JP3988664B2 - Multilayer printed wiring board and manufacturing method thereof - Google Patents

Multilayer printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP3988664B2
JP3988664B2 JP2003073952A JP2003073952A JP3988664B2 JP 3988664 B2 JP3988664 B2 JP 3988664B2 JP 2003073952 A JP2003073952 A JP 2003073952A JP 2003073952 A JP2003073952 A JP 2003073952A JP 3988664 B2 JP3988664 B2 JP 3988664B2
Authority
JP
Japan
Prior art keywords
hole
coating
core
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003073952A
Other languages
Japanese (ja)
Other versions
JP2003249762A (en
Inventor
光広 近藤
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2003073952A priority Critical patent/JP3988664B2/en
Publication of JP2003249762A publication Critical patent/JP2003249762A/en
Application granted granted Critical
Publication of JP3988664B2 publication Critical patent/JP3988664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,多層プリント配線板及びその製造方法に関し,特に各層間を電気的に導通する導電性の孔の構造に関する。
【0002】
【従来技術】
従来,多層プリント配線板としては,図13に示すごとく,2つの導通性の孔を積層したビアオンビア構造を有するものがある。即ち,かかる多層プリント配線板9は,コア基板95の表面に表面層96を積層し,コア基板95にはコア孔93を,表面層96には上記コア孔93と電気的に接続する表面孔91を設けている。コア孔93の内部には樹脂材料930が充填されており,その開口部は導電性被膜92により被覆されている。コア孔93及び表面孔91は,その内壁を金属めっき膜94により被覆することにより導通性が付与されている。
多層プリント配線板は,コア孔93及び表面孔91を通じて,異層に設けた導体パターン97間の電気的導通を行っている。
【0003】
多層プリント配線板9を製造するに当たっては,まず,コア基板95にドリルを用いてコア孔93を形成し,内部に樹脂材料930を充填し,その開口部を導電性被膜92により被覆し,ついで,その表面にプリプレグからなる表面層96を積層し,レーザー照射により表面孔91を形成する。
このレーザー照射によれば,微小な径の表面孔が形成でき,表面層96に占める表面孔91の占有面積を小さくすることができる。このため,多層プリント配線板9の表面実装効率を高めることができる。
【0004】
【解決しようとする課題】
しかしながら,上記従来の多層プリント配線板9においては,レーザー照射によって,図14に示すごとく,表面孔91の底部に位置する導電性被膜92に,破れ等の損傷が生じることがある。かかる損傷が生じると,その破損片929が表面孔91に残存することになり,表面孔91内壁への金属めっき膜の析出が不十分になることがある。このため,表面孔とコア孔との電気的導通信頼性が低下するおそれがある。
【0005】
本発明はかかる従来の問題点に鑑み,コア孔と表面孔との電気的接続信頼性に優れ,表面実装効率が高い多層プリント配線板及びその製造方法を提供しようとするものである。
【0006】
【課題の解決手段】
本発明は,コア基板にコア孔を形成する工程と,
上記コア孔の開口部を導電性被膜により被覆する工程と,
上記導電性被膜に,表面孔進入用の被膜貫通孔を形成する工程と,
上記コア基板の表面に,表面層を積層する工程と,
上記表面層の表面孔形成部分にレーザーを照射することにより,上記表面層及び導電性被膜を貫通する表面貫通部及び被膜貫通部と,上記被膜貫通部よりもコア孔内部に進入した進入凹部とからなる表面孔を形成する工程と,
上記表面孔の内部に金属めっき膜を形成する工程とからなることを特徴とする多層プリント配線板の製造方法である。
【0007】
本発明において最も注目すべきことは,表面孔の形成に当たって,予めコア孔開口部を被覆する導電性被膜に被膜貫通孔を形成しておき,表面層形成後,レーザーの照射によって,表面層及び導電性被膜を貫通しさらにコア孔内部に進入する表面孔を形成していることである。
【0008】
導電性被膜には,予め被膜貫通孔が形成されているため,該被膜貫通孔にレーザー照射をすることによって,表面孔の中腹部に配置された導電性被膜に損傷が発生することはない。そのため,表面孔形成後に,内部に破損片が残ることはなく,金属めっき膜析出が十分に行われる。また,析出した金属めっき膜は,導電性被膜と接合性が高い。このため,表面孔は,導電性被膜を通じてコア孔と確実に電気的に接続される。
従って,本発明によれば,表面孔とコア孔との電気的接続性に優れた多層プリント配線板を製造できる。
【0009】
また,表面孔はレーザーにより形成されるため,微小な径に形成できる。このため,表面層に占める表面孔の占有面積を小さくでき,その余剰スペース分に更に他の導電性部材を設けることができ,高密度実装を実現できる。
【0010】
上記コア孔は,例えば,ドリル,レーザーにより形成できる。表面孔は,0.03〜0.3mmであることが好ましい。0.03mm未満の場合には,表面層内に金属めっき膜を形成し難くなり,0.3mmを超える場合には表面高密度実装が妨げられるおそれがあるからである。
表面孔を形成するために照射するレーザーの照射条件は,コア孔内部で孔明けが停止するように適宜調整する。
【0011】
表面孔進入用の被膜貫通孔は,形成すべき表面孔とほぼ同一断面形状に開口していることが好ましい。即ち,被膜貫通孔は,表面孔における被膜貫通部とほぼ同一であることが好ましい。レーザー照射による表面孔形成は,被膜貫通孔の形状に依存するからである。即ち,レーザーは被膜貫通孔内方に露出している表面層を焼失して孔形成するが,被膜貫通孔外方の導電性被膜により反射して孔形成はされないからである。
【0012】
上記コア基板は,例えば,ガラスクロスまたはガラスファイバーに樹脂を含浸した樹脂基板からなる。樹脂としては,例えば,エポキシ樹脂,ビスマレイミドトリアジン樹脂,ポリイミド樹脂等がある。また,上記表面層は,上記コア基板と同様の材料を用いることができる。
【0013】
上記導電性被膜は,銅箔などの金属箔,銅,ニッケル,金などの金属めっき膜などからなる。
上記コア基板と表面層との間には,導電性被膜の形成とともに導体パターンを形成することができる。また,表面層の表面には,表面孔形成後に,導電層のエッチングなどにより,導体パターンを形成することができる。
【0014】
上記の製造方法により製造できる多層プリント配線板としては,例えば,コア基板と該コア基板の表面に積層された表面層とからなり,コア基板に設けた導電性のコア孔と,上記コア孔の開口部を被覆する導電性被膜と,上記コア孔の開口部上方の表面層に設けられた導電性の表面孔とからなる多層プリント配線板において,
上記表面孔は,上記表面層及び導電性被膜を貫通する表面貫通部及び被膜貫通部と,上記被膜貫通部よりコア孔内部に進入した進入凹部とからなり,
上記表面貫通部と上記被膜貫通部との間には,段部が設けられていることを特徴とする多層プリント配線板がある。
【0015】
この多層プリント配線板においては,表面孔が,表面層及び導電性被膜を貫通してコア孔内部にまで進入している。そのため,表面孔内壁の金属めっき膜と導電性被膜との接続性が高くなる。従って,表面孔とコア孔との電気的接続信頼性が高い。また,表面孔は小径であるため,表面の高密度実装化を実現できる。
上記コア孔の内部には,充填材料が充填されていることが好ましい。これにより,コア孔の機械的強度が高くなる。充填材料としては,例えば,樹脂,フィラー入り樹脂等がある。
また,上記表面貫通部と上記被膜貫通部との間には,段部が設けられている。この段部において,表面孔内壁の金属めっき膜が導電性被膜と強固に接合されるため,より一層表面孔とコア孔との電気的接続信頼性が高くなる。
【0016】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる多層プリント配線板について,図1〜図10を用いて説明する。
本例の多層プリント配線板8は,図1に示すごとく,4層のプリント配線板であり,コア基板5とその表面に積層された表面層6とからなる。コア基板5には,導電性のコア孔3が設けられている。コア孔3の開口部は,導電性被膜21により被覆されている。表面層6には,導電性の表面孔1,10が設けられている。一方の表面孔1は,コア孔3の開口部の上方及び下方に設けられており,他方の表面孔10は,表面孔6とコア基板5との間に設けた導体パターン20と電気的に接続している。
コア孔3の内部には,強度補強のための充填材料30が充填されている。
また,多層プリント配線板8は,コア基板5及び表面層6の表面に,導体パターン20,22を設けている。
【0017】
次に,多層プリント配線板8の製造方法について説明する。
まず,図2に示すごとく,厚み0.3mmの銅張りガラスエポキシ基板を準備し,これを銅層29を表面に設けたコア基板5とする。次いで,図3に示すごとく,ドリルを用いて直径0.3mmのコア孔3を穿設する。次いで,図4に示すごとく,コア孔3の内壁を含めてコア基板5の表面全体に,化学銅めっき及び電気銅めっきにより金属めっき膜4を被覆する。
【0018】
次いで,図5に示すごとく,コア孔3の内部に,印刷法によりエポキシ樹脂からなる樹脂材料30を充填する。次いで,図6に示すごとく,コア基板5の表面を銅めっき膜2により被覆し,次いで,図7,図1に示すごとく,銅めっき膜2をエッチングして,コア孔3の開口部を被覆する導電性被膜21及び,導体パターン20を形成するとともに,導電性被膜21には,表面孔形成部分とほぼ同じ断面形状,即ち直径0.15mmの円形状を有する被膜貫通孔210を形成する。
【0019】
次いで,図8に示すごとく,コア基板5の表面に,プリプレグからなる厚み0.08mmの表面層6を積層し,さらにその表面に銅箔28を被覆する。プリプレグとは,ガラスクロスにエポキシ樹脂を含浸させて樹脂を半硬化状態にしたものである。次いで,銅箔28をエッチングして,銅箔28の表面孔形成部分に,表面孔とほぼ同一断面形状,即ち直径0.15mmの円形状の被膜貫通孔280を形成する。
【0020】
次いで,図9に示すごとく,表面層6の表面孔形成部分19に,レーザー7を照射する。これにより,図10に示すごとく,表面層6及び導電性被膜21を貫通しさらにコア孔3の内部にまで進入する,円筒形状の表面孔1が形成される。即ち,形成された表面孔1は,表面層6を貫通する表面貫通部1aと,導電性被膜21を貫通する被膜貫通部1bと,コア孔3内部に進入した進入凹部1cとからなる。表面孔1の直径は0.15mmである。
次いで,図1に示すごとく,表面孔1の内部に,化学銅めっき及び電気銅めっきにより金属めっき膜4を形成する。また,銅箔28のエッチングにより導体パターン22を形成する。以上により,多層プリント配線板8が得られる。
【0021】
次に,本例の作用及び効果について説明する。
本例においては,表面孔1の形成に当たって,図7に示すごとく,予めコア孔開口部を被覆する導電性被膜21に被膜貫通孔210を形成しておき,図9に示すごとく,表面層6を形成した後,レーザー7の照射によって,表面層6及び導電性被膜21を貫通しさらにコア孔5内部に進入する表面孔1を形成している。
【0022】
導電性被膜21には,予め被膜貫通孔210が形成されているため,被膜貫通孔210にレーザー7を照射することによって,表面孔1の中腹部に配置された導電性被膜21に損傷が発生することはない。そのため,図1に示すごとく,表面孔形成後に,内部に破損片が残ることはなく,金属めっき膜4の析出が十分に行われる。また,析出した金属めっき膜4は,導電性被膜21と接合性が高い。このため,表面孔1は,導電性被膜21を通じてコア孔3と確実に電気的に接続される。
従って,本例によれば,表面孔1とコア孔3との電気的接続性に優れた多層プリント配線板8を製造できる。
【0023】
また,表面孔1はレーザーにより形成されるため,微小な径に形成できる。このため,表面層6に占める表面孔1の占有面積を小さくでき,その余剰スペース分に更に,導体パターン22などの他の導電性部材を設けることができ,高密度実装を実現できる。
【0024】
実施形態例2
本例の多層プリント配線板は,図11に示すごとく,段部1dを有する表面孔1を設けている。段部1dは,導電性被膜21を貫通する被膜貫通部1bと,コア孔3内部に進入する進入凹部1cとの間に設けられている。進入凹部1cは直径0.05mmであり,直径0.1mmの表面貫通部1a及び被膜貫通部1bよりも小さい孔である。
その他は,実施形態例1と同様である。
【0025】
本例においては,被膜表面部1aと被膜貫通部1bとの間に段部1dを設けている。段部1dに被覆される金属めっき膜4は,導電性被膜21との接合面積が高い。したがって,本例によれば,表面孔1とコア孔3との電気的導通信頼性がさらに向上する。
その他,本例においては,実施形態例1と同様の効果を発揮できる。
【0026】
実施形態例3
本例の多層プリント配線板8は,図12に示すごとく,6層のプリント配線板である。本例のプリント配線板8は,実施形態例1と同様に4層の多層プリント配線板を形成し,その表面に更に表面層61,表面孔100及び導体パターン23を形成したものである。従って,本例においては,より高密度に導電部材を実装できる。
【0027】
【発明の効果】
本発明によれば,コア孔と表面孔との電気的接続信頼性に優れ,表面実装効率が高い多層プリント配線板及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における多層プリント配線板の断面図。
【図2】実施形態例1における多層プリント配線板の製造方法を示すための,コア基板の断面図。
【図3】図2に続く,コア孔を形成したコア基板の断面図。
【図4】図3に続く,コア孔内に金属めっき膜を形成したコア基板の断面図。
【図5】図4に続く,コア孔内に樹脂材料を充填したコア基板の断面図。
【図6】図5に続く,銅箔を被覆したコア基板の断面図。
【図7】図6に続く,導体パターンを形成したコア基板の断面図。
【図8】図7に続く,積層板の断面図。
【図9】図8に続く,表面孔の形成方法を示すための積層板の断面図。
【図10】図9に続く,表面孔を形成した積層板の断面図。
【図11】実施形態例2における多層プリント配線板のの断面図。
【図12】実施形態例3における,多層プリント配線板の断面図。
【図13】従来例における多層プリント配線板の断面図。
【図14】従来例における問題点を示すための説明図。
【符号の説明】
1,10,100...表面孔,
1a...表面貫通部,
1b...被膜貫通部,
1c...進入凹部,
1d...段部,
2...銅めっき膜,
20,22,23...導体パターン,
21...導電性被膜,
28...銅箔,
29...銅層,
210...被膜貫通孔,
3...コア孔,
30...樹脂材料,
4...金属めっき膜,
5...コア基板,
6,61...表面層,
7...レーザー,
8...多層プリント配線板,
[0001]
【Technical field】
The present invention relates to a multilayer printed wiring board and a method for manufacturing the same, and more particularly to a structure of a conductive hole for electrically conducting each layer.
[0002]
[Prior art]
Conventionally, some multilayer printed wiring boards have a via-on-via structure in which two conductive holes are laminated as shown in FIG. That is, in the multilayer printed wiring board 9, the surface layer 96 is laminated on the surface of the core substrate 95, the core hole 93 is formed in the core substrate 95, and the surface hole electrically connected to the core hole 93 is formed in the surface layer 96. 91 is provided. The core hole 93 is filled with a resin material 930, and the opening is covered with a conductive coating 92. The core hole 93 and the surface hole 91 are provided with conductivity by covering the inner wall with a metal plating film 94.
The multilayer printed wiring board conducts electrical continuity between conductor patterns 97 provided in different layers through the core hole 93 and the surface hole 91.
[0003]
In manufacturing the multilayer printed wiring board 9, first, a core hole 93 is formed in the core substrate 95 using a drill, the inside is filled with a resin material 930, and the opening is covered with a conductive coating 92. The surface layer 96 made of prepreg is laminated on the surface, and the surface hole 91 is formed by laser irradiation.
By this laser irradiation, a surface hole having a minute diameter can be formed, and the area occupied by the surface hole 91 in the surface layer 96 can be reduced. For this reason, the surface mounting efficiency of the multilayer printed wiring board 9 can be improved.
[0004]
[Problems to be solved]
However, in the conventional multilayer printed wiring board 9, damage such as tearing may occur in the conductive coating 92 located at the bottom of the surface hole 91 as shown in FIG. 14 due to laser irradiation. When such damage occurs, the broken piece 929 remains in the surface hole 91, and deposition of the metal plating film on the inner wall of the surface hole 91 may be insufficient. For this reason, there exists a possibility that the electrical conduction | electrical_connection reliability of a surface hole and a core hole may fall.
[0005]
In view of the conventional problems, the present invention is intended to provide a multilayer printed wiring board excellent in electrical connection reliability between a core hole and a surface hole and having high surface mounting efficiency, and a method for manufacturing the same.
[0006]
[Means for solving problems]
The present invention includes a step of forming a core hole in a core substrate,
Coating the opening of the core hole with a conductive coating;
Forming a coating through-hole for entering a surface hole in the conductive coating;
Laminating a surface layer on the surface of the core substrate;
By irradiating the surface hole forming portion of the surface layer with a laser, a surface penetrating portion and a coating penetrating portion penetrating the surface layer and the conductive coating, and an entrance recess entering the core hole from the coating penetrating portion, Forming a surface hole comprising:
A method of manufacturing a multilayer printed wiring board, comprising: forming a metal plating film inside the surface hole.
[0007]
The most notable point in the present invention is that, in forming the surface hole, a coating through-hole is previously formed in the conductive film covering the core hole opening, and after the surface layer is formed, the surface layer and A surface hole that penetrates the conductive coating and enters the core hole is formed.
[0008]
Since a coating through-hole is formed in advance in the conductive coating, the conductive coating disposed in the middle part of the surface hole is not damaged by irradiating the coating through-hole with laser. Therefore, after the surface hole is formed, no broken pieces remain inside, and the metal plating film is sufficiently deposited. In addition, the deposited metal plating film has high bondability with the conductive film. For this reason, the surface hole is reliably electrically connected to the core hole through the conductive coating.
Therefore, according to the present invention, a multilayer printed wiring board excellent in electrical connectivity between the surface hole and the core hole can be manufactured.
[0009]
Further, since the surface hole is formed by a laser, it can be formed in a minute diameter. For this reason, the area occupied by the surface holes in the surface layer can be reduced, and another conductive member can be provided in the surplus space, thereby realizing high-density mounting.
[0010]
The core hole can be formed by, for example, a drill or a laser. The surface hole is preferably 0.03 to 0.3 mm. If the thickness is less than 0.03 mm, it is difficult to form a metal plating film in the surface layer, and if it exceeds 0.3 mm, high-density surface mounting may be hindered.
The irradiation conditions of the laser used to form the surface hole are adjusted as appropriate so that the drilling stops inside the core hole.
[0011]
The coating through-hole for entering the surface hole is preferably opened in substantially the same cross-sectional shape as the surface hole to be formed. That is, it is preferable that the coating through-hole is substantially the same as the coating penetration in the surface hole. This is because the formation of surface holes by laser irradiation depends on the shape of the coating through-holes. That is, the laser burns away the surface layer exposed to the inside of the coating through-hole, but forms a hole by reflecting off the conductive coating outside the coating through-hole.
[0012]
The core substrate is made of, for example, a resin substrate in which a glass cloth or glass fiber is impregnated with a resin. Examples of the resin include an epoxy resin, a bismaleimide triazine resin, and a polyimide resin. The surface layer can be made of the same material as the core substrate.
[0013]
The conductive film is made of a metal foil such as a copper foil, a metal plating film such as copper, nickel, or gold.
Between the core substrate and the surface layer, a conductive pattern can be formed along with the formation of the conductive film. Also, a conductor pattern can be formed on the surface of the surface layer by etching the conductive layer after forming the surface holes.
[0014]
The multilayer printed wiring board that can be manufactured by the above manufacturing method includes, for example, a core substrate and a surface layer laminated on the surface of the core substrate. The conductive core hole provided in the core substrate, In a multilayer printed wiring board comprising a conductive coating covering the opening, and a conductive surface hole provided in a surface layer above the opening of the core hole,
The surface pores, Ri Do from the surface through portion and coatings through portion that penetrates the surface layer and the conductive film, the approach recess enters the inner core hole from the coating through portion,
There is a multilayer printed wiring board in which a step portion is provided between the surface penetration portion and the coating penetration portion .
[0015]
In this multilayer printed wiring board, the surface hole penetrates the surface layer and the conductive film and enters the core hole. Therefore, the connectivity between the metal plating film on the inner wall of the surface hole and the conductive coating is enhanced. Therefore, the electrical connection reliability between the surface hole and the core hole is high. In addition, since the surface hole has a small diameter, it is possible to realize high-density mounting on the surface.
The core hole is preferably filled with a filling material. This increases the mechanical strength of the core hole. Examples of the filling material include resin and filler-filled resin.
Further, between the surface through portion and the coating penetrations, that have stepped portion is provided. In this step portion, the metal plating film on the inner wall of the surface hole is firmly bonded to the conductive film, so that the electrical connection reliability between the surface hole and the core hole is further increased.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A multilayer printed wiring board according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the multilayer printed wiring board 8 of this example is a four-layer printed wiring board, and includes a core substrate 5 and a surface layer 6 laminated on the surface thereof. A conductive core hole 3 is provided in the core substrate 5. The opening of the core hole 3 is covered with a conductive film 21. The surface layer 6 is provided with conductive surface holes 1 and 10. One surface hole 1 is provided above and below the opening of the core hole 3, and the other surface hole 10 is electrically connected to the conductor pattern 20 provided between the surface hole 6 and the core substrate 5. Connected.
The core hole 3 is filled with a filling material 30 for reinforcing the strength.
The multilayer printed wiring board 8 is provided with conductor patterns 20 and 22 on the surfaces of the core substrate 5 and the surface layer 6.
[0017]
Next, a method for manufacturing the multilayer printed wiring board 8 will be described.
First, as shown in FIG. 2, a copper-clad glass epoxy substrate having a thickness of 0.3 mm is prepared, and this is used as a core substrate 5 provided with a copper layer 29 on the surface. Next, as shown in FIG. 3, a core hole 3 having a diameter of 0.3 mm is drilled using a drill. Next, as shown in FIG. 4, the entire surface of the core substrate 5 including the inner wall of the core hole 3 is coated with the metal plating film 4 by chemical copper plating and electrolytic copper plating.
[0018]
Next, as shown in FIG. 5, a resin material 30 made of an epoxy resin is filled into the core hole 3 by a printing method. Next, as shown in FIG. 6, the surface of the core substrate 5 is covered with the copper plating film 2, and then, as shown in FIGS. 7 and 1, the copper plating film 2 is etched to cover the opening of the core hole 3. The conductive film 21 and the conductor pattern 20 are formed, and the conductive film 21 is formed with a film through-hole 210 having substantially the same cross-sectional shape as the surface hole forming portion, that is, a circular shape having a diameter of 0.15 mm.
[0019]
Next, as shown in FIG. 8, a surface layer 6 made of prepreg and having a thickness of 0.08 mm is laminated on the surface of the core substrate 5, and a copper foil 28 is further coated on the surface. A prepreg is made by impregnating a glass cloth with an epoxy resin to make the resin semi-cured. Next, the copper foil 28 is etched to form a circular film through-hole 280 having substantially the same cross-sectional shape as the surface hole, that is, a diameter of 0.15 mm, in the surface hole forming portion of the copper foil 28.
[0020]
Next, as shown in FIG. 9, the surface hole forming portion 19 of the surface layer 6 is irradiated with the laser 7. As a result, as shown in FIG. 10, a cylindrical surface hole 1 that penetrates through the surface layer 6 and the conductive coating 21 and enters the core hole 3 is formed. That is, the formed surface hole 1 includes a surface penetration portion 1 a that penetrates the surface layer 6, a coating penetration portion 1 b that penetrates the conductive coating 21, and an entry recess 1 c that enters the core hole 3. The diameter of the surface hole 1 is 0.15 mm.
Next, as shown in FIG. 1, a metal plating film 4 is formed inside the surface hole 1 by chemical copper plating and electrolytic copper plating. Further, the conductor pattern 22 is formed by etching the copper foil 28. Thus, the multilayer printed wiring board 8 is obtained.
[0021]
Next, the operation and effect of this example will be described.
In this example, in forming the surface hole 1, as shown in FIG. 7, the coating through-hole 210 is formed in the conductive coating 21 covering the core hole opening in advance, and as shown in FIG. After forming the surface hole 1, the surface hole 1 penetrating the surface layer 6 and the conductive coating 21 and entering the core hole 5 is formed by irradiation of the laser 7.
[0022]
Since the coating through-hole 210 is formed in the conductive coating 21 in advance, damage to the conductive coating 21 disposed in the middle portion of the surface hole 1 occurs when the coating through-hole 210 is irradiated with the laser 7. Never do. Therefore, as shown in FIG. 1, after the surface hole is formed, no damaged piece remains inside, and the metal plating film 4 is sufficiently deposited. Further, the deposited metal plating film 4 has a high bondability with the conductive coating 21. For this reason, the surface hole 1 is reliably electrically connected to the core hole 3 through the conductive coating 21.
Therefore, according to this example, the multilayer printed wiring board 8 excellent in electrical connectivity between the surface hole 1 and the core hole 3 can be manufactured.
[0023]
Further, since the surface hole 1 is formed by a laser, it can be formed in a minute diameter. For this reason, the occupied area of the surface hole 1 occupying the surface layer 6 can be reduced, and another conductive member such as the conductor pattern 22 can be further provided in the excess space, thereby realizing high-density mounting.
[0024]
Embodiment 2
The multilayer printed wiring board of this example is provided with a surface hole 1 having a step portion 1d as shown in FIG. The step portion 1 d is provided between the coating penetration portion 1 b that penetrates the conductive coating 21 and the entry recess 1 c that enters the core hole 3. The entry recess 1c has a diameter of 0.05 mm and is smaller than the surface penetration portion 1a and the coating penetration portion 1b having a diameter of 0.1 mm.
Others are the same as in the first embodiment.
[0025]
In this example, a step 1d is provided between the coating surface portion 1a and the coating penetration 1b. The metal plating film 4 coated on the stepped portion 1d has a high bonding area with the conductive coating 21. Therefore, according to this example, the reliability of electrical conduction between the surface hole 1 and the core hole 3 is further improved.
In addition, in this example, the same effects as those of the first embodiment can be exhibited.
[0026]
Embodiment 3
The multilayer printed wiring board 8 of this example is a six-layer printed wiring board as shown in FIG. The printed wiring board 8 of this example is formed by forming a four-layer multilayer printed wiring board as in the first embodiment, and further forming a surface layer 61, a surface hole 100, and a conductor pattern 23 on the surface thereof. Therefore, in this example, the conductive member can be mounted at a higher density.
[0027]
【The invention's effect】
According to the present invention, it is possible to provide a multilayer printed wiring board excellent in electrical connection reliability between a core hole and a surface hole and having high surface mounting efficiency, and a method for manufacturing the same.
[Brief description of the drawings]
1 is a cross-sectional view of a multilayer printed wiring board according to Embodiment 1;
FIG. 2 is a cross-sectional view of a core substrate for illustrating a method for manufacturing a multilayer printed wiring board according to Embodiment 1;
FIG. 3 is a cross-sectional view of a core substrate in which a core hole is formed, following FIG. 2;
4 is a cross-sectional view of the core substrate in which a metal plating film is formed in the core hole, following FIG. 3;
FIG. 5 is a cross-sectional view of a core substrate in which a resin material is filled in a core hole, following FIG.
6 is a cross-sectional view of a core substrate coated with a copper foil, following FIG. 5;
7 is a cross-sectional view of a core substrate on which a conductor pattern is formed, following FIG. 6;
FIG. 8 is a cross-sectional view of the laminated board following FIG.
FIG. 9 is a cross-sectional view of a laminated board for illustrating a method for forming a surface hole, following FIG. 8;
FIG. 10 is a cross-sectional view of a laminated board in which surface holes are formed, following FIG. 9;
11 is a cross-sectional view of a multilayer printed wiring board according to Embodiment 2. FIG.
12 is a cross-sectional view of a multilayer printed wiring board according to Embodiment 3. FIG.
FIG. 13 is a cross-sectional view of a multilayer printed wiring board in a conventional example.
FIG. 14 is an explanatory diagram for illustrating problems in a conventional example.
[Explanation of symbols]
1, 10, 100. . . Surface holes,
1a. . . Surface penetration,
1b. . . Coating penetration,
1c. . . Entry recess,
1d. . . Step,
2. . . Copper plating film,
20, 22, 23. . . Conductor pattern,
21. . . Conductive coating,
28. . . Copper foil,
29. . . Copper layer,
210. . . Coating through-hole,
3. . . Core hole,
30. . . Resin material,
4). . . Metal plating film,
5). . . Core substrate,
6,61. . . Surface layer,
7). . . laser,
8). . . Multilayer printed wiring board,

Claims (3)

コア基板にコア孔を形成する工程と,
上記コア孔の開口部を導電性被膜により被覆する工程と,
上記導電性被膜に,表面孔進入用の被膜貫通孔を形成する工程と,
上記コア基板の表面に,表面層を積層する工程と,
上記表面層の表面孔形成部分にレーザーを照射することにより,上記表面層及び導電性被膜を貫通する表面貫通部及び被膜貫通部と,上記被膜貫通部よりもコア孔内部に進入した進入凹部とからなる表面孔を形成する工程と,
上記表面孔の内部に金属めっき膜を形成する工程とからなることを特徴とする多層プリント配線板の製造方法。
Forming a core hole in the core substrate;
Coating the opening of the core hole with a conductive coating;
Forming a coating through-hole for entering a surface hole in the conductive coating;
Laminating a surface layer on the surface of the core substrate;
By irradiating the surface hole forming portion of the surface layer with a laser, a surface penetrating portion and a coating penetrating portion penetrating the surface layer and the conductive coating, and an entrance recess entering the core hole from the coating penetrating portion, Forming a surface hole comprising:
A method for producing a multilayer printed wiring board, comprising: forming a metal plating film inside the surface hole.
コア基板と該コア基板の表面に積層された表面層とからなり,コア基板に設けた導電性のコア孔と,上記コア孔の開口部を被覆する導電性被膜と,上記コア孔の開口部上方の表面層に設けられた導電性の表面孔とからなる多層プリント配線板において,
上記表面孔は,上記表面層及び導電性被膜を貫通する表面貫通部及び被膜貫通部と,上記被膜貫通部よりコア孔内部に進入した進入凹部とからなり,
上記表面貫通部と上記被膜貫通部との間には,段部が設けられていることを特徴とする多層プリント配線板。
A core substrate and a surface layer laminated on the surface of the core substrate, the conductive core hole provided in the core substrate, a conductive coating covering the opening of the core hole, and the opening of the core hole In a multilayer printed wiring board composed of conductive surface holes provided in the upper surface layer,
The surface pores, Ri Do from the surface through portion and coatings through portion that penetrates the surface layer and the conductive film, the approach recess enters the inner core hole from the coating through portion,
A multilayer printed wiring board , wherein a step portion is provided between the surface penetration portion and the coating penetration portion .
請求項2において,上記コア孔の内部には,充填材料が充填されていることを特徴とする多層プリント配線板。  The multilayer printed wiring board according to claim 2, wherein the core hole is filled with a filling material.
JP2003073952A 2003-03-18 2003-03-18 Multilayer printed wiring board and manufacturing method thereof Expired - Fee Related JP3988664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073952A JP3988664B2 (en) 2003-03-18 2003-03-18 Multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073952A JP3988664B2 (en) 2003-03-18 2003-03-18 Multilayer printed wiring board and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7673398A Division JP3511887B2 (en) 1998-03-09 1998-03-09 Multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2003249762A JP2003249762A (en) 2003-09-05
JP3988664B2 true JP3988664B2 (en) 2007-10-10

Family

ID=28672929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073952A Expired - Fee Related JP3988664B2 (en) 2003-03-18 2003-03-18 Multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3988664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134389A (en) * 2005-11-08 2007-05-31 Nec Toppan Circuit Solutions Inc Printed wiring board, and process of producing same

Also Published As

Publication number Publication date
JP2003249762A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
US8541695B2 (en) Wiring board and method for manufacturing the same
US8586875B2 (en) Wiring board and method for manufacturing the same
JP5360494B2 (en) Multilayer wiring substrate, method for manufacturing multilayer wiring substrate, and via fill method
JPWO2013161527A1 (en) Multilayer wiring board and manufacturing method thereof
JP7097139B2 (en) Wiring board
JP2009099619A (en) Core substrate and its manufacturing method
KR101332079B1 (en) Method of manufacturing a multi-layer printed circuit board and a multi-layer printed circuit board manufactured by the same
JP2001053188A (en) Method for manufacturing multilayer wiring board
US11116080B2 (en) Wiring substrate
JP2014150091A (en) Wiring board, and method of manufacturing the same
JP2012160559A (en) Method for manufacturing wiring board
JP3988664B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4219541B2 (en) Wiring board and method of manufacturing wiring board
JPS5922393A (en) Printed circuit board and method of producing same
JP3511887B2 (en) Multilayer printed wiring board
JPH10261854A (en) Printed wiring board and manufacturing method thereof
JP2000323841A (en) Multilayer circuit board and manufacture thereof
JP4160765B2 (en) Wiring board manufacturing method
JPH11289165A (en) Multilayer wiring board and method for manufacturing the same
JP2010262954A (en) Method for manufacturing wiring board
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP2017228553A (en) Manufacturing method for wiring board
JP3792544B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130727

LAPS Cancellation because of no payment of annual fees