JPH07263828A - Printed interconnection board and its production process - Google Patents

Printed interconnection board and its production process

Info

Publication number
JPH07263828A
JPH07263828A JP5039494A JP5039494A JPH07263828A JP H07263828 A JPH07263828 A JP H07263828A JP 5039494 A JP5039494 A JP 5039494A JP 5039494 A JP5039494 A JP 5039494A JP H07263828 A JPH07263828 A JP H07263828A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate
thermosetting resin
layer
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5039494A
Other languages
Japanese (ja)
Other versions
JP3207663B2 (en )
Inventor
Seiichi Nakatani
誠一 中谷
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the metallic pattern or other conductive pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections or via connections
    • H05K3/4053Through-connections or via connections by thick-film techniques
    • H05K3/4069Through-connections or via connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Abstract

PURPOSE:To provide a both-side printed interconnection board having an inner via structure having no hollow via hole, multilayer printed interconnection board and its production process. CONSTITUTION:A base 3 held between releasing films 1 having thermosetting resin layers 2 is used and conductive paste 5 is buried in via-holes up to the surface of the releasing films. Further it is held between Cu foils (circuit electrodes) 6 to stably form a both-side printed board having an inner via structure excellent in smoothness. Thus a printed board having no via hole is obtained. By using the both-side printed board having an inner via structure good in smoothness, a convenient multilayer board can be formed. Since Cu foils can be adhered after charging a via conductor by this method, there is no need to form a Cu electrode layer by the plating.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、LSIや受動部品などの電子部品を登載し、回路配線を設けた電子機器用プリント配線基板の製造方法に関するものである。 The present invention relates to Tosai electronic components such as LSI and passive components, a method for manufacturing the electronic device for printed wiring board provided with a circuit wiring.

【0002】 [0002]

【従来の技術】近年電子機器の小型軽量化および電子回路のディジタル化、高速化が一段と叫ばれてる。 Digitization of the Prior Art smaller and lighter and electronic circuits in recent years electronic devices, and high-speed is more shouted. そしてこれらに登載するためのプリント基板もより高密度なものが要求されており、新規な電子機器の開発にはこれらのプリント基板そのものの開発も重要な要素となっている。 The printed circuit board to Tosai these have also been required to have a higher density, has become important factor development of these printed circuit board itself to the development of new electronic devices. 実装技術には、半導体やチップ部品などの面実装部品とそれらを登載し電気的接続を行うためのプリント基板さらにはその面実装部品の実装方式とに大別することができる。 The mounting technique further printed circuit board for by Tosai them with surface mounted components such as semiconductors and chip components for electrical connection can be broadly divided into a mounting method of the surface mount components.

【0003】半導体は周知の通り集積度の増大と高機能化のためチップサイズおよび端子数がますます増大している。 [0003] semiconductor chip size and the number of terminals for increasing the sophistication of known street integration is increasing more and more. そのため端子ピッチが0.5mmから現在では0.3mmピッチまでの狭ピッチ化が進んでおり、それ以上では半田による従来の実装方法は困難となる。 Therefore it has progressed pitch of up to 0.3mm pitch now terminal pitch from 0.5 mm, the conventional mounting method according solder difficult at higher. したがって今後はパッケージではなく半導体を直接基板に実装するCOB技術が重要と考えられておりCOB技術の開発も各方面で検討されている。 Thus has been studied by also various fields develop COB technology is believed to COB technology important to mount directly on the substrate of the semiconductor rather than package future. また、チップ部品も小型化が進んでおり現在では1005チップ(1.0× Further, 1005 chip (1.0 × the current chip component is also progressing miniaturization
0.5mm)が普通に使用されるにいたっている。 0.5mm) it has led to is commonly used. 今後は半導体と同様、実装方式の観点からこれ以上の小型化は困難となり、かえって実装するための装置コストが高くなる。 Similar to the semiconductor in the future miniaturization in view of more of mounting method is difficult and increases the apparatus cost for rather implement.

【0004】一方電子機器の動向は、回路のディジタル化が趨勢となっておりこれに伴う高周波化、高速化が進展している。 On the other hand movements of the electronic devices, high frequency associated therewith digitizing circuit has become a trend, speed is progressing. その結果、プリント基板もノイズおよび熱の問題を今以上に避けて通れない状況となっている。 As a result, it has become a situation in which even a printed circuit board not avoid noise and heat problems than now. このような高周波、高速化の問題に対し現状では実装基板を試作し、問題が発生すれば再度設計からやり直す方法がとられている。 Such high frequency, a prototype mounted board at present to speed up the problem, how to start from re-design upon failure problems have been taken. このため機器の開発に長時間を有し開発期間の長期化を招いている。 Therefore it has led to prolonged development time have a long time to develop equipment. 今後はこのような基板開発に際し設計段階で熱、伝送線路およびノイズのシミュレーションを行いその結果を基板設計にフィードバックさせ一回の試作で完結する手法が望まれている。 Heat, techniques to complete in a single trial results to simulate a transmission line and the noise is fed back to the board design is desired at the design stage upon such substrates developed in the future. しかしこのような基板設計システムが完全に稼働するためには、まだまだ時間が必要と思われ、これまでの経験を生かしたノウハウによる設計が当面は主流となると考えられる。 But in order for such board design system is fully operational is deemed necessary it is still time, designed by the know-how by taking advantage of past experience it is considered that for the time being become the mainstream. いずれにしても、このような高周波化に対して、 In any event, for such high frequency,
基板および実装形態は、その配線長が短くなるような手法が基本となることは確かである。 Substrate and implementations, it is certain that techniques such as a wiring length is shortened underlying.

【0005】以上述べたように、今後の電子機器の高密度実装を実現する上で、表面実装部品とともに基板技術も重要なポイントである。 [0005] As described above, in order to realize high-density mounting of future electronic devices, a substrate technology with surface mount components is also an important point. 現在高密度実装基板として一般的なものにガラスエポキシ基板がある。 There is a glass epoxy substrate in the common ones as the current density mounting board. これは、ガラス織布に耐熱性のエポキシ樹脂を含浸させたものを絶縁基板材料として用いたものである。 This is what was used by impregnating a heat-resistant epoxy resin glass fabric as the insulating substrate material. ガラスエポキシ多層基板(以下ガラエポ多層基板と記す)は、過去コンピューター用として開発されたものであるが、現在では民生用にも広く利用されている。 (Hereinafter referred to as glass epoxy multilayer substrate) glass epoxy multilayer substrate, but has been developed for the past computers, it is now being widely used for consumer. ガラエポ多層基板の製造プロセスは、前述のガラス織布にエポキシ樹脂を含浸させたもの(プリプレグと呼称)にCu箔を熱プレスにより接着させ、フォトリソ技術によりパターン形成したものを基本とし、これに別のプリプレグとCu箔でさらに熱プレスすることで多層積層体を形成する。 Glass epoxy manufacturing process of the multilayer substrate, a Cu foil impregnated with the epoxy resin to the glass fabric of the above (prepreg called) are adhered by heat pressing, basic to those patterned by a photolithographic technique, different to to form a multilayer laminate by further heat-pressed in the prepreg and a Cu foil. この積層体にドリルを用いてスルーホール穴明けを行い、その内壁にメッキ法によってCu電極を形成しそれぞれの層間の電気的接続を行う。 Performed through hole drilling using a drill to the laminate, an electrical connection of the respective layers to form a Cu electrode by plating on the inner wall. そして表面のCuパターン形成をエッチング法で行うのが一般的である。 And it is general to carry out the Cu pattern formed on the surface by etching.

【0006】図4にこのガラスエポキシ多層基板の概略図を示す。 [0006] FIG. 4 shows a schematic diagram of a glass epoxy multilayer substrate. 図4において、20はガラス織布にエポキシ樹脂を含浸させた絶縁基材であり、21は内層配線層、 4, 20 denotes an insulating base material impregnated with epoxy resin glass fabric, 21 inner wiring layer,
22は多層積層後に加工したドリル穴、23はメッキ法で形成された内壁のCu層であり、24は最上層配線パターンである。 22 drill holes machined after multilayer lamination, 23 is a Cu layer of the inner wall formed by a plating method, 24 is a top layer wiring pattern. このようなガラスエポキシ基材による内層および外層の電気的接続のために行うドリルとCuメッキスルーホール(貫通スルー)は、長年の技術開発により確立されたもので広く世の中で認められている。 Such drilling and Cu plated through holes carried out for electrical connection of the inner and outer layers by the glass epoxy substrate (penetrating through) has been observed in a wide world which has been established by many years of technical development.

【0007】しかし、前述のように今後の更なる高密度化の要求に対して、十分であるとはいえない。 [0007] However, for future further densification request as described above, it can not be said sufficient. それは、 that is,
通常のガラエポ多層基板が貫通スルーホールであるため高密度な配線を行う場合、貫通穴が配線スペースを阻害し引き回したい配線を迂回させる必要が生じ、結果的に配線長が長くなる。 If a normal glass epoxy multilayer substrate to perform a high-density wiring since a through hole, you need to bypass the wiring to be through holes inhibit lead wiring space occurs, resulting in the wiring length becomes longer. また配線スペースが少ないため、C In addition, since the wiring space is small, C
ADによる自動配線が困難となる。 Automatic wiring by the AD becomes difficult. さらに今後の小径穴明けに対しドリル加工が困難となり今以上にドリル加工に要するコスト比率が高くなっている。 Furthermore, the drilling for the small-diameter drilling of the future has become a high cost ratio required for drilling now more difficult. また、貫通スルーに必要なCuメッキ工程は、地球環境の上からも問題となっている。 Furthermore, Cu plating steps required for penetration through is also a problem from the top of the global environment. このことは両面基板においても同様の課題を有しており、特に部品実装において、貫通孔部分がある場合その部分に部品が実装できないため高密度な基板が得られない。 This has a similar problem also in the double-sided substrate, in particular component mounting, no high-density substrate can be obtained can not be part mounted on that portion when there is a through-hole portion.

【0008】このような課題に対し、多層基板業界では種々の新しい両面基板や多層基板が開発されている。 [0008] For such problems, a variety of new double-sided boards and multi-layer substrate has been developed in the multilayer board industry. まず、現状のドリルを用いたCuメッキスルー基板技術の延長上にある技術として、SVH多層基板、P−SVH First, as a technique which is on the extension of the Cu-plated through-substrate technique using the current state of the drill, SVH multilayer substrate, P-SVH
多層基板がある。 There is a multi-layer substrate. SVH基板は、貫通スルーホールだけでなく、表層部だけビア接続を行う方法で、貫通スルーホール基板に比べ高密度な配線が可能となる。 SVH substrates is not only through holes, in a way of performing only via connection surface portion, it is possible to high density wiring compared with through holes substrate. またP− The P-
SVH基板は、表層部のビア部を絶縁樹脂で充填し、さらにその上にCuメッキを形成して、ビア部分の上にも部品実装用パッドを形成できるようにしたものである。 SVH substrates, the via portion of the surface layer portion and filled with an insulating resin, and further forming a Cu plating thereon, is also on the via portion which was to be able to form a pad for component mounting.
この方法によれば、表面には挿入部品用の貫通穴しか存在せず、高密度な部品実装が可能となる。 According to this method, only absent through holes for inserting component on the surface, it is possible to high-density component mounting. しかし、両者は前述のガラスエポキシ基板技術の改良であり、ドリル加工の困難さ、Cuメッキが必要な点は変わらない。 However, both an improvement of the aforementioned glass epoxy substrate technology, difficulty in drilling, Cu plating remains unchanged required points.

【0009】一方新しい試みとして、完全なインナービア(IVH)構成を有する多層基板が提案されている。 [0009] On the other hand a new attempt, the multilayer substrate having a perfect inner via (IVH) structure has been proposed.
代表的なものとしてSLC基板(IBM社登録商標)と熱可塑性樹脂を用いた多層基板が上げられる。 Typical multi-layer substrate is raised using SLC substrate (IBM registered trademark) and the thermoplastic resin as. SLC基板は、通常のCuパターン層を有する両面基板上に絶縁材料としての樹脂を表面コーティングしフォトリソ法によってビア穴を形成し、次にCuメッキを全面に付加して、下部導体とビア穴部および表面層とする。 SLC substrate forms a via hole by the resin surface coated photolithography as an insulating material on double-sided board having ordinary Cu pattern layer, then by adding a Cu plating on the entire surface, the lower conductor and the via hole and the surface layer. そして同じくフォトリソ法によってパターン形成し、この工程を繰り返すことにより、多層化するものでる。 And also patterned by photolithography, by repeating this process, leaving those to multilayered. この方法によれば非常に安価で、高精度な配線が形成できるため現在特に注目されている。 Very inexpensive According to this method, are currently of particular interest for high-precision wiring can be formed. この方法の課題は、絶縁材料とCu電極の密着強度が弱い点とコアーの基板と樹脂との熱膨張の違いから基板反りが生じ易いことなどが上げられる。 Problems of this method is increased such that tends to occur substrate warpage due to the difference in thermal expansion between the substrate and the resin of the weak points and core adhesion strength of the insulating material and the Cu electrode. 次に熱可塑樹脂による多層基板は、熱可塑性のシート状基材に穴加工後、シート表面にAg系の樹脂導電ペーストでパターン印刷を行い、別途作製したシートを重ね合わせて熱プレスすることで多層化する基板である。 Multi-layer substrates according thermoplastic resin then after drilling the thermoplastic sheet-shaped base, a pattern is printed with an Ag-based resin conductive paste on the sheet surface, by hot pressing by overlapping separately prepared sheets is a substrate to be multi-layered. 熱可塑性樹脂を使用するため耐熱性に課題があり、 There is a problem in heat resistance to a thermoplastic resin,
また樹脂導電性ペーストであるため配線抵抗が高く、かつ表層部の半田付けが困難という課題がある。 The high wiring resistance because a resin conductive paste, and soldering of the surface layer portion there is a problem that difficulty. しかしいずれの方法も完全なインナービアIVH構成の多層基板であることは大きなメリットであり、注目されている。 But any method is a multilayer substrate also complete inner via IVH structure is a major advantage, it has attracted attention.

【0010】 [0010]

【発明が解決しようとする課題】しかしながら、前記従来の構成では、次のような課題を有していた。 [SUMMARY OF THE INVENTION However, in the conventional structure, had the following problems. 第1に、 In the first,
従来の構成においては、多層板積層後の貫通孔の加工が容易でないことがあげられる。 In the conventional configuration, processability of the through hole after the multilayer board laminate is not easy and the like. これはこれからの高密度配線に対応するために、より微細な穴加工が必要とされる点と、内層の配線に正確に穴加工することが難しい点にある。 This is to accommodate the future high-density wiring, and that it is required finer drilling lies in it is difficult to accurately drilling the inner wiring. 微細な穴加工としては、ドリル径が今後は益々小さいものが要求され、それによるドリル加工コストが無視できなくなる。 The fine hole drilling, future drill diameter is increasingly less is required, can not be ignored drilling costs it. また微細なドリルでは正確な穴加工が厚み方向でさらに困難が予想される。 The exact drilling a fine drill is expected even more difficult in the thickness direction. また内層配線と外層配線の位置合わせ精度が益々高精度化に向かう反面、基板材料の寸法ズレや伸びのバラツキのため正確な位置に穴加工することが難しくなりつつある。 Also although the alignment accuracy of the inner wiring and the outer layer wiring towards increasingly high accuracy, it is becoming difficult to drilling in the correct position for the variations in the dimensional deviation and elongation of the substrate material. このことは、今後のより多層化が進む現在、なお内層どうしの位置あわせが困難となってくる。 This means that the current proceeding is more multi-layered in the future, It should be noted that the alignment of the inner layer to each other it becomes difficult. 以上のような課題を有しているために、従来の回路形成用基板では単位面積当たりに形成できるスルーホール接続の個数および回路パターン密度に限界があり、今後ますます需要が増大する高密度実装用多層基板を実現することが困難である。 To have the problems as described above, in the conventional circuit-forming board is limited to the number and circuit pattern density of the through hole connection that can be formed per unit area, high-density mounting of more demand in the future is increased it is difficult to realize the use multi-layer substrate.

【0011】一方、高密度化を達成する上で重要な点は、多層基板の場合各層間で接続できるインナービア接続可能な基板を得ることであり、両面基板の場合では貫通孔がない接続方法が必要とされる。 Meanwhile, important in achieving densification is to obtain the inner via connection possible substrates that can be connected between the layers when the multilayer substrate, the connection method has no through hole in the case of double-sided board is required. しかし、前述の様なインナービア多層基板においても従来の方法では多層基板の場合、基板表面の段差、耐熱性、電極接着強度等の課題が多い。 However, when the multilayer substrate is also conventional manner in the inner via multi-layer substrate, such as described above, the step of the substrate surface, heat resistance, many problems such as the electrode adhesion strength. また両面基板の場合、銅箔接着の後穴あけ加工を行うため基板表面を平坦化するためメッキによる接続が必要となる。 In the case of double-sided board, connected by plating to planarize the substrate surface for performing drilling after the copper foil adhesion is required.

【0012】本発明は上記従来の課題を解決するもので、導電性ペーストによりビア充填を形成し、さらにその後銅箔との接着を行う両面プリント基板とさらに前記プリント基板を組み合わせることで各層間のみを接続するインナビアホール接続を可能ならしめ、高信頼性および高品質のプリント基板を実現することを目的とする。 [0012] The present invention is intended to solve the conventional problems described above to form a via filling with a conductive paste, the layers only by further subsequent further a double-sided printed circuit board to perform the adhesion of the copper foil combining the printed circuit board tighten possibly the inner-via-hole connection for connecting, and to realize high reliability and high quality printed circuit board.

【0013】 [0013]

【課題を解決するための手段】この目的を達成するために本発明の第1番目のプリント配線基板は、基材の両表面に、熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の表層にパターニングされた回路電極が形成され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記両表面の回路電極どうしを電気的に接続するための導電性物質が充填されているという構成を備えたものである。 Means for Solving the Problems] The first printed circuit board of the present invention to achieve this object, on both surfaces of the base material, there are thermosetting resin layer, the thermosetting resin layer is of patterned circuit electrodes on the surface layer formation, and the provided through-hole passing through said thermosetting resin layer and the base material is formed, the circuit electrodes to each other on both surfaces electrically to the through hole conductive material for connecting are those having a structure that is filled.

【0014】次に本発明の第2番目のプリント配線基板は、前記第1番目のプリント配線基板の少なくとも片面に、基材の両表面に熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の一方の表層にパターニングされた回路電極が形成された層が外側になるように積層され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記一表面の回路電極に電気的に接続するための導電性物質が充填されているという構成を備えたものである。 [0014] The second printed circuit board of the present invention then, the at least one surface of the first printed circuit board, thermosetting resin layer is present on both surfaces of the substrate, the thermosetting resin layer is patterned circuit electrodes on the surface layer of one of the layers is formed is laminated so that the outer side, and a through hole that penetrates is formed between the thermosetting resin layer and the base material, said through conductive material for electrically connecting the circuit electrodes of the one surface pores are those having a structure that is filled.

【0015】次に本発明の第3番目のプリント配線基板は、前記第1番目のプリント配線基板を少なくとも二枚用い、前記配線基板の間に基材の両表面に熱硬化型樹脂層が存在し、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に導電性物質が充填されている中間板が挟持されているとともに、 The third printed circuit board of the present invention is then used at least two of the first-th printed wiring board, there are thermosetting resin layer on both surfaces of the substrate between the wiring substrate and, and the are through holes penetrating the substrate and the said thermosetting resin layer is formed, together with the intermediate plate is sandwiched conductive material is filled in the through hole,
前記プリント配線基板の少なくとも片面に、基材の両表面に熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の一方の表層にパターニングされた回路電極が形成された層が外側になるように積層され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記一表面の回路電極に電気的に接続するための導電性物質が充填されているという構成を備えたものである。 Wherein the at least one surface of the printed wiring board, thermosetting resin layer is present on both surfaces of the substrate, so that a layer of one patterned circuit electrodes on the surface layer of the formed of the thermosetting resin layer is on the outside laminated on, and the provided through-hole passing through said thermosetting resin layer and the base material is formed, a conductive material for electrically connecting the circuit electrodes of the one surface in the through hole is filled those having a structure that is.

【0016】前記第1〜3番のプリント配線基板の構成においては、基材が、有機質不織布材、ガラス質織布材及びガラス質不織布材から選ばれる少なくとも一つの布材に熱硬化型樹脂が含浸され硬化されたものであることが、強度上及び取扱い上好ましい。 [0016] In the configuration of the first to third number of the printed wiring board, substrate, organic nonwoven material, thermosetting resin on at least one of the fabric material selected from vitreous woven and vitreous nonwoven materials it is impregnated with one that is cured, the strength and handling preferred.

【0017】また前記構成においては、有機質不織布材がアラミド(芳香族系ポリアミド)からなり、熱硬化性樹脂の主成分がエポキシ樹脂からなることが、さらに強度が高いので好ましい。 [0017] In the above configuration, organic nonwoven material is made of aramid (aromatic polyamide), the main component of the thermosetting resin that is made of epoxy resin is preferred because more high strength.

【0018】また前記構成においては、有機質不織布が紙からなり、熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなるという構成も採用できる。 [0018] In the above configuration, organic nonwoven fabric is made of paper, a thermosetting resin can be employed also configured to become a phenolic resin or an epoxy resin. また前記構成においては、導電性物質が導電性樹脂ペーストであることが、導通を正確にとれることができるので好ましい。 Also, the In the configuration, it conductive material is a conductive resin paste is preferable because it can take accurate conduction.

【0019】また前記構成においては、導電性樹脂ペースト中の導電材料が、銀、銅およびこれらの合金から選ばれる少なくとも一つの粉末を含むものを採用できる。 [0019] In addition the arrangement, the conductive material in the electrically conductive resin paste can be employed silver, copper and those containing at least one powder selected from these alloys.
また前記構成においては、熱硬化型樹脂層の主成分がエポキシ樹脂であると、強度的にも耐熱的にも好ましい。 Also, the In the configuration, when the main component of the thermosetting resin layer is an epoxy resin, preferably also in strength heat manner also.

【0020】次に本発明の第1番目のプリント配線基板の製造方法は、基材の両面に、あらかじめ片面に熱硬化型樹脂を塗布した離型フィルムを、前記離型フィルムの熱硬化型樹脂塗布層が内側となるように位置させ、前記離型フィルムに塗布された熱硬化型樹脂の硬化温度以下の温度で圧力を加えて張り合わせ、前記熱硬化型樹脂を塗布した離型フィルムを張り合わせた基材の所望の位置に貫通孔を形成し、前記貫通孔に導電性樹脂ペーストを前記離型フィルム表面まで充填させ、前記熱硬化型樹脂を基材表面に残し両面の離型フィルムのみ剥離し、前記剥離済み基材の表面に銅箔を配し、加熱加圧する事により前記熱硬化型樹脂を硬化させ前記銅箔を接着させ、前記基材表面の銅箔をパターンニングする工程を少なくとも有するという構 [0020] The first method for manufacturing a printed wiring board of the present invention then, on both sides of the substrate, a release film coated with a previously thermosetting resin on one side, thermosetting resin of the release film coating layer is positioned such that the inner, the bonded under pressure at a curing temperature below the temperature of the release film to the applied thermosetting resin, was laminated a release film coated with the thermosetting resin a through hole is formed at a desired position of the substrate, the through hole is filled with a conductive resin paste to the release film surface, the thermosetting resin was peeled off only release film of the double-sided left on the substrate surface the arranged copper foil on the surface of the release already substrate, curing the thermosetting resin by heating and pressing to adhere the copper foil has at least a step of patterning the copper foil of the substrate surface structure that を備えたものである。 It is those with a.

【0021】次に本発明の第2番目のプリント配線基板の製造方法は、前記第1番目の方法により作製されたプリント配線基板の両面に、同じく前記第1番目の方法で離型フィルムを剥離した未硬化樹脂層を有する基材と別途作製した離型フィルムを剥離した未硬化樹脂層を有する基材で挟み、さらにその表面に銅箔を配して加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化し、表面の銅箔をパターニングにより回路形成する工程とを少なくとも1回以上行うことにより多層配線を行うことを特徴とする。 [0021] The second method for manufacturing a printed wiring board of the present invention then, on both sides of the printed wiring board fabricated by the 1st method, also peeling the release film in the 1st method was sandwiched between a substrate having an uncured resin layer was peeled off the release film was separately prepared with a substrate having an uncured resin layer, heating and pressing further arranged copper foil on the surface thereof, said printed circuit board a substrate having an uncured resin layer is laminated cured, and performing multilayer wiring by performing a step of forming a circuit by patterning the copper foil surface at least once.

【0022】次に本発明の第2番目のプリント配線基板の製造方法は、前記第1番目の方法で離型フィルムを剥離した未硬化樹脂層を有する基材と、前記第1番目の方法により作製されたプリント配線基板とを前記硬化済みプリント配線基板が常に最外層になるよう所望の数だけ交互に配し、加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化して多層配線を行うことを特徴とする。 [0022] Next the production method of the second printed circuit board of the present invention comprises a substrate having an uncured resin layer was peeled off the release film in the 1st method, by the 1st method arranged and printed circuit board thus prepared is alternately desired number so that the cured printed circuit board is always the outermost layer, by heating and pressing, laminating a base material having said printed circuit board and the uncured resin layer cured to and performing the multi-layer wiring.

【0023】前記第1〜3番目の方法においては、基材が、有機質不織布材、ガラス質織布材及びガラス質不織布材から選ばれる少なくとも一つの布材に熱硬化型樹脂が含浸され硬化されたものであることが好ましい。 [0023] In the first to third second method, the substrate is organic nonwoven material, thermosetting resin is impregnated and cured on at least one of the fabric material selected from vitreous woven and vitreous nonwoven materials it is preferable that was.

【0024】また前記構成においては、有機質不織布材がアラミド(芳香族系ポリアミド)からなり、熱硬化性樹脂の主成分がエポキシ樹脂からなることが好ましい。 [0024] In the above configuration, organic nonwoven material is made of aramid (aromatic polyamide), it is preferable that the main component of the thermosetting resin is an epoxy resin.
また前記構成においては、有機質不織布が紙からなり、 The said in the configuration, organic nonwoven fabric is made of paper,
熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなることが好ましい。 It is preferable that the thermosetting resin is a phenolic resin or an epoxy resin.

【0025】また前記構成においては、導電性樹脂ペースト中の導電物質が、銀、銅およびこれらの合金の内の一種以上の粉末からなることが好ましい。 [0025] In the above configuration, the conductive material in the conductive resin paste, silver, be made of copper and one or more powders of these alloy. また前記構成においては、貫通孔を形成する方法がドリル加工法もしくはレーザー加工法により行うことが、加工性が良好で好ましい。 Also, the In the configuration, a method of forming a through hole that is performed by drilling method or a laser processing method, preferably a good workability.

【0026】また前記構成においては、離型フィルムに塗布された熱硬化型樹脂の主成分がエポキシ樹脂よりなることが好ましい。 [0026] In the above configuration, it is preferable that the main component of the thermosetting resin applied to the release film is made of epoxy resin.

【0027】 [0027]

【作用】前記した本発明の第1番目のプリント配線基板の構成によれば、基材の両表面に、熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の表層にパターニングされた回路電極が形成され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記両表面の回路電極どうしを電気的に接続するための導電性物質が充填されていることにより、導電性ペーストによりビア充填を形成し、さらにその後銅箔との接着を行う両面プリント基板とさらに前記プリント基板を組み合わせることで各層間のみを接続するインナビアホール接続を可能ならしめ、高信頼性および高品質の両面プリント基板を実現できる。 SUMMARY OF] According to the configuration of the first printed circuit board of the present invention described above, on both surfaces of the base material, there are thermosetting resin layer, which is patterned on the surface layer of the thermosetting resin layer circuit electrodes are formed, and the provided through-hole passing through said thermosetting resin layer and the base material is formed, a conductive material for electrically connecting the circuit electrodes to each other of the both surfaces in the through-hole by There has been filled, to form a via filled with a conductive paste, enables inner-via-hole connection for connecting only the respective layers by further subsequent further a double-sided printed circuit board to perform the adhesion of the copper foil combining the printed circuit board not tighten, it is possible to realize a double-sided printed circuit board of high reliability and high quality.

【0028】また本発明の第2〜3番目のプリント配線基板の構成によれば、インナビアホール接続を可能ならしめ、高信頼性および高品質の多層配線プリント基板を実現できる。 [0028] According to a 2-3-th printed wiring board structure of the present invention, it occupies possibly the inner-via-hole connection can be realized a multilayer wiring printed circuit board with high reliability and high quality.

【0029】次に本発明の第1番目のプリント配線基板の製造方法の構成によれば、有機質不織布材またはガラス質織布材またはガラス質不織布材に熱硬化型樹脂を含浸させ硬化させた基材を用い、この基材の両方の面に、 According then to the configuration of the first printed wiring board manufacturing method of the present invention, cured impregnated with a thermosetting resin to the organic nonwoven material or glassy woven or glassy nonwoven materials based on used wood, on both sides of the substrate,
あらかじめ片面に一定厚みの熱硬化型樹脂をコーティングした離型フィルムを用意し、前記離型フィルムの熱硬化型樹脂塗布層が内側となるように張り合わせる。 Advance one side to prepare the coated release film a thermosetting resin having a constant thickness is laminated as the thermosetting resin coating layer of the release film facing inward. この時前記離型フィルム上に塗布された熱硬化樹脂の硬化温度以下の温度で圧力を加えて張り合わせる。 Laminating by applying pressure at a curing temperature below the temperature at this time thermosetting resin applied to the release film. 次に前記熱硬化型樹脂を塗布した離型フィルムを張り合わせた基材の所望の位置に貫通孔を形成し、この貫通孔に導電性樹脂ペーストを用いて前記離型フィルム表面まで充填させる。 Then forming a through hole at a desired position of the thermosetting resin coated release film was laminated substrate, wherein to fill up the release film surface using a conductive resin paste in the through-hole. この時外側の離型フィルムは貫通孔以外の部分に導電性ペーストが付着しないようにするための保護膜として働く。 Release film at this time the outer serves as a protective film so that the conductive paste in the portion other than the through hole is not attached. 次に前記熱硬化型樹脂を基材表面に残したまま両面の離型フィルムのみ剥離する。 Then peeling off the thermosetting resin only release film of the double-sided leaving the substrate surface. これにより両面の電気的接続を得るためのビア導体と前記基材の表面に銅箔との接着を得るための接着層が形成できる。 Thus the adhesive layer to obtain adhesion to a copper foil to the via conductor and the surface of the base material for obtaining the both surfaces of the electrical connection can be formed. この後前記剥離済み基材の表面に銅箔を配し、加熱加圧する事により前記熱硬化型樹脂層を硬化させ前記銅箔と接着させることができる。 Arranged foil to the surface of the release already substrates Thereafter, curing the thermosetting resin layer by heating and pressurizing can be bonded to the copper foil. さらに前記基材表面の銅箔をエッチング法でパターンニングすることにより、効率良く合理的に両面プリント配線基板が得られる。 Further, by patterning the copper foil of the substrate surface by etching, efficiently rationally double-sided printed wiring board is obtained.

【0030】また本発明の第2番目のプリント配線基板の製造方法の構成によれば、前記同様の方法により作製されたプリント配線基板の両面に、別途作製した前記の離型フィルムを剥離した未硬化の樹脂層を有する基材で挟み、さらにその表面に銅箔を配して加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化し、表面の銅箔をパターニングにより回路形成する工程を少なくとも1回以上行うことにより、効率良く合理的に多層配線が得られる。 [0030] According to the configuration of the second printed wiring board manufacturing method of the present invention, on both sides of the printed wiring board fabricated by the same method, non-peeling off the release film of the a separately prepared sandwiched between a substrate having a resin layer of a cured, further heating and pressing by disposing copper foils on its surface, and laminating cured substrate with said printed circuit board and the uncured resin layer, patterning the copper foil surface by performing at least once the steps of forming a circuit by efficiently rationally multilayer wiring can be obtained.

【0031】また本発明の第3番目のプリント配線基板の製造方法の構成によれば、同様に前述の方法で離型フィルムを剥離した未硬化樹脂層を有する基材と、前記両面基板とを前記硬化済みプリント配線基板が常に最外層になるよう所望の数だけ交互に配し、加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化しても、効率良く合理的に多層配線を得ることができる。 [0031] According to the configuration of the third printed wiring board manufacturing method of the present invention, a substrate having an uncured resin layer was peeled off the release film in the same manner as the method described above, and the double-sided substrate arranged alternately desired number so that the cured printed circuit board is always the outermost layer, by heating and pressing, be laminated cured substrate having the printed circuit board and the uncured resin layer, efficiently streamlined manner it is possible to obtain a multilayer wiring.

【0032】このように熱硬化型樹脂層を有する離型フィルムで挟み込まれた基材を用い、かつ貫通孔に導電性ペーストを離型フィルム表面まで埋め込んだ構造を有する基材を使用することによって、比較的安定に表面の平滑性に優れたインナービア構成の両面プリント基板が得られる。 [0032] By using a substrate having a buried structure thus using the sandwiched substrates with a release film having a thermosetting resin layer, and a conductive paste into the through hole to release the film surface , relatively sided printed circuit board stably inner via structure with excellent surface smoothness can be obtained. また表面平滑性にすぐれたインナービア構成の両面プリント基板を用いて簡便に高多層な基板にする事が可能となるものである。 Also in which it becomes possible to conveniently high layer substrate using a double-sided printed circuit board of excellent inner-via structure in the surface smoothness. この方法によれば、ビア導体を充填してから銅箔を接着する事ができるので、メッキによる銅電極層の形成が不必要になり、地球環境上有利である。 According to this method, since it is possible to bond the copper foil after filling the via conductor, the formation of the copper electrode layer by plating becomes unnecessary, which is advantageous on the global environment.

【0033】また、基材に硬化済みのものをもちいるので、ビア導体と積層基材との不必要な反応もなく安定した層間接続抵抗とその信頼性が得られる。 Further, since use of those already cured to a substrate, the interlayer connection resistance and its reliability stable without unwanted reactions between the via conductor and the laminated base material is obtained. また基材表面の熱硬化樹脂層が銅箔と基材の接着に寄与し、強固な密着強度が得られる。 The thermosetting resin layer of the substrate surface contributes to the adhesion of the copper foil and the substrate, strong adhesion strength can be obtained.

【0034】 [0034]

【実施例】以下本発明の一実施例におけるプリント配線基板の製造方法について、図面を参照しながら説明する。 The method of manufacturing the printed wiring board in an embodiment of EXAMPLES Hereinafter the present invention will be described with reference to the drawings.

【0035】(実施例1)図1(a)〜(h)は本発明の第1の実施例における両面プリント配線基板の製造工程を示す工程断面図である。 [0035] (Embodiment 1) FIG 1 (a) ~ (h) are cross-sectional views showing a manufacturing process of double-sided printed wiring board in the first embodiment of the present invention. まず図1(a)に示すようなポリエステルなどの離型性フィルム1(厚み約12μ First, FIG. 1 removable film 1 such as a polyester, such as shown in (a) (thickness of about 12μ
m)を準備する。 m) to prepare. つぎに図1(b)に示すように熱硬化型樹脂2を塗布し、溶剤分を除去するための乾燥をする。 Then the thermosetting resin 2 was applied as shown in FIG. 1 (b), the drying for removing the solvent component. 熱硬化型樹脂にはエポキシ樹脂を主成分とするFR FR The thermosetting resin composed mainly of epoxy resin
−5相当の耐熱性を有する樹脂が選択できる。 Resins having a -5 considerable heat resistance can be selected. またその塗布方法は、ドクターブレード法やコーターによる方法などが有効であるが本実施例ではドクターブレード法で塗布厚みを20μmとした。 The method applied is a method by a doctor blade method and coater are effective was 20μm coating thickness by a doctor blade method in the present embodiment. 次に基材3を図1(c)のように配して接着させる。 Then placed adhere to as shown in FIG. 1 (c) the substrate 3. 用いる基材は、紙、アラミド(芳香族ポリアミド)のような有機質の繊維、またはガラスの織布または不織布が使用できる。 The substrate can be paper, aramid fibers organic such as (aromatic polyamide) or glass woven or nonwoven fabric, may be used used. 本実施例ではアラミド繊維(12μm径で長さ3mm)を不織布として用いたアラミドペーパー(坪量72g/cm 2 )を用いた。 Aramid fiber (length 3mm at 12μm diameter) was used aramid paper (basis weight 72 g / cm 2) was used as the nonwoven fabric in the present embodiment. このアラミドペーパーに前記と同様の熱硬化型樹脂であるエポキシ樹脂を含浸させたプリプレグを耐熱離型フィルムに挟んで熱硬化(170℃−60kg/cm 2 Thermosetting across the prepreg impregnated with epoxy resin which is the same thermosetting resin and said to the aramid paper in heat release film (170 ℃ -60kg / cm 2
真空中)させ、離型フィルムを剥離したものを基材3とした。 Vacuum) is, a material obtained by peeling off the release film was a base material 3. この様にして作製した基材(厚み約450〜70 Based on material produced in this way (with a thickness of about 450 to 70
0ミクロン)と前記熱硬化型樹脂を塗布した離型フィルムを図のように張り合わせる。 0 microns) and a releasing film coated with the thermosetting resin laminating as in FIG. 張り合わせの条件は、前記離型フィルムに塗布された熱硬化樹脂の硬化温度以下の温度で加圧して行われる。 Conditions of bonding is performed by pressurizing at a curing temperature below the temperature of the thermosetting resin applied to the release film. 本実施例ではその硬化開始温度が約130℃であったため、105℃の温度で図1 Therefore curing initiation temperature was about 130 ° C. In the present embodiment, FIG. 1 at a temperature of 105 ° C.
(c)のような形で20kg/cm 2の圧力で加圧して行った。 Was performed by pressurizing with a pressure of 20 kg / cm 2 in the form such as (c). これにより熱硬化樹脂層はやや軟化し、基材と離型フィルムの接着に寄与する。 Thereby the thermosetting resin layer is slightly softened, it contributes to the adhesion between the substrate and the release film. この時その離型フィルムと基材との接着強度は、あまり弱すぎると後の穴加工で剥離してしまうので良くなく、また強すぎると離型フィルムが剥せなくなるので注意を要する。 In this case the adhesion strength between the release film and the substrate, requiring careful too weak too the post not good because exfoliated by hole machining, also not peel off is too strong release film.

【0036】次に図1(d)に示すように、離型フィルム接着後の基材の所定の箇所にレーザ加工法またはドリル加工などを利用して貫通孔4(穴径約250ミクロン)を形成する。 [0036] Then, as shown in FIG. 1 (d), the release film through using a predetermined portion of the substrate after adhesion and a laser processing method or drilling holes 4 (hole size about 250 microns) Form. 次に図1(e)に示すように、貫通孔4に導電性ペーストを充填する。 Next, as shown in FIG. 1 (e), filling the conductive paste into the through-hole 4. 導電性ペースト5を充填する方法としては、貫通孔4を有する基材を印刷機(図示せず)のテーブル上に設置し、直接導電性ペーストを離型性フィルム1の上から印刷する。 As a method of filling the conductive paste 5, it was placed a substrate having a through hole 4 on the table of a printing machine (not shown), for printing directly conductive paste over the release film 1. このとき、上面の離型性フィルム1は印刷マスクの役割と、基材3の表面の汚染防止の役割を果たしている。 At this time, the release film 1 of the upper surface plays the role of printing mask, the role of the pollution of the substrate 3 on the surface. このとき使用した導電性ペーストは、導電性のフィラーとして平均粒径2μmの球状銀粉末を用い、樹脂としては前記基板材料と同様の熱硬化エポキシ樹脂(無溶剤型)、硬化剤として酸無水物系の硬化剤をそれぞれ85重量%、12.5 Conductive paste used at this time, using a spherical silver powder having an average particle size of 2μm as the conductive filler, the same thermosetting epoxy resin and the substrate material as the resin (solvent-free), acid anhydride as a curing agent 85 wt% systems curing agent, respectively, 12.5
重量%、2.5重量%となるよう3本ロールにて十分に混練して得たものである。 Wt%, those obtained by sufficiently kneaded using three rollers so as to be 2.5 wt%.

【0037】導電性ペーストを充填した基材を次は図1 [0037] The conductive paste base material filled with following Figure 1
(f)に示す様に離型フィルムのみを剥離する。 Peeling the only release film as shown in (f). このように作製されたものに片面を粗化処理した35μm厚みの片面粗化銅箔(回路電極)6を粗化面を内側にして図1(g)に示す様に積層圧着する。 Thus those produced in a single-sided roughened copper foil (circuit electrode) 6 of 35μm thickness was roughened on one side and a roughened surface on the inner side stacked crimped as shown in FIG. 1 (g). 条件は170℃−1 Conditions 170 ° C. -1
時間真空中で行った。 It was carried out in time in a vacuum. これにより、基材表面のエポキシ熱硬化樹脂が硬化接着し銅箔と基材の接合が行われる。 Thus, epoxy thermoset resin substrate surface is performed junction of the cured adhesive to the copper foil and the substrate.
そしてさらに、図1(h)に示す様に周知の技術であるフォトリソ法(ドライフィルムレジストラミネートDF And further, the photolithography method is a well known technique as shown in FIG. 1 (h) (dry film resist lamination DF
R、紫外線硬化、DFR現像、エッチング、DFR剥離)によって銅箔のパターニングを行う。 R, UV curing, DFR development, etching, and patterning of the copper foil by DFR peeling) performed. この後必要に応じてソルダーレジスト形成、文字形成、基板加工などを行い両面プリント基板が得られる。 Solder resist formed as needed after this, character form, double-sided printed circuit board is obtained performs like substrate processing. この様にして作製された両面プリント基板を各種の信頼性評価を行った結果、それぞれの層間接続抵抗は、4端子法で測定したところ各ビア当たり1.5mΩであった。 The double-sided printed circuit board which is manufactured in this manner result of various reliability evaluation, each of the interlayer connection resistance was each via per 1.5mΩ was measured by four-terminal method. 銅箔ピール強度は、1.8kg/cm幅以上であり充分使用可能である。 Copper foil peel strength is at 1.8 kg / cm width or more is sufficient available. またその接続抵抗の信頼性は、500個のビアが直列に接続されている回路で評価したところ、オイルディップ試験、半田フロー試験、半田リフロー試験のいずれにおいてもその接続の抵抗変化は1ビア当たり0.5m The reliability of the connection resistance, where 500 vias were evaluated in the circuit being connected in series, the oil dip test, the solder flow test, per 1 via the resistance change also the connection in any of the solder reflow test 0.5m
Ω上昇する程度であった。 It was the extent to which the increase in Ω. このことから本実施例の両面プリント基板は中空の貫通孔がなく、表面が平滑な高信頼性、高密度基板といえる。 Double-sided printed circuit board of the present embodiment this means that no hollow holes, smooth surface reliability, it can be said that a high-density substrate.

【0038】(実施例2)本発明の第2の実施例は、実施例1に示した両面プリント配線基板を用い多層プリント配線基板を作製する1例を示す。 The second embodiment (Embodiment 2) The present invention shows an example of manufacturing a multilayer printed wiring board using a double-sided printed circuit board shown in Example 1.

【0039】まず内層用の両面板の作製方法は、実施例1と同様、ポリエチレンテレフタレートの離型性フィルム(厚み約12ミクロン)に熱硬化型樹脂(エポキシ樹脂を主成分とするFR−5相当の耐熱性を有する樹脂) The method for manufacturing a double-sided board for an inner layer is first similarly to Example 1, FR-5 equivalent composed mainly of release film (thickness of about 12 microns) in the thermosetting resin (epoxy resin of polyethylene terephthalate resins having heat resistance)
を塗布し、溶剤分除去のため乾燥したものである(厚みは20μm)。 The coating is obtained by drying for solvent content removing (20 [mu] m thickness). 次に基材の両面に前記離型フィルムを実施例1と同様に配して接着させる。 Then adhering by arranging similarly the release film on both sides of the substrate as in Example 1. 用いる基材として、 As base material used,
本実施例ではガラス織布を用いたガラスエポキシ基板材料を用いた。 A glass epoxy substrate material using glass woven fabric in the present embodiment. このガラスエポキシ基板材は実施例1と同様の熱硬化型樹脂であるエポキシ樹脂をガラス織布に含浸させたプリプレグ(厚み110μm)であり、同プリプレグを4枚重ね合わせ耐熱離型フィルムに挟んで熱硬化(170℃−60kg/cm 2真空中)させ、離型フィルムを剥離したものを基材とした。 The epoxy resin glass epoxy board material is the same thermosetting resin as in Example 1 a prepreg obtained by impregnating a glass woven fabric (thickness 110 [mu] m), sandwiched heat release film superposed four of the same prepreg thermosetting (170 ℃ -60kg / cm 2 vacuum) is, a material obtained by peeling off the release film as a base material. この様にして作製した基材(厚み約0.4mm)と前記熱硬化型樹脂を塗布した離型フィルムを張り合わせる。 Such To laminating the release film substrate prepared with (a thickness of about 0.4 mm) was coated with the thermosetting resin. 張り合わせの条件は、前記と同様離型フィルムに塗布された熱硬化樹脂の硬化温度以下の温度で加圧して行われる。 Conditions of bonding is performed by pressurizing with the same release film curing temperature below the temperature of the applied thermosetting resin. 本実施例ではその硬化開始温度が約130℃であるため、105℃の温度で20kg/cm 2の圧力で加圧して行った。 In the present embodiment the curing initiation temperature is about 130 ° C., was performed by pressurizing with a pressure of 20 kg / cm 2 at a temperature of 105 ° C..

【0040】次に離型フィルム接着後の基材の所定の箇所にドリル加工法を利用して貫通孔(穴径約0.4m Next release film at a predetermined position of the substrate after bonding utilizing drilling method through holes (hole diameter of about 0.4m
m)を形成する。 m) to form. この貫通孔に導電性ペーストを充填する。 Filling the conductive paste into the through-hole. 導電性ペーストを充填する方法としては、貫通孔を有する基材を印刷機(図示せず)のテーブル上に設置し、直接導電性ペーストを離型性フィルムの上から印刷する。 As a method of filling the conductive paste, it is placed a substrate having a through hole on a table of a printing machine (not shown), for printing directly conductive paste over the release film. このとき印刷下面は焼結金属を介して真空吸引される様にし、かつペーストが吸引され焼結金属内に取り込まれないよう紙を前記基材と焼結金属の間に設置する。 Print underside this case the manner is vacuum sucked through the sintered metal, and placing the paper so that the paste is not incorporated into the suction and sintered in the metal between the substrate and the sintered metal. また上面の離型性フィルムは印刷マスクの役割と、 The release film of the upper surface and the role of printing mask,
基材の表面の汚染防止の役割を果たしている。 It plays the role of pollution of the surface of the substrate. このとき使用した導電性ペーストは、導電性のフィラーとして平均粒径1.2μmの球状銅粉末を用い、樹脂としては前記基板材料と同様の熱硬化エポキシ樹脂(無溶剤型)、 Conductive paste used at this time, using a spherical copper powder having an average particle size of 1.2μm as conductive filler, the resin the substrate material and the same thermosetting epoxy resin (solvent-free),
硬化剤として粉末の潜在性硬化剤を用いた。 Powder was used latent curing agent as a curing agent. 配合比はそれぞれ85重量%、12.5重量%、2.5重量%となるよう3本ロールにて十分に混練して得たものである。 85 wt% mixing ratio, respectively, 12.5% ​​by weight, which was obtained by sufficiently kneaded using three rollers so as to be 2.5 wt%.

【0041】導電性ペーストを充填した基材を実施例1 [0041] The conductive paste was filled substrate Example 1
と同様に離型フィルムのみを剥離する。 And similarly peeled only release film. このように作製されたものに両面を粗化処理した18μm厚みの両面粗化銅箔で挟み込み積層圧着する。 Thus manufactured as in the two-sided to pinching stacked crimped on both sides roughened copper foil roughening treated 18μm thickness. 条件は170℃1時間真空中で行った。 Conditions were carried out in 170 ° C. 1 hour vacuum. これにより、基材表面のエポキシ熱硬化樹脂が硬化接着し銅箔と基材の接合が行われる。 Thus, epoxy thermoset resin substrate surface is performed junction of the cured adhesive to the copper foil and the substrate. このようにして作製された銅張り積層基材を、配線を形成するためフォトリソ法にて回路パターンを形成する。 Thus the copper-clad laminate substrate which is manufactured, to form a circuit pattern by a photolithography method to form a wiring. 以上の様にして作製されたガラスエポキシ両面板を内層配線用中間材として用い多層配線基板を作製する。 Producing a multilayer wiring board using the above glass epoxy double-sided board which have been fabricated in a manner as the intermediate material for the inner layer wiring. 以下本実施例の多層化の方法を図2に示す。 The following methods of the multilayer of the present embodiment shown in FIG. 本実施例で示した両面板と別途本実施例と同様に導電性ペーストを充填し、 Similar separately as this embodiment the double-sided board shown in this example filled with a conductive paste,
離型フィルムを剥離した図1(f)に示した状態の基材(以下中間板という)を用い、図2(a)のように組み合わせ、片面粗化銅箔(回路電極)7を最外層になるように位置合わせして重ね合わせる。 Using a substrate in the state shown in FIG. 1 was peeled off the release film (f) (hereinafter referred to as the intermediate plate), the combination as shown in FIG. 2 (a), the outermost one side roughened copper foil (circuit electrode) 7 aligned so as to to be superimposed. さらに加熱加圧して積層一体化する。 Further heating under pressure integrally laminated. 積層の条件は、両面板と同一の条件化で行った。 Conditions of lamination was carried out under the same conditions of the double-sided plate. このようにして作製された銅張り積層基材を、配線を形成するためフォトリソ法にて回路パターンを形成する。 Thus the copper-clad laminate substrate which is manufactured, to form a circuit pattern by a photolithography method to form a wiring. これにより図2(b)に示すように4層プリント配線基板が得られる。 Thus the four-layer printed wiring board as shown in FIG. 2 (b) is obtained.

【0042】この様にして作製された4層プリント配線基板を各種の信頼性評価を行った結果、それぞれの層間接続抵抗は、4端子法で測定したところ各ビア当たり1.9mΩであった。 The result of the four-layer printed wiring board fabricated in this manner was subjected to various reliability evaluation, each of the interlayer connection resistance was each via per 1.9mΩ was measured by four-terminal method. またその接続抵抗の信頼性は、5 The reliability of the connection resistance is 5
00個のビアが直列に接続されている回路で評価したところ、オイルディップ試験、半田フロー試験、半田リフロー試験のいずれにおいてもその接続の抵抗変化は1ビア当たり0.7mΩ上昇する程度であった。 When 00 vias were evaluated in the circuit being connected in series, the oil dip test, the solder flow test, the resistance change of the connection in any of the solder reflow test was enough to increase 0.7mΩ per vias .

【0043】本実施例で組み合わせる基材として、ガラスエポキシ基材による両面板と中間板を用いたが、実施例1で示した様なアラミド不織布との組み合わせでも有効であり、その他紙フェノール基材、ガラス不織布との組み合わせも有効であることはいうまでもない。 [0043] As the base material to be combined in the present embodiment uses a double-sided plate and the intermediate plate by the glass epoxy substrate is also effective in combination with such aramid nonwoven fabric shown in Example 1, other paper phenol substrate it goes without saying combination of glass nonwoven fabric is also effective.

【0044】また本実施例では4層プリント配線基板の作製方法を述べたが、さらに前記中間板を組み合わせ積層、パターニングを行うことで6層プリント配線基板が得られ、順次本方法でさらに高多層基板が得られる。 [0044] Although described a method for manufacturing a four-layer printed wiring board in the present embodiment, further the intermediate plate combinations laminated, 6-layer printed wiring board by performing patterning is obtained, further high layer in a sequential method the substrate can be obtained. このとき使用する銅箔は最外層以外は両面粗化銅箔を用いることが肝要である。 The copper foil used at this time, except the outermost layer it is important to use a double-sided roughened copper foil.

【0045】また他の実施例として、多層プリント配線基板を作製する方法を以下に示す。 [0045] As another example, a method of manufacturing a multilayer printed wiring board below. 本多層プリント配線基板は、実施例2と同様にして作製した両面板と中間板を図3(a)に示すように配し、かつ片面粗化銅箔を最外層になるように配して積層、パターニングを行う。 This multilayer printed wiring board, a double-sided plate and the intermediate plate prepared in the same manner as in Example 2 arranged as shown in FIG. 3 (a), and one side roughened copper foil arranged so as to be an outermost layer laminated, the patterning is carried out. 積層は、熱プレスにより真空中にて170℃の温度で約1 Laminate is from about 1 at a temperature of 170 ° C. in vacuum by hot press
時間加熱加圧(40kg/cm 2 )して銅箔の接着を行う。 And time heat and pressure (40kg / cm 2) performing adhesion of the copper foil. 銅箔の接着の後パターニングは、フォトリソ法で配線パターンの形成を行う。 Patterning after the adhesion of the copper foil is performed to form the wiring pattern in photolithography. 8、9は前記両面板、10、 8,9 the double-sided plate, 10,
11、12は中間板、13は片面粗化銅箔(回路電極) 11 and 12 the intermediate plate 13 is single-sided roughened copper foil (circuit electrode)
である。 It is. このようにして作製された6層プリント配線基板の完成図を図3(b)に示す。 The completed view of the thus 6-layer printed wiring board which is manufactured shown in FIG. 3 (b). この6層プリント配線基板を各種の信頼性評価を行った結果、オイルディップ試験、半田フロー試験、半田リフロー試験のいずれにおいても良好な結果を示した。 The 6-layer printed circuit board results of various reliability evaluating, oil dip test, the solder flow test, also showed good results in any of the solder reflow test.

【0046】またさらに積層数の多い多層回路基板を製造するには、前記の両面板と中間板をさらに用意し、中間板と両面板を交互に配し中間板が最外層になるよう構成することでより多層構成のプリント配線基板を1回の組み合わせ積層で作製する事ができる。 [0046] In addition to the production of further laminated a large number of multi-layer circuit board, said further prepared sided plate and the intermediate plate, the intermediate plate arranged intermediate plate and the double-sided plate alternately to constitute so that the outermost layer the printed wiring board having a multilayer structure can be produced in one combined stacking more by.

【0047】以上説明した多層プリント配線基板の製造方法においては、検査済みの両面基板と中間板を用いて行うため、高い工程歩留まりが確保でき、コスト上昇が抑えられる。 [0047] The method for manufacturing a multilayer printed wiring board described above, in order to perform with the inspected sided substrate and the intermediate plate, can be secured high process yield, cost increase can be suppressed.

【0048】 [0048]

【発明の効果】以上説明した通り、本発明の第1番目のプリント配線基板によれば、基材の両表面に、熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の表層にパターニングされた回路電極が形成され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記両表面の回路電極どうしを電気的に接続するための導電性物質が充填されていることにより、導電性ペーストによりビア充填を形成し、さらにその後銅箔との接着を行う両面プリント基板とさらに前記プリント基板を組み合わせることで各層間のみを接続するインナビアホール接続を可能ならしめ、高信頼性および高品質の両面プリント基板を実現できる。 As described in the foregoing, according to the first printed circuit board of the present invention, on both surfaces of the base material, there are thermosetting resin layer, patterning the surface layer of the thermosetting resin layer is is a circuit electrode formed, and wherein a through hole penetrating the substrate and the said thermosetting resin layer is formed, the through hole in the both surface circuit electrodes to each other for electrically connecting the by conductive material is filled, the inner via holes to form a via filled with a conductive paste, connecting only the layers by further subsequent further a double-sided printed circuit board to perform the adhesion of the copper foil combining the printed circuit board tighten if possible a connection can be realized double-sided printed circuit board of high reliability and high quality.

【0049】また本発明の第2〜3番目のプリント配線基板によれば、インナビアホール接続を可能ならしめ、 [0049] The first 2-3 th According to the printed wiring board, tighten possibly the inner-via-hole connection of the present invention,
高信頼性および高品質の多層配線プリント基板を実現できる。 It can be high reliability and high quality multilayer wiring printed board.

【0050】次に本発明の第1〜3番目のプリント配線基板の製造方法によれば、熱硬化型樹脂層を有する離型フィルムで挟み込まれた基材を用い、かつ貫通孔に導電性ペーストを離型フィルム表面まで埋め込んだ構造を有する基材をさらに銅箔で挟みこみ積層することによって、安定に表面の平滑性に優れたインナービア構成の両面プリント基板が得られる。 [0050] Then, according to the first to third th printed wiring board manufacturing method of the present invention, using a substrate sandwiched by parting films having a heat-curable resin layer, and a conductive paste into the through-hole the by laminating nipping with more copper foil substrate having a buried structure to the release film surface, double-sided printed circuit board with excellent inner-via structure in smoothness of the stable surface. これにより中空の貫通孔のプリント基板が得られ高密度実装に最適なものである。 Thus it is optimal for the printed circuit board is obtained high-density mounting of the hollow through-hole.
また表面平滑性にすぐれたインナービア構成の両面プリント基板を用いることで簡便に高多層な基板にする事が可能となる。 Also it is possible to simplify a high multilayer substrate by using a double-sided printed circuit board of excellent inner-via structure in the surface smoothness. この方法によれば、ビア導体を充填してから銅箔を接着する事ができるので、メッキによる銅電極層の形成が不必要になり、地球環境上有利である。 According to this method, since it is possible to bond the copper foil after filling the via conductor, the formation of the copper electrode layer by plating becomes unnecessary, which is advantageous on the global environment.

【0051】また、基材に硬化済みのものをもちいるので、ビア導体と積層基材との不必要な反応もなく安定した層間接続抵抗とその信頼性が得られる。 [0051] Further, since use of those already cured to a substrate, the interlayer connection resistance and its reliability stable without unwanted reactions between the via conductor and the laminated base material is obtained. また基材表面の熱硬化樹脂層が銅箔と基材の接着に寄与し、強固な密着強度が得られる。 The thermosetting resin layer of the substrate surface contributes to the adhesion of the copper foil and the substrate, strong adhesion strength can be obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)〜(h)は本発明の一実施例の両面プリント配線基板の製造方法を示す工程断面図。 [1] (a) ~ (h) are sectional views showing a method of manufacturing a double-sided printed wiring board of an embodiment of the present invention.

【図2】(a)〜(b)は本発明の第1の実施例における多層プリント配線基板の断面図。 Figure 2 (a) ~ (b) is a sectional view of a multilayer printed wiring board in the first embodiment of the present invention.

【図3】(a)〜(b)は本発明の第2の実施例における多層プリント配線基板の断面図。 [3] (a) ~ (b) is a sectional view of a multilayer printed wiring board in the second embodiment of the present invention.

【図4】従来法によるガラスエポキシ多層基板の断面構成図。 Figure 4 is a cross-sectional structural view of a glass epoxy multilayer substrate according to a conventional method.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 離型性フィルム 2 熱硬化樹脂 3 基材 4 貫通孔 5 導電性ペースト 6 片面粗化銅箔(回路電極) 7 片面粗化銅箔(回路電極) 8 両面板 9 両面板 10 中間板 11 中間板 12 中間板 13 片面粗化銅箔(回路電極) 20 ガラス織布にエポキシ樹脂を含浸させた絶縁基材 21 内層配線層 22 多層積層後に加工したドリル穴 23 メッキ法で形成された内壁のCu層 24 最上層配線パターン 1 removable film 2 thermosetting resin 3 substrate 4 through holes 5 conductive paste 6 one side roughened copper foil (circuit electrode) 7 one side roughened copper foil (circuit electrode) 8 duplex plate 9 sided plate 10 intermediate plate 11 intermediate plate 12 the intermediate plate 13 one side roughened copper foil (circuit electrode) 20 Cu of the inner wall formed by processed drill hole 23 plating after the glass woven fabric impregnated insulating base material 21 inner wiring layer 22 multi-layer stack of the epoxy resin layer 24 uppermost wiring pattern

Claims (18)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基材の両表面に、熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の表層にパターニングされた回路電極が形成され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記両表面の回路電極どうしを電気的に接続するための導電性物質が充填されているプリント配線基板。 On both surfaces of the 1. A substrate, there are thermosetting resin layer, is patterned circuit electrodes formed on the surface layer of the thermosetting resin layer and the thermosetting resin layer and the base material preparative a through hole is formed to penetrate the printed wiring board conductive material for electrically connecting the circuit electrodes to each other of the both surfaces in the through hole is filled.
  2. 【請求項2】 請求項1のプリント配線基板の少なくとも片面に、基材の両表面に熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の一方の表層にパターニングされた回路電極が形成された層が外側になるように積層され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記一表面の回路電極に電気的に接続するための導電性物質が充填されているプリント配線基板。 Wherein at least one surface of the printed wiring board according to claim 1, thermosetting resin layer is present on both surfaces of the substrate, while the surface layer to patterned circuit electrodes of the thermosetting resin layer is formed are stacked so as to layer becomes outside, and the provided through-hole passing through said thermosetting resin layer and the base material is formed, electrically connected to the circuit electrodes of the one surface in the through-hole printed circuit board conductive material to have been filled.
  3. 【請求項3】 請求項1のプリント配線基板を少なくとも二枚用い、前記配線基板の間に基材の両表面に熱硬化型樹脂層が存在し、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に導電性物質が充填されている中間板が挟持されているとともに、前記プリント配線基板の少なくとも片面に、基材の両表面に熱硬化型樹脂層が存在し、前記熱硬化型樹脂層の一方の表層にパターニングされた回路電極が形成された層が外側になるように積層され、かつ前記基材と前記熱硬化型樹脂層とを貫通する貫通孔が形成されており、前記貫通孔に前記一表面の回路電極に電気的に接続するための導電性物質が充填されているプリント配線基板。 3. Using at least two printed wiring board according to claim 1, wherein the thermosetting resin layer is present on both surfaces of the substrate during the wiring board, and the thermosetting resin layer and the base material preparative a through hole is formed to penetrate the, together with the intermediate plate is sandwiched conductive material in the through hole is filled, at least on one surface of the printed wiring board, heat curing both surfaces of the substrate type resin layer is present, while the layer is patterned circuit electrodes on a surface layer formed of the thermosetting resin layer is laminated so that the outside and the said thermosetting resin layer and the base material through hole penetrating is formed, the printed wiring board conductive material for electrically connecting the circuit electrodes of the one surface in the through hole is filled.
  4. 【請求項4】 基材が、有機質不織布材、ガラス質織布材及びガラス質不織布材から選ばれる少なくとも一つの布材に熱硬化型樹脂が含浸され硬化されたものである請求項1,2または3に記載のプリント配線基板。 4. A substrate, organic nonwoven material, claim in which thermosetting resin has been impregnated and cured on at least one of the fabric material selected from vitreous woven and vitreous nonwoven materials 1 or printed wiring board according to 3.
  5. 【請求項5】 有機質不織布材がアラミド(芳香族系ポリアミド)からなり、熱硬化性樹脂の主成分がエポキシ樹脂からなる請求項1,2または3に記載のプリント配線基板。 5. The organic nonwoven material is made of aramid (aromatic polyamide), a printed wiring board according to claim 1, 2 or 3 main component of the thermosetting resin is an epoxy resin.
  6. 【請求項6】 有機質不織布が紙からなり、熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなる請求項1,2または3に記載のプリント配線基板。 6. The organic nonwoven fabric is made of paper, the printed wiring board according to claim 1, 2 or 3 thermosetting resin consists of phenolic resin or epoxy resin.
  7. 【請求項7】 導電性物質が導電性樹脂ペーストである請求項1,2または3に記載のプリント配線基板。 7. A printed circuit board according to claim 1, 2 or 3 electrically conductive material is a conductive resin paste.
  8. 【請求項8】 導電性樹脂ペースト中の導電材料が、 Conductive material 8. The conductive resin paste,
    銀、銅およびこれらの合金から選ばれる少なくとも一つの粉末を含む請求項7記載のプリント配線基板。 Silver, copper and the printed wiring board of claim 7, including at least one powder selected from these alloys.
  9. 【請求項9】 熱硬化型樹脂層の主成分がエポキシ樹脂である請求項1,2または3に記載のプリント配線基板。 9. A printed wiring board according to claim 1, 2 or 3 main component of the thermosetting resin layer is an epoxy resin.
  10. 【請求項10】基材の両面に、あらかじめ片面に熱硬化型樹脂を塗布した離型フィルムを、前記離型フィルムの熱硬化型樹脂塗布層が内側となるように位置させ、前記離型フィルムに塗布された熱硬化型樹脂の硬化温度以下の温度で圧力を加えて張り合わせ、前記熱硬化型樹脂を塗布した離型フィルムを張り合わせた基材の所望の位置に貫通孔を形成し、前記貫通孔に導電性樹脂ペーストを前記離型フィルム表面まで充填させ、前記熱硬化型樹脂を基材表面に残し両面の離型フィルムのみ剥離し、前記剥離済み基材の表面に銅箔を配し、加熱加圧する事により前記熱硬化型樹脂を硬化させ前記銅箔を接着させ、前記基材表面の銅箔をパターンニングする工程を少なくとも有するプリント配線基板の製造方法。 On both sides of 10. The substrate in advance a release film coated with a thermosetting resin on one side, is positioned so that the thermosetting resin coated layer of the release film facing inward, the release film by applying a pressure at a curing temperature below the temperature of the applied thermosetting resin bonding, a through hole is formed at a desired position of the substrate by bonding the release film coated with the thermosetting resin, the through holes were filled with a conductive resin paste to the release film surface, the thermosetting resin was peeled off only release film of the double-sided left on the substrate surface, disposing copper foils on the surface of the release already substrate, by heating and pressing to cure the thermosetting resin to adhere the said copper foil, a manufacturing method of a printed wiring board having at least a step of patterning the copper foil of the substrate surface.
  11. 【請求項11】請求項10の方法により作製されたプリント配線基板の両面に、同じく請求項10の方法で離型フィルムを剥離した未硬化樹脂層を有する基材と別途作製した離型フィルムを剥離した未硬化樹脂層を有する基材で挟み、さらにその表面に銅箔を配して加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化し、表面の銅箔をパターニングにより回路形成する工程とを少なくとも1回以上行うことにより多層配線を行うことを特徴とするプリント配線基板の製造方法。 11. on both sides of the printed wiring board made by the method of claim 10, also a release film produced separately with a substrate having an uncured resin layer was peeled off the release film by the method of claim 10 sandwiched between substrates having an uncured resin layer was peeled off, heating and pressing further arranged copper foil on its surface, a substrate having the printed circuit board and the uncured resin layer is laminated cured, copper foil surface method for manufacturing a printed wiring board which is characterized in that a multilayer wiring by performing patterning by at least once the steps of: forming a circuit a.
  12. 【請求項12】請求項10の方法で離型フィルムを剥離した未硬化樹脂層を有する基材と、前記請求項10の方法により作製されたプリント配線基板とを前記硬化済みプリント配線基板が常に最外層になるよう所望の数だけ交互に配し、加熱加圧して、前記プリント配線基板と未硬化樹脂層を有する基材を積層硬化して多層配線を行うことを特徴とするプリント配線基板の製造方法。 12. A substrate having an uncured resin layer was peeled off the release film by the method of claim 10, wherein the cured printed circuit board fabricated with a printed circuit board by the method of claim 10 is always arranged alternately desired number to be the outermost layer, by heating and pressing, the printed circuit board and performing the multi-layer wiring by laminating cured substrate with said printed circuit board and the uncured resin layer Production method.
  13. 【請求項13】基材が、有機質不織布材、ガラス質織布材及びガラス質不織布材から選ばれる少なくとも一つの布材に熱硬化型樹脂が含浸され硬化されたものである請求項10,11または12に記載のプリント配線基板。 13. substrates, organic nonwoven material, according to claim 10, 11 thermosetting resin on at least one of the fabric material selected from vitreous woven and vitreous nonwoven material is one that was impregnated and cured or printed circuit board according to 12.
  14. 【請求項14】有機質不織布材がアラミド(芳香族系ポリアミド)からなり、熱硬化性樹脂の主成分がエポキシ樹脂からなる請求項10,11または12に記載のプリント配線基板の製造方法。 14. organic nonwoven material is made of aramid (aromatic polyamide), a method for manufacturing a printed wiring board according to claim 10, 11 or 12 the main component of the thermosetting resin is an epoxy resin.
  15. 【請求項15】有機質不織布が紙からなり、熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなる請求項10,11または12に記載のプリント配線基板の製造方法。 15. organic nonwoven fabric is made of paper, a method for manufacturing a printed wiring board according to claim 10, 11 or 12 thermosetting resin consists of phenolic resin or epoxy resin.
  16. 【請求項16】導電性樹脂ペースト中の導電物質が、 Conductive material 16. The conductive resin paste,
    銀、銅およびこれらの合金の内の一種以上の粉末からなる請求項10,11または12に記載のプリント配線基板の製造方法。 Silver, copper and a manufacturing method of a printed wiring board according to claim 10, 11 or 12 composed of one or more powders of these alloys.
  17. 【請求項17】貫通孔を形成する方法がドリル加工法もしくはレーザー加工法により行う請求項10,11または12に記載のプリント配線基板の製造方法。 17. The printed wiring board manufacturing method according to claim 10, 11 or 12 A method of forming a through-hole is carried out by drilling method or a laser processing method.
  18. 【請求項18】離型フィルムに塗布された熱硬化型樹脂の主成分がエポキシ樹脂よりなる請求項10,11または12に記載のプリント配線基板の製造方法。 18. The release film composed mainly of the applied thermosetting resin is made of epoxy resin to claim 10, 11 or printed wiring board manufacturing method according to 12.
JP5039494A 1994-03-22 1994-03-22 Printed wiring board and its manufacturing method Expired - Fee Related JP3207663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039494A JP3207663B2 (en) 1994-03-22 1994-03-22 Printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039494A JP3207663B2 (en) 1994-03-22 1994-03-22 Printed wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07263828A true true JPH07263828A (en) 1995-10-13
JP3207663B2 JP3207663B2 (en) 2001-09-10

Family

ID=12857664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039494A Expired - Fee Related JP3207663B2 (en) 1994-03-22 1994-03-22 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3207663B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197407B1 (en) 1998-05-14 2001-03-06 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6195882B1 (en) 1996-09-06 2001-03-06 Matsushita Electric Industrial Co., Ltd. Method for producing printed wiring boards
WO2001045477A1 (en) * 1999-12-15 2001-06-21 Matsushita Electric Industrial Co.,Ltd Circuit forming board and method of manufacturing circuit forming board
EP1180920A2 (en) 2000-08-17 2002-02-20 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing same
EP1272021A2 (en) * 2001-06-18 2003-01-02 Nitto Denko Corporation Method for manufacturing metal foil laminated product and method of manufacturing wiring board
US6518514B2 (en) 2000-08-21 2003-02-11 Matsushita Electric Industrial Co., Ltd. Circuit board and production of the same
JP2003062945A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Laminate with resin and multilayered printed wiring board
US6565954B2 (en) 1998-05-14 2003-05-20 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6703565B1 (en) 1996-09-06 2004-03-09 Matsushita Electric Industrial Co., Ltd. Printed wiring board
US6780493B2 (en) 1997-07-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Wiring board and a process of producing a wiring board
JP2006295207A (en) * 2006-06-22 2006-10-26 Matsushita Electric Ind Co Ltd Method of manufacturing circuit board
JP2008108986A (en) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd Conductive connection sheet, its manufacturing method, and printed wiring circuit board
US7721427B2 (en) 1997-06-06 2010-05-25 Ibiden Co., Ltd. Method for manufacturing single sided substrate
US8658904B2 (en) 2010-01-22 2014-02-25 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
US8933556B2 (en) 2010-01-22 2015-01-13 Ibiden Co., Ltd. Wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631746B1 (en) * 2013-05-08 2016-07-07 주식회사 잉크테크 Method for making printed circuit board and printed circuit board

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703565B1 (en) 1996-09-06 2004-03-09 Matsushita Electric Industrial Co., Ltd. Printed wiring board
US6195882B1 (en) 1996-09-06 2001-03-06 Matsushita Electric Industrial Co., Ltd. Method for producing printed wiring boards
US7059039B2 (en) 1996-09-06 2006-06-13 Matsushita Electric Industrial Co., Ltd. Method for producing printed wiring boards
US7721427B2 (en) 1997-06-06 2010-05-25 Ibiden Co., Ltd. Method for manufacturing single sided substrate
US6780493B2 (en) 1997-07-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Wiring board and a process of producing a wiring board
US6565954B2 (en) 1998-05-14 2003-05-20 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6197407B1 (en) 1998-05-14 2001-03-06 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6748652B2 (en) 1998-05-14 2004-06-15 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
US6532651B1 (en) 1998-05-14 2003-03-18 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing the same
WO2001045477A1 (en) * 1999-12-15 2001-06-21 Matsushita Electric Industrial Co.,Ltd Circuit forming board and method of manufacturing circuit forming board
US6698093B2 (en) 1999-12-15 2004-03-02 Matsushita Electric Industrial Co., Ltd. Method of manufacturing circuit forming board to improve adhesion of a circuit to the circuit forming board
US7251885B2 (en) 1999-12-15 2007-08-07 Matsushita Electric Industrial Co., Ltd. Method of manufacturing circuit forming board to improve adhesion of a circuit to the circuit forming board
EP1180920B1 (en) * 2000-08-17 2013-11-27 Panasonic Corporation Method of manufacturing a circuit board
EP1180920A2 (en) 2000-08-17 2002-02-20 Matsushita Electric Industrial Co., Ltd. Circuit board and method of manufacturing same
US6518514B2 (en) 2000-08-21 2003-02-11 Matsushita Electric Industrial Co., Ltd. Circuit board and production of the same
US6691409B2 (en) 2000-08-21 2004-02-17 Matsushita Electric Industrial Co., Ltd. Method of producing a circuit board
EP1272021A2 (en) * 2001-06-18 2003-01-02 Nitto Denko Corporation Method for manufacturing metal foil laminated product and method of manufacturing wiring board
US6807729B2 (en) 2001-06-18 2004-10-26 Nitto Denko Corporation Method of manufacturing metal foil
EP1272021A3 (en) * 2001-06-18 2004-07-14 Nitto Denko Corporation Method for manufacturing metal foil laminated product and method of manufacturing wiring board
JP2003062945A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Laminate with resin and multilayered printed wiring board
JP2006295207A (en) * 2006-06-22 2006-10-26 Matsushita Electric Ind Co Ltd Method of manufacturing circuit board
JP4622939B2 (en) * 2006-06-22 2011-02-02 パナソニック株式会社 Method of manufacturing a circuit board
JP2008108986A (en) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd Conductive connection sheet, its manufacturing method, and printed wiring circuit board
US8658904B2 (en) 2010-01-22 2014-02-25 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
US8933556B2 (en) 2010-01-22 2015-01-13 Ibiden Co., Ltd. Wiring board
US9425137B2 (en) 2010-01-22 2016-08-23 Ibiden Co., Ltd. Wiring board

Also Published As

Publication number Publication date Type
JP3207663B2 (en) 2001-09-10 grant

Similar Documents

Publication Publication Date Title
US6320140B1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method of its production
US6518514B2 (en) Circuit board and production of the same
US6329610B1 (en) Hybrid wiring board, semiconductor apparatus, flexible substrate, and fabrication method of hybrid wiring board
US6281448B1 (en) Printed circuit board and electronic components
US6195882B1 (en) Method for producing printed wiring boards
US20090241332A1 (en) Circuitized substrate and method of making same
US20050016764A1 (en) Wiring substrate for intermediate connection and multi-layered wiring board and their production
US20050150686A1 (en) Organic dielectric electronic interconnect structures and method for making
JP2004087856A (en) Multilayer wiring board
JP2002261449A (en) Module with built-in component and its manufacturing method
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2000077800A (en) Wiring board and manufacture thereof
JPH1013028A (en) Single-sides circuit board for multilayered printed wiring board and multilayered printed wiring board and its manufacture
JPH07147464A (en) Circuit substrate connecting material and manufacture of multilayer circuit substrate using it
US20060042826A1 (en) Circuit board, multi-layer wiring board method for making circuity board, and method for making multi-layer wiring board
JP2006196785A (en) Printed-wiring board having built-in electronic component and manufacturing method thereof
JPH08195561A (en) Multi-layer printed circuit board and its manufacture
JP2002246536A (en) Method for manufacturing three-dimensional mounting package and package module for its manufacturing
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JPH11186698A (en) Manufacture of circuit board, and circuit board
JPH11251703A (en) Circuit board, both-sided circuit board, multilayered circuit board, and manufacture of circuit board
US6703565B1 (en) Printed wiring board
CN1722940A (en) Method for manufacturing multi-layer printed circuit board and multi-layer printed circuit board
JPH06104545A (en) Both-sided printed board and production thereof
JPH0946041A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120706

LAPS Cancellation because of no payment of annual fees