (en) 1995-01-13 1995-01-13 Multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3989974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244075A (en) * 2011-05-23 2012-12-10 Sumitomo Bakelite Co Ltd Conductive resin composition and multilayer wiring board

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093240A (en) * 1996-09-10 1998-04-10 Yamaichi Electron Co Ltd Multilayer wiring board and manufacturing method thereof
EP1265466A3 (en) 2001-06-05 2004-07-21 Dai Nippon Printing Co., Ltd. Method for fabrication wiring board provided with passive element and wiring board provided with passive element
JP4045143B2 (en) * 2002-02-18 2008-02-13 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Manufacturing method of wiring film connecting member and manufacturing method of multilayer wiring board
TW200507131A (en) 2003-07-02 2005-02-16 North Corp Multi-layer circuit board for electronic device
JP2005026445A (en) * 2003-07-02 2005-01-27 North:Kk Multilayer wiring board and its manufacturing method
KR100657409B1 (en) * 2006-02-15 2006-12-14 삼성전기주식회사 Manufacturing multi-layer pcb
JP2008103524A (en) * 2006-10-19 2008-05-01 Sekisui Chem Co Ltd Circuit board material, manufacturing method thereof, electronic component device, and multilayer board
JP4503578B2 (en) * 2006-11-13 2010-07-14 大日本印刷株式会社 Printed wiring board
JP2008192878A (en) 2007-02-06 2008-08-21 Shinko Electric Ind Co Ltd Multilayer wiring substrate, and manufacturing method thereof
JP4856567B2 (en) * 2007-02-28 2012-01-18 株式会社メイコー Printed wiring board and electronic component mounting board
KR100882607B1 (en) * 2007-08-10 2009-02-12 삼성전기주식회사 Manufacturing method of multilayered printed circuit board
JP4876272B2 (en) * 2008-04-02 2012-02-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method thereof
CN104703399A (en) * 2013-12-06 2015-06-10 富葵精密组件(深圳)有限公司 Circuit board and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244075A (en) * 2011-05-23 2012-12-10 Sumitomo Bakelite Co Ltd Conductive resin composition and multilayer wiring board

Also Published As

Publication number Publication date
JPH08195561A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
TWI242398B (en) Printed circuit board and method of manufacturing the same
US8178191B2 (en) Multilayer wiring board and method of making the same
WO1997019579A1 (en) Multilayered wiring board, prefabricated material for multilayered wiring board, process of manufacturing multilayered wiring board, electronic parts package, and method for forming conductive pillar
JP3989974B2 (en) Multilayer printed wiring board and manufacturing method thereof
KR19980064661A (en) Printed wiring boards and electronic components
JP4040389B2 (en) Manufacturing method of semiconductor device
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
TW200950012A (en) Multi-layer wiring board and method of manufacturing the same
JP5323341B2 (en) Electronic components
JP4183708B2 (en) Manufacturing method of component-embedded substrate
JPH07263828A (en) Printed interconnection board and its production process
JP4378511B2 (en) Electronic component built-in wiring board
JP2002246536A (en) Method for manufacturing three-dimensional mounting package and package module for its manufacturing
JP2000216514A (en) Wiring board and its manufacture
JP2006049930A (en) Multilayer wiring board, prefabricated material for multilayer wiring board, method of manufacturing multilayer wiring board, electronic component, electronic component package, and method of forming conductive pillar
JP2002319750A (en) Printed-wiring board, semiconductor device, and their manufacturing methods
JP4593599B2 (en) Manufacturing method of wiring board with built-in electronic components
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JPH06252555A (en) Multilayered wiring board
KR20060018220A (en) Flexible circuit board, method for making the same, flexible multi-layer wiring circuit board, and method for making the same
JP2919409B2 (en) Multilayer wiring board
JP5761404B2 (en) Manufacturing method of wiring board with built-in electronic components
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
JP3605883B2 (en) Multilayer printed wiring board
JPH07115268A (en) Printed wiring board and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041117

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees