JP3986631B2 - 薄膜作成方法及び薄膜作成装置 - Google Patents

薄膜作成方法及び薄膜作成装置 Download PDF

Info

Publication number
JP3986631B2
JP3986631B2 JP24619897A JP24619897A JP3986631B2 JP 3986631 B2 JP3986631 B2 JP 3986631B2 JP 24619897 A JP24619897 A JP 24619897A JP 24619897 A JP24619897 A JP 24619897A JP 3986631 B2 JP3986631 B2 JP 3986631B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
plasma
post
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24619897A
Other languages
English (en)
Other versions
JPH1161422A (ja
Inventor
了己 戸部
泰明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP24619897A priority Critical patent/JP3986631B2/ja
Publication of JPH1161422A publication Critical patent/JPH1161422A/ja
Application granted granted Critical
Publication of JP3986631B2 publication Critical patent/JP3986631B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本願の発明は、半導体デバイス、超伝導デバイス、各種電子部品、各種センサー等を構成する拡散防止膜、密着層膜又は反射防止膜等として使用する窒化チタンを主成分とする薄膜の作成方法及び装置に関するものである。
【0002】
【従来の技術】
半導体デバイス、超伝導デバイス、各種電子部品、各種センサー等を構成する拡散防止膜、密着層膜又は反射防止膜等の薄膜の作成には、真空蒸着(物理蒸着)法、スパッタリング法、化学蒸着(CVD)法、プラズマアシストCVD法等の種々の方法が試みられている。
このような薄膜作成プロセスでは、薄膜を作成する対象物(本明細書では基体と称す)の表面が平坦である場合も多いが、表面に形成された微細な穴や溝(以下、ホールと総称する)の内部に薄膜を作成することも多くなってきている。
【0003】
例えば、各種半導体デバイスでは、コンタクト部の構造としてコンタクトホール内にタングステン等の配線材料を埋め込んだ構造が採用される。この場合、このコンタクト配線と下地半導体層との相互拡散を防止するため、両者の界面に拡散防止膜を薄く介在させることが行われる。つまり、コンタクトホールの内面に拡散防止膜を薄く作成することが必要になっている。また、ロジック系集積回路ではより高速の動作を可能にするため銅が配線材料として用いられることが多いが、この銅もシリコン中や酸化シリコン絶縁層中へ拡散し易いため、拡散防止膜を介在させて拡散を防止することが必要になっている。
【0004】
また、多層配線構造のデバイスの構造で多く用いられる層間スルーホール内への埋め込み配線技術についても、ホールの内面への薄膜の作成が必要になっている。例えば、層間スルーホール内にアルミニウムを埋め込んで層間配線を形成する場合、当該埋め込み用のアルミニウムと、層間スルーホールの底面に露出した第一層のアルミニウムとの密着性を向上させるため、両者の界面に密着層膜を形成することが行われる。即ち、層間スルーホールの内面特に底面に密着層膜を作成することが必要になっている。
【0005】
このようなホールの内面への成膜プロセスにおいては、ボトムカバレッジ率が成膜特性の極めて重要な指標の一つになっている。図11はボトムカバレッジ率の説明図である。ボトムカバレッジ率は、ホールへの成膜特性であり、具体的にはホール10の周囲の面11への薄膜100の堆積量に対するホール10の底面12への薄膜100の堆積量の比((b/a)×100(%))である。尚、堆積量の比は、実際には単位時間当たりの堆積量(成膜速度)の比である。
【0006】
前述したコンタクトホールや層間スルーホール内への拡散防止膜や密着層膜等の作成では、必要な拡散防止効果や密着効果を得るためには、上記ボトムカバレッジ率を充分高くする必要がある。というのは、薄膜100の素となる材料(以下、前駆体)は、ホール10の底面12よりもホール10の周囲の面11に付着し易く、ボトムカバレッジ率を高くすることは容易ではないからである。
特に、年々集積度が高まる半導体デバイスの構造では、上記のようなホールはそのアスペクト比がどんどん高くなってきている。アスペクト比は、図11に示すホール10の開口の大きさ(直径又は幅)wに対するホール10の深さdの比(d/w)である。
【0007】
アスペクト比が高くなると、ホール10の開口の大きさwに比べてホール10の深さdが相対的に深くなるので、ホール10の底面12まで前駆体を到達させることが困難となる。従って、一般的には、アスペクト比が高くなるにつれてボトムカバレッジ率は低下する傾向にある。言い換えると、より集積度の高い半導体デバイスの製作には、ホール内成膜におけるボトムカバレッジ率の低下というボトルネックが存在し、これを乗り越えることが重要な技術課題となっている。
【0008】
一方、上記拡散防止膜や密着層膜には窒化チタンを主成分とする薄膜が使用されることが多い。尚、窒化チタンを主成分とする薄膜(以下、窒化チタン薄膜)とは、薄膜中の窒化チタンの含有量が50%以上であるという意味である。
この窒化チタン薄膜を比較的良好なボトムカバレッジ率で作製する方法として注目されている技術の一つに、有機金属化合物や有機金属錯体を原料として用いたMOCVD(Metal−Organic Chemical Vapor Deposition)技術がある。
MOCVD技術は、有機金属化合物や有機金属錯体を反応容器内に導入し、所定温度に加熱された基体の表面に接触させて熱分解を含む気相反応を生じさせ、当該基体の表面に窒化チタン薄膜を堆積する技術である。
【0009】
例えば、M.Eizenberg らのAppl.Phys.Lett.65(19),7 November 1994,P2416-2418の中にその方法に関する記事がある。M.Eizenberg らはテトラキスジメチルアミノチタン(TDMAT)のみを原料として窒化チタン薄膜を成膜圧力0.45Torr(60Pa)、基体温度380〜470℃で作成している。彼らが作成した窒化チタン薄膜は、ラザフォード後方散乱法による分析では、約23%の酸素を含有している。また、オージェ電子分光法においては、約24%の酸素の含有が報告されている。
【0010】
この酸素含有は、堆積時に得られた窒化チタン薄膜が大気中で徐々に酸化されてしまうことによって生じる。一般にテトラキスジアルキルアミノチタン(TDAAT)を原料ガスとして用いて熱CVD法により作成した窒化チタン薄膜は、大気によって酸化されてしまい、このような高い濃度の酸素混入が生じてしまう。
電気的特性の観点では、この酸素混入に伴い薄膜の抵抗が増大してしまう。このことは、信頼性の高い各種電子デバイスの製作に使用する際、重大な欠点を伴っていることになる。また、窒化チタン薄膜が酸化されて抵抗率が上昇するため、低抵抗の薄膜として使用することが不可能となってしまう。
【0011】
この問題から、彼らは作成された窒化チタン薄膜を大気に晒すことなくその窒化チタン薄膜の上にタングステン薄膜を連続して堆積させている。タングステン薄膜によって窒化チタン薄膜は大気との接触が遮断されるため、窒化チタン薄膜の酸化が防止される。この工程を行うことによって、彼らは酸素含有量を1%に抑えることが可能としている。
【0012】
しかしながら、TDAATを原料ガスとして熱CVD法により作成された窒化チタン薄膜は、真空蒸着等の物理的方法により作成された膜に比べ、化学的に不安定な膜である。そのような不安定な膜の上に他の膜を堆積することによって大気を遮断して酸化を防止する方法では、化学的に不安定であるという窒化チタン薄膜の特性を根本的に解消することはできず、経時的な化学構造の変化等の長期的な経時変化により生ずる特性劣化は避けられない。
【0013】
このことから、TDAATを用いた熱CVD法による窒化チタンを主成分とした薄膜の作成は、ボトムカバレッジ率等の点で優れているとの評価を受けつつも、作成される膜の電気特性の点で電子デバイスの信頼性を低下させる問題が生じてきている。
【0014】
一方、R. L. Jackson らのConference Proceedings ULSI MRS 1994,P.223-237によると、R. L. Jacksonらはテトラキスジエチルアミノチタン(TDEAT)とアンモニアとを原料として窒化チタン薄膜を成膜圧力10Torr(1333Pa)、基体温度350℃で作成している。彼らが作成した窒化チタン薄膜は、成膜後1日以上大気中に放置した場合でも酸素含有量を1%程度に抑えることが可能とされている。
【0015】
しかしながら、開口直径1.36μm、アスペクト比3.4のコンタクトホールに対し、10%未満のボトムカバレッジ率しか得られていない。この原因の一つは、成膜圧力が10Torrと高いためであると考えられる。成膜圧力が高くなると、基体の表面に垂直に飛行する前駆体が他の前駆体やガス分子に衝突して散乱される可能性が高くなる。このため、基体の表面に形成されたホールの底部まで前駆体が飛行する可能性が低くなり、ボトムカバレッジ率が低下してしまうと考えられる。
また、成膜圧力が高いと、作成される薄膜の品質にも影響を与える。即ち、成膜圧力が高いと、反応容器に浮遊するパーティクル等の異物が薄膜中に混入し易く、製品欠陥の原因となり易い。
【0016】
【発明が解決しようとする課題】
本願の発明は、上記のようなTDAATを使用した熱CVD法による窒化チタン薄膜の作成技術が抱える課題を解決するためになされたものであり、高アスペクト比のホール内に充分なボトムカバレッジ率で化学的に安定な高品質の窒化チタン薄膜を作成することができる方法とそのための装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記課題を解決するため、本願の請求項1記載の発明は、気化したテトラキスジアルキルアミノチタンからなる原料ガスを用いて化学蒸着法により基体の表面に窒化チタンを主成分とする薄膜を作成する第一の工程と、作成された薄膜をプラズマの作用を利用して改質する後処理を行う第二の工程とを含む薄膜作成方法であって、前記第二の工程では、所定の後処理用ガスを使用して10Pa以下の圧力で電子密度1010個/cm 以上の低圧高密度プラズマを形成するとともに、当該低圧高密度プラズマと基体との間に電界を設定し、この電界によって当該低圧高密度プラズマからイオンを引き出して基体に入射させて前記改質を行う方法であり、前記電界は、基体に−5V〜−100Vの範囲の電圧を印加することで設定される方法であるという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、上記請求項1の構成において、前記後処理用ガスは、前記第一の工程で作成された薄膜中に存在する炭素を除去するか、もしくは、当該薄膜中に存在する未結合の反応基又は活性種と反応して安定な化学種を生成するイオンを前記低圧高密度プラズマ中で生成するものであるという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、上記請求項2の構成において、前記後処理用ガスは、窒素又は窒素と水素とを含むという構成を有する。
また、上記課題を解決するため、請求項4記載の発明は、上記請求項1、2又は3の構成において、前記低圧高密度プラズマは、気体放電によって形成されるものであり、前記後処理用ガスには、当該気体放電の放電開始電圧を下げる補助ガスが混合されているという構成を有する。
また、上記課題を解決するため、請求項5記載の発明は、上記請求項4の構成において、前記補助ガスは、アルゴンであるという構成を有する。
また、上記課題を解決するため、請求項6記載の発明は、上記請求項1、2、3、4又は5の構成において、前記低圧高密度プラズマは、前記後処理用ガスに対して高周波エネルギーを与えて形成され、当該高周波エネルギーは、誘導結合方式によって後処理用ガスに与えられるという構成を有する。
また、上記課題を解決するため、請求項7記載の発明は、上記請求項6の構成において、前記高周波エネルギーは、一端がプラズマ用高周波電源に接続され他端が所定のキャパシタンスを介して接地されているとともに前記処理容器内に配置されている高周波アンテナを介して前記後処理用ガスに与えられるという構成を有する。
また、上記課題を解決するため、請求項8記載の発明は、上記請求項1から7のいずれかの構成において、前記基体の表面には微細なホールが形成されているとともに前記窒化チタンを主成分とする薄膜は第一の工程においてこのホールの内面を被覆するように作成され、前記電界は、このホールの深さ方向に沿った向きに設定されているという構成を有する。
また、上記課題を解決するため、請求項9記載の発明は、上記請求項8の構成において、前記基体の表面に形成されたホールはアスペクト比5.5以上の微細なホールであり、前記第一の工程では、成膜時の圧力を10Pa以下にして成膜を行うという構成を有する。
また、上記課題を解決するため、請求項10記載の発明は、上記請求項1から9のいずれかの構成において、前記電界は、−5V〜−100Vの範囲内の負の直流電圧を基体に与えることにより設定されるという構成を有する。
また、上記課題を解決するため、請求項11記載の発明は、上記請求項1から9のいずれかの構成において、前記電界は、基体に高周波電力を印加することで高周波とプラズマとの相互作用により生じる負の自己バイアス電圧によって設定されるという構成を有する。
また、上記課題を解決するため、請求項12記載の発明は、上記請求項11の構成において、前記高周波電力の周波数は、100kHz〜1500MHzの範囲内であるという構成を有する。
また、上記課題を解決するため、請求項13記載の発明は、上記請求項11又は12の構成において、前記高周波電力の周波数は、前記低圧高密度プラズマのイオン振動数よりも高い周波数とするという構成を有する。
また、上記課題を解決するため、請求項14記載の発明は、上記請求項11、12又は13の構成において、前記高周波電力の電力を、50W〜1000Wとするという構成を有する。
また、上記課題を解決するため、請求項15記載の発明は、上記請求項11、12、13又は14の構成において、前記低圧高密度プラズマは、前記後処理用ガスに対して高周波エネルギーを与えて形成されるものであり、この高周波エネルギーの大きさと前記高周波電力の大きさとは、前記自己バイアス電圧が−100V以下となるように選定されるという構成を有する。
また、上記課題を解決するため、請求項16記載の発明は、上記請求項1から15のいずれかの構成において、基体を大気に晒すことなく真空雰囲気に配置しながら前記第一の工程と前記第二の工程を行うという構成を有する。
また、上記課題を解決するため、請求項17記載の発明は、上記請求項1から16のいずれかの構成において、前記テトラキスジアルキルアミノチタンは、テトラキスジエチルアミノチタン又はテトラキスジメチルアミノチタンであるという構成を有する。
また、上記課題を解決するため、請求項18記載の発明は、気化したテトラキスジアルキルアミノチタンからなる原料ガスを用いて化学蒸着法により基体の表面に窒化チタンを主成分とする薄膜を作成する反応容器と、作成された薄膜を改質する後処理を行う処理容器とを備えた薄膜作成装置であって、
処理容器は、内部に後処理用ガスを導入する後処理用ガス導入手段と、導入された後処理用ガスにエネルギーを与えて10Pa以下の圧力で電子密度が1010個/cm 以上の低圧高密度プラズマを形成して当該高密度プラズマ中のイオンの作用によって前記後処理を行うプラズマ形成手段と、形成した低圧高密度プラズマと基体との間に電界を設定して前記低圧高密度プラズマ中のイオンを基体に入射させる電界設定手段とを有し、
電界設定手段は、基体に−5V〜−100Vの範囲の電圧を印加することで前記電界を設定するものであるという構成である。
また、上記課題を解決するため、請求項19記載の発明は、上記請求項18の構成において、前記後処理用ガス導入手段は、前記第一の工程で作成された薄膜中に存在する炭素を除去するか、もしくは、当該薄膜中に存在する未結合の反応基又は活性種と反応して安定な化学種を生成するイオンを前記低圧高密度プラズマ中で生成する後処理用ガスを導入するものであるという構成を有する。
また、上記課題を解決するため、請求項20記載の発明は、上記請求項19の構成において、前記後処理用ガスは、窒素又は窒素と水素とを含むという構成を有する。
また、上記課題を解決するため、請求項21記載の発明は、上記請求項18、19又は20の構成において、前記プラズマ形成手段は、気体放電によって前記低圧高密度プラズマを形成するものであり、前記後処理用ガス導入手段は、当該気体放電の放電開始電圧を下げる補助ガスを後処理用ガスに混合して導入するものであるという構成を有する。
また、上記課題を解決するため、請求項22記載の発明は、上記請求項21の構成において、前記補助ガスは、アルゴンであるという構成を有する。
また、上記課題を解決するため、請求項23記載の発明は、上記請求項18から22のいずれかの構成において、前記プラズマ形成手段は、前記後処理用ガスに対して誘導結合方式によって高周波エネルギーを与えてプラズマを形成するものであるという構成を有する。
また、上記課題を解決するため、請求項24記載の発明は、上記請求項23の構成において、前記プラズマ形成手段は、一端がプラズマ用高周波電源に接続され他端が所定のキャパシタンスを介して接地されているとともに前記処理容器内に配置されている高周波アンテナを介して前記後処理用ガスに高周波エネルギーを与えるものであるという構成を有する。
また、上記課題を解決するため、請求項25記載の発明は、上記請求項18から24のいずれかの構成において、前記反応容器は、基体の表面に形成された微細なホールの内面を被覆するよう前記窒化チタンを主成分とする薄膜を作成するものであり、前記電界設定手段は、当該薄膜で被覆された微細なホールの深さ方向に沿った方向に前記電界を設定するものであるという構成を有する。
また、上記課題を解決するため、請求項26記載の発明は、上記請求項18から25のいずれかの構成において、前記電界設定手段は、基体を保持する基体ホルダーに負の直流電圧を印加する負の直流電源によって構成されている。
また、上記課題を解決するため、請求項27記載の発明は、上記請求項26の構成において、前記負の直流電源は、基体を保持する基体ホルダーに−5Vから−100Vの電圧を印加するものであるという構成を有する。
また、上記課題を解決するため、請求項28記載の発明は、上記請求項18から25のいずれかの構成において、前記電界設定手段は、基体に高周波電圧を印加し高周波と前記低圧高密度プラズマとの相互作用により基体に負の自己バイアス電圧を生じさせる基体用高周波電源からなるという構成を有する。
また、上記課題を解決するため、請求項29記載の発明は、上記請求項28の構成において、前記基体用高周波電源は、基体を保持する基体ホルダーに、100kHz〜1500MHzの周波数の高周波電圧を印加するものであるという構成を有する。
また、上記課題を解決するため、請求項30記載の発明は、上記請求項28又は29の構成において、前記基体用高周波電源は、基体を保持する基体ホルダーに、前記低圧高密度プラズマのイオン振動数よりも高い周波数の高周波電圧を印加するものであるという構成を有する。
また、上記課題を解決するため、請求項31記載の発明は、上記請求項28、29又は30の構成において、前記基体用高周波電源は、基体を保持する基体ホルダーに、50〜1000Wの高周波電力を供給するものであるという構成を有する。
また、上記課題を解決するため、請求項32記載の発明は、上記請求項28、29、30又は31の構成において、前記プラズマ形成手段は、前記後処理用ガスに対して高周波エネルギーを与えてプラズマを形成するものであり、この高周波エネルギーの大きさと前記高周波電力の大きさとは、前記自己バイアス電圧が−100V以下となるように選定されているという構成を有する。
また、上記課題を解決するため、請求項33記載の発明は、上記請求項18から32のいずれかの構成において、前記反応容器と前記処理容器とは気密に連通して接続されており、前記基体を大気に晒すことなく前記反応容器から前記処理容器に搬送する搬送機構を備えているという構成を有する。
また、上記課題を解決するため、請求項34記載の発明は、上記請求項18から33のいずれかの構成において、前記テトラキスジアルキルアミノチタンは、テトラキスジエチルアミノチタン又はテトラキスジメチルアミノチタンであるという構成を有する。
【0018】
【発明の実施の形態】
以下、本願発明の実施の形態について説明する。
まず、薄膜作成装置の発明の実施形態について説明する。図1は、第一の実施形態の薄膜作成装置の概略構成を示した正面図である。
図1に示す薄膜作成装置は、TDAATからなる原料ガスの気相反応を利用して基体1の表面に窒化チタン薄膜を作成する反応容器2と、作成された薄膜を所定の特性に改質する後処理を行う処理容器3とを備えている。
【0019】
まず、反応容器2の構成について説明する。
反応容器2は、反応容器2内を排気する第一の排気系21と、反応容器2内に所定の原料ガスを導入する原料ガス導入手段22と、反応容器2内の所定の位置に基体1を保持する第一の基体ホルダー23とを備えている。
【0020】
反応容器2自体は、ステンレス製の気密構造を有する容器であり、基体1の出し入れのためのゲートバルブ24を備えている。第一の排気系21は、ターボ分子ポンプやクライオポンプ等のドライポンプからなる多段の真空ポンプ群211と、この真空ポンプ群211と反応容器2とを繋ぐ排気管212に設けられた主排気バルブ213及び排気速度を調節するバリアブルオリフィス214等とから主に構成されている。
【0021】
原料ガス導入手段22は、液体状態のTDAATを溜めた原料容器221と、原料容器221から送られた液体状態のTDAATを気化させる気化器222と、TDAATを原料容器221から気化器222に送るための送液用ガス導入系223と、原料容器221から気化器222への送液用配管224に設けられた液体流量調整器225と、気化器222内にキャリアガスを供給するキャリアガス供給系226とから主に構成されている。
【0022】
原料容器221は、ステンレスで形成され、内壁は電界研磨処理が施されている。原料容器221内に溜められたTDAATは、常温常圧で液体の原料例えばTDEATである。
送液用ガス導入系223は、原料容器221内を加圧してTDAATを気化器222に送るためのものである。送液用ガスには、ヘリウム等の化学的に安定なガスが使用され、原料容器221内を例えば0.5〜1kgf/cm 程度に加圧するよう構成される。
【0023】
気化器222は、送られたTDAATを加熱して気化させるものである。具体的には、TDAATとしてTDEATを使用する場合、気化器222内は100℃程度に加熱されるようになっている。
また、キャリアガス導入系226は、気化器222内にキャリアガスを導入して気化器222内の圧力を高め、TDAATの気化を助けるようにしている。尚、このキャリアガスには、本実施形態では窒素が使用されている。
【0024】
また、キャリアガスを気化器222に供給する配管上には、温度調整器227が設けられている。温度調整器227は、キャリアガスの温度を所定の温度に維持し、気化器222内の温度条件を乱さないようにするためのものである。具体的には、窒素よりなるキャリアガスは例えば110℃程度の一定の温度に加熱されて供給されるようになっている。
【0025】
液体流量制御器225は、気化器222に供給されるTDAATの量を制御し、気化器222での気化動作を安定化させるものである。気化器222に供給されるTDAATの量が変化してしまうと、気化器222で発生するTDAATガスの量が変化してしまい、反応容器2へのTDAATガスの供給量も変化してしまうからである。具体的には、液体流量制御器225は、0.1g/分程度の流量で液体TDAATを気化器222に供給するよう流量制御する。
【0026】
上記気化器222で気化したTDAATはキャリアガスとともに原料ガス供給管228を経由して反応容器2内に導入されるようになっている。そして、この原料ガス供給管228には、不図示の供給管ヒータが付設されている。供給管ヒータは、原料ガス供給管228内を所定の温度まで加熱して維持し、送られるTDAATガスの液化を防止するようになっている。
【0027】
また、反応容器2の器壁にも必要に応じて器壁ヒータ25が設けられており、TDAATが器壁で液化しないよう器壁を所定温度まで加熱するよう構成されている。反応容器の器壁には、容器用熱電対28が設けられている。容器用熱電対28の測定結果は、不図示の器壁温度コントローラに送られる。器壁温度コントローラは、器壁ヒータ25を制御し、器壁の温度を所定温度に維持する。
【0028】
尚、原料ガス供給管228には、原料ガスバルブ229が設けられており、反応容器2への原料ガスの導入動作を制御している。また、原料ガス供給管228上に気体流量調整器を設け、TDAATガス及びキャリアガスの混合ガスの流量を所定の流量に制御する場合もある。
【0029】
上記原料ガス導入手段22は、添加ガス導入系26を有している。例えば、TDAATを使用した窒化チタン薄膜の作成においては、アンモニアガスを添加して成膜を行うと、成膜圧力を高くすることなく比抵抗の小さい窒化チタン薄膜が得られる。成膜圧力を高くすると、反応容器内を浮遊する塵埃等の基体に付着して薄膜を汚損する問題があるため、アンモニアを添加してより低圧での成膜を行うことは、実用上有益である。
このため、原料ガス導入手段22は、アンモニアを添加ガスとして反応容器2内に導入するよう構成されている。アンモニアは所定の流量の窒素ガスに混合されて希釈化されて導入される。
【0030】
第一の基体ホルダー23は、基体1の保持とともに基体1の温度調節の機能も兼ねている。即ち、第一の基体ホルダー23は、基体1の温度を所定の温度に調節する温度調節機構を有している。
温度調節機構は、第一の基体ホルダー23内に設けられた成膜用ヒータ231と、基体1の温度を直接又は間接的に検出する成膜用熱電対232と、成膜用熱電対232が検出した温度に従って成膜用ヒータ231を制御する成膜用ヒータコントローラ233とから主に構成されている。尚、第一の基体ホルダー23に対する基体1の接触性を向上させて温度調節の精度を向上させるため、基体1を第一の基体ホルダー23に静電吸着させる機構や機械的に基体1を第一の基体ホルダー23に密着させる機構等が必要に応じて採用される。
成膜中の基体1の温度(成膜温度)は、使用する原料ガスの種類によって若干異なる。例えばTDEATを使用する場合、成膜温度は300〜350℃程度とされる。
【0031】
また、本実施形態では、反応容器2内の圧力を測定する真空計として、電離真空計26と、ダイヤフラム真空計27が設けられている。
電離真空計26は、原料ガスの導入前に反応容器2内を高真空排気した際の到達圧力を測定するために主に使用されるものであり、測定範囲は10−2〜10−6Pa程度である。この電離真空計26としては、例えばアネルバ社製BAゲージUGD−1S等が使用できる。
一方、ダイヤフラム真空計27は、原料ガスを導入した成膜中の反応容器2内の圧力を測定するために主に使用されるものであり、測定範囲は0.1〜133Pa程度である。ダイヤフラム真空計27の測定結果は、成膜中の圧力制御に使用されるため、測定誤差0.3%以内の高精度ダイヤフラム真空計を使用することが好ましい。例えば、MKS社製バラトロンTYPE128A等が使用できる。
【0032】
尚、反応容器2に隣接して不図示のロードロックチャンバーが気密に接続されている。ロードロックチャンバーは専用の排気系を有し、ゲートバルブ24を通して基体1の出し入れを行う際に所定の圧力まで排気される。
【0033】
次に、処理容器3の構成について説明する。
処理容器3は、反応容器2と同様にステンレス製の気密な容器である。この処理容器3は、内部を排気する第二の排気系31と、内部に後処理用ガスを導入する後処理用ガス導入手段32と、後処理用ガスにエネルギーを与えて処理容器3内に10Pa以下で1010個/cm 以上の低圧高密度プラズマを形成するプラズマ形成手段33と、形成された低圧高密度プラズマによって処理される位置に基体1を保持する第二の基体ホルダー34と、低圧高密度プラズマと基体1との間に電界を設定してプラズマ中のイオンを基体1に入射させる電界設定手段35とを備えている。
【0034】
第二の排気系31は、第一の排気系21とほぼ同様の構成であり、ターボ分子ポンプやクライオポンプ等よりなる多段の真空ポンプ群311と、排気管312に設けられた主排気バルブ313及びバリアブルオリフィス314とから主に構成されている。このような第二の排気系31により、処理容器3内は、10−4Pa程度の到達圧力まで排気可能となっている。
【0035】
後処理用ガス導入手段32は、後処理用ガスとして、窒素と水素とアルゴンの混合ガスを処理容器3内に導入するよう構成されている。即ち、後処理用ガス導入手段32は、窒素ガス導入系321と、水素ガス導入系322と、アルゴンガス導入系323とから主に構成されている。窒素と水素は窒化チタン薄膜の改質作用のあるイオンを生成するするために主に導入される。また、アルゴンは、プラズマ形成のための気体放電の開始を容易にするのが主な目的である。
各々のガス導入系321,322,323は、各々のガスを溜めた不図示のガスボンベと、流量制御器324と、バルブ325等とから構成されている。そして、これらのガス導入系321,322,323が接続された主配管326には、主バルブ327が設けられ、混合ガスの導入を制御するようになっている。
【0036】
プラズマ形成手段33は、高周波誘導結合方式によって1010個/cm 以上の高密度プラズマを形成するよう構成されている。具体的には、プラズマ形成手段33は、処理容器3内に設けられた高周波アンテナ331と、整合回路332を介して高周波アンテナ331に所定の高周波電力を供給するプラズマ用高周波電源333とから主に構成されている。
【0037】
高周波アンテナ331は、本実施形態ではシングルループアンテナが使用されている。具体的には、高周波アンテナ331は、金属製のパイプを円周状に丸めて、両端に電極端子334,335を設けた形状である。尚、高周波アンテナ331の内部に水などの冷媒を流して冷却すると、高周波アンテナ331の異常加熱が防止されるので好適である。また、高周波アンテナ331がプラズマPによってスパッタされるのが問題になるときは、高周波アンテナ331をチタン等の基体を汚損しない材料で形成したり、アルマイト処理等の耐プラズマ化する表面処理を施したりすることが有効である。
【0038】
処理容器3の上壁部には絶縁体336が気密に填め込まれており、電極端子334,335はこの絶縁体336を気密に貫通して上部に延びている。そして、プラズマ用高周波電源333から延びる高周波線路が一方の電極端子335に接続されている。他方の電極端子334は、プラズマ制御用コンデンサ337を介して接地されている。
【0039】
プラズマ用高周波電源333は、本実施形態では、13.56MHzの高周波を発生させるものが使用されている。出力は1〜3kWの範囲で調整できるようになっている。但し、プラズマ用高周波電源333の周波数は、kHzの帯域や60MHz、100MHz等でもよい。さらに、正弦波のみならず所定の波形に変化させた高周波を発生させるものをプラズマ用高周波電源333として用いても良い。尚、整合回路332には、本実施形態ではπ型回路が用いられているが、L型回路等でもよい。
【0040】
プラズマ用高周波電源333が発生させた高周波電力は、整合回路332を通して高周波アンテナ331に送られる。これによって、高周波アンテナ331に高周波電流が流れるとともに、高周波アンテナ331から高周波電界が放射され、処理容器3内の空間に高周波電界が設定される。後処理用ガス導入手段32によって導入された後処理用ガスは、この高周波電界からエネルギーを受けてプラズマ化し、プラズマPが形成されるようになっている。
この際、高周波アンテナ331として、シングルループアンテナが使用されて大きな高周波電流が流れるので、プラズマPと高周波アンテナ331とは誘導性結合する。即ち、プラズマP中には、高周波アンテナ331中を流れる高周波電流による電磁誘導により誘導電流が流れ、プラズマPと高周波アンテナ331とはインダクタンスを介して高周波結合する。プラズマP中に流れる高周波電流は、後処理用ガスの電離効率を上昇させるので、比較的低い圧力でも1010個/cm 以上の高密度プラズマを形成することが可能となる。尚、プラズマ密度の単位である「個/cm 」は、単位体積あたりの電子密度を表している。
【0041】
高周波によってプラズマを形成する方式には、上記誘導結合方式の他、容量結合方式がある。容量結合方式は、プラズマ形成空間を挟んで対向させた一対の平行平板電極に高周波電力を供給する例が典型的である。本願発明において、このような構造を採用することも可能であるが、このような構造では10Pa以下で1010個/cm 以上の低圧高密度プラズマを形成することは一般的に難しい。低圧高密度プラズマを形成するには、プラズマ中に大きな誘導電流が流れる誘導結合方式が有利であり、エネルギー印加の構成も比較的容易になる。
【0042】
また、本実施形態の装置において、高周波アンテナ331の他の電極端子334と接地部との間に設けられたプラズマ制御用コンデンサ337は、プラズマPの空間電位(プラズマ電位)を調整して高周波アンテナ331と第二の基体ホルダー34との間に高密度のプラズマを形成するのに貢献している。
即ち、プラズマ制御用コンデンサ337を使用せずに他の電極端子334を接地部に短絡すると、プラズマPは処理容器3の内部に広く拡散し、プラズマ密度が低下する傾向がある。しかし、プラズマ制御用コンデンサ337を介在させると、プラズマは高周波アンテナ331と基体1ホルダーの間に閉じこめられたように形成され、プラズマ密度がより高くなる。
【0043】
上記プラズマ密度向上の効果が何故生ずるかについては、完全に明確になった訳ではないが、以下のように考えられる。例えば、本実施形態の処理容器3内で圧力0.8Paのアルゴンガスのプラズマを生じさせ、プラズマの空間電位を測定すると、プラズマ制御用コンデンサ337を使用しない場合のプラズマ電位は100V以上であるのに対し、プラズマ制御用コンデンサ337を使用した場合の空間電位は20V程度である。つまり、プラズマ制御用コンデンサ337を使用すると、プラズマ電位が1/5以下の低下する。
【0044】
このようなプラズマ電位の低下については、次のように考えられる。
プラズマ用高周波電源333から高周波アンテナ331を通って接地部に至る高周波回路において、プラズマ制御用コンデンサ337を介在させると、高周波とプラズマPとの相互作用によって高周波アンテナ331に負の自己バイアス電圧が生じる。
【0045】
より詳しく説明すると、プラズマ制御用コンデンサ337を通して高周波を流しながら、高周波アンテナ331から放射される高周波電界によってプラズマを形成した場合、高周波の正の半周期においてプラズマ中から電子が高周波アンテナ331に入射し、負の半周期において正イオンが入射する。この際、電子は正イオンに比べて移動度が高いので、高周波アンテナ331に入射する荷電粒子は負電荷(電子)の方が多くなる。この結果、高周波アンテナ331は、正弦波の上に負の直流電圧が重畳されたような電位変化となり、負の自己バイアス電圧が生ずる。言い換えると、高周波アンテナ331はプラズマ制御用コンデンサ337と整合回路332中のコンデンサにより接地電位からフローティングされているために自由な直流電圧が取れ、高周波アンテナ331に入射する負電荷(電子)と正電荷(正イオン)の量がバランスするように、負の自己バイアス電圧が生ずる。
【0046】
他方、プラズマ制御用コンデンサ337を使用せずに他の電極端子を接地部に短絡すると、上述のような負の自己バイアス電圧は生じない。というのは、例えば正の半周期において高周波アンテナ331に入射した電子はそのまま接地部に向かって流れてしまうので、高周波アンテナ331には電荷が蓄積されることはなく、高周波アンテナ331の電位を下げるような効果は生じ得ない。従って、この場合、高周波アンテナ331は接地電位を中心として正負に振れる電位変化のままである。
【0047】
この場合、プラズマP中から引き出されて高周波アンテナ331に入射し接地部に流れる荷電粒子は、移動度の高い電子が多くなる。しかし、電子のみが多く高周波アンテナ331に入射するとプラズマPの電気的中性のバランスが崩れ、正電荷の空間電荷密度が負電荷の空間電荷密度より大きくなり、プラズマPの空間電位が上がる。しかし、プラズマPの空間電位は上がり続けるのではなく、プラズマPの空間電位がある程度大きくなると、高周波アンテナ331に入射する電子の量は少なくなり、高周波アンテナ331に入射する電子と正イオンの量が等しくなったところで、プラズマPの空間電位の上昇が止まる。このようなことにより、プラズマ制御用コンデンサ337が無い場合、プラズマPの空間電位はプラズマ制御用コンデンサ337が有る場合に比べて、正の方向へシフトするものと考えられる。
【0048】
一方、プラズマ制御用コンデンサ337を使用すると、高周波アンテナ331に上記負の自己バイアス電圧が与えられるため、高周波アンテナ331への電子の流入が抑制される。このため、上記のようなプラズマ電位のシフトが無く、プラズマ電位は低いままである。
プラズマ制御用コンデンサ337を使用した場合のプラズマ密度の向上は、プラズマ電位が低く維持される結果、プラズマPの拡散が抑えられるためであると考えられる。この点の詳細な原因は明確ではないが、以下のように推測される。
【0049】
まず、プラズマ電位が上がると、プラズマPはプラズマ電位を接地電位に近づけようと自ら調整する作用があるものと考えられる。プラズマ電位を下げるには、プラズマPと接地電位である処理容器3の器壁の間で形成されるコンデンサの容量を大きくすればよい。コンデンサの容量を大きくするには、コンデンサが形成されている領域を大きくする、つまり、プラズマPが形成されている領域を大きくすればよい。このため、プラズマPが拡散していくものと推測される。
【0050】
また、別な理由として、プラズマ電位が高くなると、プラズマPと処理容器3の器壁との間の電位差が大きくなるので、プラズマP中から正イオンが加速されて器壁に衝突し易くなる。正イオンが衝突すると、器壁から二次電子が放出され、この結果、持続放電が生じる。この持続放電によって空間のインピーダンスが小さくなり、その空間にプラズマPが拡散していくものと推測される。
【0051】
いずれにしても、プラズマ制御用コンデンサ337を使用すると、プラズマPの空間電位のシフトが無くなり、空間電位は低く抑えられるため、プラズマPの拡散が抑制されて高周波アンテナ331と第二の基体ホルダー34との間に高密度のプラズマPが形成されるものと考えられる。
【0052】
また、本実施形態の装置では、高周波アンテナ331の電位を調整するアンテナ電位調整用磁石338が設けられている。アンテナ電位調整用磁石338は、絶縁体336を貫通した一対の電極端子334,335の周囲を取り囲む円環状の電磁石であり、処理容器3の上部器壁の上に配設されている。アンテナ電位調整用磁石338は、高周波アンテナ331と同軸状である。
【0053】
このアンテナ電位調整用磁石338は、高周波アンテナ331の図1に示すようなシングルループアンテナよりなる高周波アンテナ331の中央を通る磁力線339を設定する。この磁力線339は、プラズマP中を通るものであり、プラズマP中の電子を捉えて電子が高周波アンテナ331に到達するのを抑制するよう構成されている。尚、アンテナ電位調整用磁石338のコイルには直流電流が流される。従って、磁場は一方向性である。
【0054】
前述の通り、プラズマ制御用コンデンサ337を使用した本実施形態では、高周波電極331に負の自己バイアス電圧が生じ、この自己バイアス電圧の作用によりプラズマ電位の上昇が抑えられ、プラズマPの拡散が抑制される。しかしながら、この負の自己バイアス電圧は、プラズマP中から正イオンを引き出し、高周波アンテナ331に入射させる作用も有している。
正イオンが入射すると、高周波アンテナ331の表面がスパッタされる。そして、スパッタされた高周波アンテナ331の材料が、後処理している基体1の表面に付着すると、窒化チタン薄膜を汚損する問題が生ずる。
【0055】
そこで、本実施形態では、アンテナ電位調整用磁石338を配設し、磁力線339によって電子を捉えて高周波アンテナ331に到達しないようにしている。このため、高周波アンテナ331への電子の入射が抑制され、負の自己バイアス電圧が低くなる。尚、この場合、高周波アンテナ331への電子の入射自体が抑制されているから、全電荷のバランスを取ろうとしてプラズマ電位が正方向にシフトすることはなく、前述したプラズマPの拡散はない。言い換えると、アンテナ電位調整用磁石338は、プラズマPの拡散を生じることなく高周波アンテナ331の自己バイアス電圧を低くして高周波アンテナ331のスパッタを抑制するものである。
【0056】
このアンテナ電位調整用磁石338の効果について、図2を使用して説明する。図2は、アンテナ電位調整用磁石338の効果について説明した図であり、アンテナ電位調整用磁石338のコイルに流れる電流と高周波アンテナ331に生じた自己バイアス電圧との関係を調べた実験の結果を示した図である。尚、この図2に示す実験では、高周波アンテナ331に13.56MHz2500Wの高周波電力を供給しながらアルゴンガスのプラズマを形成し、アンテナ電位調整用磁石338のコイルの流す電流を変化させて高周波アンテナ331に生ずる負の自己バイアス電圧の大きさを測定した。尚、処理容器内の圧力は0.16Pa,0.8Pa,2.7Paと変化させた。
【0057】
この図2に示すように、コイルに流す電流を大きくするに従って負の自己バイアス電圧は小さくなる。これは、磁場強度が高くなるに従ってプラズマ中の電子捕捉作用が高くなり、高周波アンテナ331に入射する電子の量がより少なくなることによるものと考えられる。
【0058】
アンテナ電位調整用磁石338が与える磁場の強さについて説明すると、高周波アンテナ331の中心付近で5〜100ガウス程度の磁束密度の磁場を生じるようコイルに直流電流を流す。磁束密度が5ガウスを下回ると、上記のような自己バイアス電圧低下の効果が充分得られない。また、磁束密度が100ガウスを越えるような強い磁場になると、処理に影響を与える。
【0059】
即ち、プラズマP中に設定された磁力線339は、図1に示すように第二の基体ホルダー34に向けてラッパ状に広がる分布となる。ここで、プラズマP中のイオンは、後述するイオン引き出し用電界で引き出される際、この磁力線339に巻き付きてサイクロトロン運動しながら飛行して基体1に入射する。この場合、磁力線339が基体1に垂直に入射する基体1の中央部分では問題はないが、磁力線339が斜めに入射する基体1の周辺部分では、イオンが基体1に垂直に入射することが難しくなる。このため、基体1の周辺部分ではホールの底部での改質が不充分となる恐れがある。従って、磁場強度をあまり高くすることは適当ではなく、100ガウス以下の磁束密度とすることが好ましい。
【0060】
尚、高周波アンテナ331のスパッタが大きく問題となる場合は、高周波アンテナ331を処理容器3の外に配置するようにしてもよい。この場合は、処理容器3の器壁に誘電体窓を気密に填め込み、誘電体窓を通して処理容器3内に高周波電力を導入するようにする。誘電体窓の部分での損失があるので高周波の供給効率は多少低下するが、高周波アンテナ331のスパッタの問題は回避される。
また、高周波アンテナ331のスパッタによって生ずる問題を回避するには、スパッタされても問題とならない材料で高周波アンテナ331を構成することも効果的である。即ち、例えば高周波アンテナ331をチタンで形成すれば、高周波アンテナ331がスパッタされても、放出されるのはチタンであるから、基体に付着しても窒化チタン薄膜を汚染する問題は生じない。
【0061】
次に、第二の基体ホルダー34は、上記高周波アンテナ331の下方の所定位置に基体1を保持するよう構成されている。第二の基体ホルダー34も、第一の基体ホルダー23と同様、基体1の温度を所定の温度に調節する温度調節機構を有している。
温度調節機構は、第二の基体ホルダー34内に設けられた処理用ヒータ341と、基体1の温度を直接又は間接的に検出する処理用熱電対342と、熱電対342が検出した温度に従って処理用ヒータ341を制御する処理用ヒータコントローラ343とから主に構成されている。基体1ホルダーに対する基体1の接触性を向上させるための機構が同様に必要に応じて設けられる。
【0062】
尚、第二の基体ホルダー34の周囲には、プラズマPの回り込みを防止するシールド344が設けられている。シールド344は、接地された処理容器3に短絡されており、従って接地電位である。シールド344と第二の基体ホルダー34との間には、絶縁材345が設けられている。
シールド344がないと、第二の基体ホルダー34の側面や下面と処理容器3の器壁との間でも放電が生じてプラズマPが基体1と高周波アンテナ331との間の空間から基体ホルダー34の側方に回り込むようにして形成されることがあるが、シールド344を設けることによりこの放電は発生せず、プラズマPの回り込みは防止される。
【0063】
プラズマPと基体1との間に電界を設定する電界設定手段35は、本実施形態では、基体1に負の直流電圧を印加する負の直流電源351と、負の直流電源351を高周波から保護する保護用リアクタンス352から構成されている。
負の直流電源351は、第二の基体ホルダー34に対して負の直流電圧を印加するよう構成されている。基体1は第二の基体ホルダー34に電気的接触良好に保持されており、第二の基体ホルダー34を介して負の直流電圧が印加されるようになっている。負の直流電源351は、具体的には、基体ホルダー34に−5Vから−100V程度の電圧を印加するものである。
【0064】
基体1の上方に形成されるプラズマPは、本質的に導体と考えてよく、巨視的には内部に電界は存在しない。また、プラズマの空間電位は、10〜数10V程度の正電位である。従って、負の直流電源351によって基体1に負の直流電圧が印加されると、プラズマPと基体1との間に電界が設定される。
この電界は、プラズマPから基体1に向かって電位が下がる電界であり、また、後処理する基体1の表面に垂直な電界である。このため、プラズマP中の正イオンがこの電界によって引き出されて(以下、この電界をイオン引き出し用電界と呼ぶ)、基体1に垂直に多く入射するようになっている。
【0065】
また、処理容器3の側壁部分の外側には、不図示の永久磁石が複数設けられている。各永久磁石は、角棒状の磁石であり、上下方向に延びるように等間隔で処理容器3の周囲に配置されている。隣り合う永久磁石の内側面(処理容器3の中心側の面)は互いに異なる磁極になっており、これらの永久磁石によってラインカプス磁場が周状に形成されるようになっている。このカプス磁場は、処理容器3への器壁へのプラズマPの拡散を抑制し、プラズマ密度をより高く保つ効果がある。
【0066】
処理容器3は、反応容器2と同様、電離真空計36とダイヤフラム真空計37と有している。また、処理容器3内への基体1の出し入れの際に開閉されるゲートバルブ38が同様に設けられている。さらに、ゲートバルブ38を介して不図示のロードロックチャンバーが気密に接続されている。
尚、反応容器2から処理容器3への基体1の搬送を行う不図示の搬送系が設けられている。不図示の搬送系は、基体1が半導体ウェーハである場合、カセット内に所定数の基体1を収容して複数の基体1を一括して搬送する機構や基体1を一枚ずつ搬送する機構等が採用できる。
【0067】
次に、本願発明の薄膜作成方法の実施形態の説明も兼ね、上記構成に係る本実施形態の薄膜作成装置の動作について説明する。
まず、不図示のロードロックチャンバー内に基体1を配置してロードロックチャンバー及び反応容器2内を10−5Pa程度の圧力まで排気する。この圧力は電離真空計26で測定され、この圧力になったのを確認したら、ゲートバルブ24を開けて基体1を反応容器2内に搬入し、第一の基体ホルダー23上に配置して保持させる。第一の基体ホルダー23は予め所定温度まで加熱維持されており、第一の基体ホルダー23に保持された基体1は、当該温度付近まで急速に加熱される。
【0068】
次に、原料ガス導入手段22及び添加ガス導入系26を動作させ、反応容器2内に気化させたTDAATと添加ガスとを所定の流量で導入する。反応容器内に導入されたTDAATガス及び添加ガスは、所定温度に加熱された基体1に接触して気相反応が生じ、窒化チタン薄膜を表面に堆積させる。成膜中の反応容器2内の圧力はダイヤフラム真空計27によって測定され、バリアブルオリフィス214が制御されて反応容器2内は所定の圧力に維持される。
【0069】
窒化チタン薄膜の堆積が進み膜厚が所定の値に達する程度の時間が経過したら、原料ガス導入手段22及び添加ガス導入系26の動作を止め、反応容器2内を再度高真空排気する。そして、ゲートバルブ24を開けて基体1を取り出し、不図示のロードロックチャンバー内に配置する。
【0070】
次に、不図示の搬送系によって基体1を搬送し、処理容器3に隣接した不図示のロードロックチャンバー内に配置する。そして、ロードロックチャンバーと処理容器3とを10−5Pa程度の圧力まで排気する。電離真空計36によって圧力を確認した後、ゲートバルブ38を開けて基体1を処理容器3内に搬入し、第二の基体ホルダー34上に配置して保持させる。第二の基体ホルダー34も予め所定温度まで加熱維持されており、第二の基体ホルダー34に保持された基体1は、当該温度付近まで急速に加熱される。
【0071】
次に、後処理用ガス導入手段32を動作させ、所定の後処理用ガスを所定の流量で導入する。この際、処理容器3内の圧力はダイヤフラム真空計37によって測定され、バリアブルオリフィス314が制御されて反応容器内は所定の圧力に維持される。並行して、電界設定手段35を動作させ、第二の基体ホルダー34を介して基体1に所定の負の直流電圧を印加する。
この状態でプラズマ形成手段33を動作させ、導入された後処理用ガスにエネルギーを与えて1010個/cm 以上の高密度プラズマを形成する。高密度プラズマ中の正イオンは、電界設定手段35が設定したイオン引き出し用電界によってプラズマから引き出され、基体1の表面に垂直に多く入射する。この入射正イオンの作用によって窒化チタン薄膜が後処理され、低抵抗化等の特性改善が行われる。
【0072】
このような後処理を所定時間行った後、プラズマ形成手段33、後処理用ガス導入手段32及び電界設定手段35の動作を止めた後、処理容器3内を再度高真空排気する。そして、ゲートバルブ38を開けて不図示のロードロックチャンバーに基体1を搬出し、ロードロックチャンバーを介して基体1を大気側に取り出す。
【0073】
上記動作において、窒化チタン薄膜成膜中の反応容器2内の圧力は、10Pa以下の低圧力に維持されることが好ましい。圧力が10Paを越えると、アスペクト比5.5以上のホールに対するボトムカバレッジ率は40%以下になり、このようなアスペクト比のホールを有するデバイスの製作に不適なものとなる。
【0074】
上記後処理において、電界設定手段35が設定した電界によって入射させるイオンは薄膜の特性改善に大きく貢献する。この特性改善が生じる理由は、以下の通りである。
まず、TDAATの熱CVDによる成膜では、蒸着やスパッタリング等のような物理的手法により作製された薄膜と比較して、化学的に不安定であり、未結合の反応基や活性種等を多く含んでいる。このような膜中に存在する反応基や活性種等は、大気中の酸素を取り込んで酸化し、前述のように膜の比抵抗を増大させる原因となる。また、窒化チタンを主成分とする素薄膜の上に異種の薄膜が堆積された場合、反応基や活性種等はその異種の薄膜の材料を取り込んで反応して何らかの化合物を生じ、この結果、膜質が変化して電気特性を劣化させる原因になる。
【0075】
ここで、上記薄膜に入射するイオンは、薄膜中に不純物として存在する炭素と反応して揮発物を生成することで当該炭素を薄膜中から除去する。例えば、水素ガスが後処理用ガスとして使用されている場合、薄膜中に入射した水素イオンは、炭素と反応してCH 等の揮発物を形成して薄膜中から炭素を除去する。また、薄膜中に入射したイオンは、未結合の反応基や活性種と反応して安定な化学種を生成する。この結果、大気中の酸素を取り込んで酸化したり、上層の材料を取り込んで酸化したり、上層の材料を取り込んで膜質を劣化させたりするようなことが抑えられる。前者の作用の例としては水素イオンが挙げられるし、後者の作用の例としては窒素イオンが挙げられる。
【0076】
いずれにしても、本実施形態では、電界設定手段35によってプラズマから正イオンを垂直に引き出して基体1に入射させているので、微細なホールの底部まで正イオンを効率良く到達させることができる。このため、アスペクト比の高いホールの底部まで効率よく後処理することができる。
尚、プラズマP中で負イオンが生成される場合、電界設定手段35が設定するイオン引き出し用電界の向きを逆にすることでプラズマP中から負イオンを引き出して後処理に利用することができる。
【0077】
また、プラズマによる窒化チタン薄膜の特性改善の作用としては、プラズマ中で生成された中性活性種の作用もある。即ち、水素等の中性活性種が炭素と反応して揮発物を生成して炭素を除去したり、窒素等の中性活性種が薄膜中の未結合の反応基や活性種と反応して安定な化学種を生成したりすることで、薄膜の特性を改善する効果もある。
この場合も、本実施形態の装置では、10Paの低圧力で後処理が行われるため、上記活性種は他のガス分子に散乱されることなく微細なホールの底部まで効率良く到達することが可能である。従って、この活性種による改質作用も、アスペクト比の高いホール内に作成された窒化チタン薄膜の特性改善に大きく貢献している。
【0078】
次に、本願発明の薄膜作成装置の第二の実施形態について説明する。図3は、第二の実施形態の薄膜作成装置の概略構成を示した正面図である。
図3に示す薄膜作成装置は、図1に示す装置と同様、TDAATからなる原料ガスの気相反応を利用して基体1の表面に窒化チタン薄膜を作成する反応容器2と、作成された薄膜を所定の特性に改質する後処理を行う処理容器3とを備えている。
【0079】
この第二の実施形態の装置が第一の実施形態の装置と大きく異なる第一の点は、反応容器2と処理容器3との間に搬送チャンバー4が設けられており、反応容器2と処理容器3とは搬送チャンバー4を介して気密に連通して接続されている点である。そして、反応容器2と搬送チャンバー4の間及び搬送チャンバー4と処理容器3との間には、ゲートバルブ24,38が設けられている。尚、搬送チャンバー4には第三の排気系41が設けられ、10−5Pa程度の圧力まで排気可能に構成される。
【0080】
また、搬送チャンバー4の内部には、基体1を大気に晒すことなく反応容器2から処理容器3に搬送する搬送機構42が設けられている。搬送機構42は、反応容器2内の第一の基体ホルダー23から基体1を取り上げ、搬送チャンバー4を経由して処理容器3内の第二の基体ホルダー34に搬送するよう構成されている。
搬送機構42は、具体的には多関節ロボットであり、アームの先端に基体1を支持する支持プレートを備えている。支持プレートの基体支持面には、基体1を静電吸着する機構又は基体1の落下を防止する滑り止めが必要に応じて設けられる。尚、搬送機構42は、搬送チャンバー4を雰囲気を汚損しない工夫が成されていることが好ましい。このような搬送機構42としては、例えば(株)メックス製のUTV−2500W等が使用できる。
【0081】
本実施形態の装置では、反応容器2において第一の実施形態の場合と同様に成膜を行った後、搬送機構42が基体1を処理容器3に搬送し、第二の基体ホルダー34に配置して保持させる。その後、第一の実施形態の場合と同様に、処理容器3内で後処理が行われる。
この第二の実施形態では、成膜後の基体1が大気に晒されることなく反応容器2から処理容器3に搬送されるので、大気中の塵埃が基体1に付着して汚損が生じたり、大気中の酸素等を薄膜が取り込んでしまうことがない。このため、薄膜の品質が高く維持される。
【0082】
また、この第二の実施形態の装置が第一の実施形態の装置と大きく異なる第二の点は、電界設定手段35が基体用高周波電源353によって構成されている点である。
基体用高周波電源353は、基体1に高周波電圧を印加し高周波と前記高密度プラズマとの相互作用により基体1に負の自己バイアス電圧を生じさせるよう構成されている。例えば、基体1が液晶ディスプレイ用のガラス基板のように誘電体製である場合や、作成された窒化チタン薄膜と基体1との電気的接触が充分でない場合は、基体1に高周波電圧を印加する構成が有効である。
【0083】
基体用高周波電源353は、整合回路354を介して高周波電力を第二の基体ホルダー34に供給することで、基体1に高周波電圧を印加するようになっている。尚、基体1及び基体ホルダー34がいずれも導体である場合、高周波の伝送経路に所定のコンデンサが設けられ、コンデンサを介して基体1に高周波電圧を印加するよう構成される。
コンデンサ等のキャパシタンスを介して基体1に高周波電圧を印加すると、前述した高周波アンテナ331の場合と同じように、キャパシタンスの充放電にプラズマ中の電子と正イオンが作用し、電子と正イオンの移動度の違いによって基体1に負の自己バイアス電圧が生じる。
【0084】
図4は、負の自己バイアス電圧の説明図である。図4において、V はキャパシタンスの高周波電源側の電圧、V はキャパシタンスのプラズマ側の電圧(基体1の表面の電圧)を示している。図4に示すように、基体用高周波電源353によってキャパシタンスを介して高周波電圧を基体1に印加すると、キャパシタンスのプラズマ側では、高周波とプラズマとの相互作用により、高周波電圧V に負の直流電圧(自己バイアス電圧V )を重畳したような波形の高周波電圧V が与えられる。
この負の自己バイアス電圧V も、前記負の直流電源351によって基体1に負の直流電圧を与える場合と同様、プラズマPと基体1との間に基体1に垂直なイオン引き出し用電界を設定し、プラズマP中から正イオンを引き出して基体1に垂直に入射させるよう作用する。このため、微細なホールの底面まで効率よく正イオンが到達して後処理の効果が高く得られる。
【0085】
基体用高周波電源353としては、例えば周波数13.56MHzで出力300W程度のものが使用できる。この際、−30V程度の自己バイアス電圧V が基体1に与えられる。尚、基体用高周波電源353の周波数は、13.56MHzには特に限定されず、100kHzから1500MHzの範囲で適宜選定される。100kHzを下回る周波数であると、整合回路354の設計が難しくなり、実用上の問題が生ずる。また、周波数が1500MHzを越えると、表皮効果が高くなるため、図1に示すような基体ホルダー34を介しての基体1への高周波印加は大変難しくなる。
【0086】
また、基体1に入射するイオンのエネルギーの分布は、基体用高周波電源353が与える高周波の周波数により異なってくる。一般に、プラズマPのイオン振動数よりも基体1に印加する高周波の周波数が低い場合、基体1に印加される高周波電界の変化にイオンは追従して運動することができる。このため、イオンのエネルギーは高周波電界の波高値の大きさにより決まる。このことから、イオンのエネルギー分布は高エネルギー成分から低エネルギー成分まで広いエネルギー分布を持つ。
【0087】
一方、プラズマPのイオン振動数よりも基体1に印加する高周波の周波数が大きい場合、基体1に印加される高周波電界の変化にイオンは追従して運動することができない。このため、イオンのエネルギーは高周波電界の波高値の大きさによって決まらず、基体1に誘起される自己バイアス電圧とプラズマPの空間電位との差によって決まる。このことから、イオンのエネルギー分布は狭く、基体1へのイオン入射を高い制御性をもって制御することができる。このため、後処理の効果を高く得ることができる。
【0088】
上記以外の構成としては、前述した第一の実施形態と同様である。この第二の実施形態においても、TDAATを使用した熱CVDによってボトムカバレッジ率良く窒化チタン薄膜を作成しておき、その窒化チタン薄膜に対してホールの底面まで効率よく短時間に後処理が行える。このため、高アスペクト比のホール内に良質な拡散防止膜や密着層膜を形成するのに最適な方法及び装置となる。
【0089】
次に、本願発明の第三の実施形態の薄膜作成装置について説明する。
図5は、第三の実施形態の薄膜作成装置の概略構成を示した正面図である。この第三の実施形態は、プラズマ形成手段として、ヘリコン波プラズマを形成するヘリコン波プラズマ形成手段38が使用されている点が、前述した各実施形態と異なっている。即ち、ヘリコン波プラズマ形成手段38は、処理容器3に気密に接続された誘電体容器381と、誘電体容器381の周囲に配設されたヘリコン波アンテナ382と、ヘリコン波アンテナ382に所定の高周波電力を供給するヘリコン波高周波電源383と、ヘリコン波アンテナ382の周囲に設けられた電磁石384とから主に構成されている。
【0090】
誘電体容器381は、一端が開口で他端が半球状に形成された円筒状の形状であり、石英ガラス等で形成される。半球状の誘電体容器381が使用される場合もある。
ヘリコン波アンテナ382は、リング状のアンテナ素子を上下に所定間隔で配置して中継ロッドで繋いだ形状である。各アンテナ素子には互いに逆向きの周方向の高周波電流が流れる。ヘリコン波アンテナ382によって誘電体容器381内に誘起される高周波はホイスラー波と同じ右回りの円偏波(ヘリコン波)である。
電磁石384は、誘電体容器381の軸方向に沿って磁場を設定するためのものである。磁束密度は、誘電体容器381の中心軸付近で100ガウス程度である。
【0091】
後処理用ガス導入手段32が後処理用ガスを処理容器3内に導入すると、後処理用ガスは誘電体容器381内に拡散する。この状態でヘリコン波高周波電源383が動作して、整合回路385を介して所定の高周波電力がヘリコン波アンテナ382に供給されると、ヘリコン波アンテナ382によって誘起された高周波電界から後処理用ガスがエネルギーを与えられ、ヘリコン波プラズマが形成される。
【0092】
ヘリコン波プラズマは、低圧力で高密度プラズマを形成できる技術として最近注目されているものであるが、そのエネルギー伝達メカニズムは完全に明らかではない。一般的には、ランダウ減衰と呼ばれる現象により高周波から電子にエネルギーが与えられるものと考えられている。即ち、磁場により回転しながら移動する電子の移動速度がヘリコン波の位相速度に等しいとき、電子から見てヘリコン波は止まっているのと同様なので、電子はヘリコン波から連続的に加速されてエネルギーを吸収し、これによって高密度プラズマが形成されるのである。
例えば、ヘリコン波高周波電源383から周波数13.56MHz出3000Wの高周波電力を供給すると、1Pa程度の圧力で1012個/cm 程度の高密度プラズマが形成できる。
【0093】
上記以外の構成としては、前述した第一の実施形態と同様である。この実施形態においても、TDAATを使用した熱CVDによってボトムカバレッジ率良く窒化チタン薄膜を作成しておき、その窒化チタン薄膜に対してホールの底面まで効率よく短時間に後処理が行える。このため、高アスペクト比のホール内に良質な拡散防止膜や密着層膜を形成するのに最適な方法及び装置となる。
【0094】
【実施例】
上記第一の実施形態に属する第一の実施例として、以下のような条件で窒化チタン薄膜を作成することができる。
まず、反応容器2における窒化チタン薄膜の作成条件としては、以下の条件が採用できる。
原料ガスの種類:TDEAT
原料ガスの流量:0.05g/分
キャリアガスの種類:窒素
キャリアガスの流量:300cc/分
添加ガス:アンモニア
成膜圧力:4Pa
基体:直径6又は8インチのシリコン半導体ウェーハ
成膜温度:300℃
上記条件により、実際に成膜を行ったところ、50オングストローム/分程度の成膜速度で窒化チタン薄膜を作成することができた。また、開口の直径が0.25μmでアスペクト比5.5のホールに対するボトムカバレッジ率は90%という高い値であった。尚、作成した直後の窒化チタン薄膜の比抵抗は、約7000μΩcmであった。
【0095】
次に、処理容器3における後処理の条件として、以下の条件が採用できる。
後処理用ガス:N 、H 及びArの混合ガス
後処理用ガスの流量比:N :H :Ar=3:5:1
後処理用ガスの全流量:80cc/分
後処理時の圧力:0.27Pa
プラズマ用高周波電源:周波数13.56MHz出力3kW
電界設定手段:第二の基体ホルダーへの−30Vの電圧印加
後処理中の基体の温度:150℃
この条件により前記窒化チタン薄膜を後処理すると、50〜60オングストロームの深さにわたって比抵抗は約300μΩcmまで低下した。この際に要した時間は、3分程度であった。
【0096】
また、上記第二の実施形態に属する第二の実施例について説明すると、成膜条件は上記第一の実施例と同様で良い。また、後処理の条件としては、上記第一の実施例において、電界設定手段35として周波数13.56MHz出力300Wの基体用高周波電源353を採用し、−30V程度の自己バイアス電圧を基体1に印加するする例が挙げられる。
この第二の実施例によると、アスペクト比4のホールに対して80%のボトムカバレッジ率で比抵抗80μΩcm以下に改質された窒化チタン薄膜が作成できた。
【0097】
次に、電界設定手段35が設定するイオン引き出し用電界の強度が後処理に与える影響について説明する。図6は、電界設定手段35が設定するイオン引き出し用電界の強度が後処理に与える影響について説明した図であり、第一の実施例において第二の基体ホルダー34に印加する負の直流電圧と後処理後の窒化チタン薄膜の比抵抗との関係を示した図である。
この図6には、上記第一の実施例の条件において、第二の基体ホルダー34に印加する負の直流電圧を値を変化させながら後処理を行った実験の結果が示されている。図6から分かる通り、基体ホルダー34に印加する負の直流電圧(の絶対値)を大きくしていくと、後処理後の窒化チタン薄膜の比抵抗は指数関数的に減少していく。これは、負の直流電圧が大きくなると、プラズマPと基体1との間のイオン引き出し用電界の強度(電位傾度)が大きくなり、プラズマP中のイオンがより多く薄膜に入射した結果によるものと判断される。
【0098】
また、図7は、同様に電界設定手段35が設定する電界の強度が後処理に与える影響について説明した図であり、上記第一の実施例において第二の基体ホルダー34に印加する負の直流電圧と後処理時にスパッタエッチングされる窒化チタン薄膜の量(単位時間当たりの膜厚減少量)との関係を示した図である。図7において、「ソース電力」とは、プラズマ用高周波電源333が高周波アンテナ331に供給する電力のことである。
【0099】
上述のように、後処理の効果を高く得るためにはイオン引き出し用電界の強度を高くすることが有効であるが、あまり電界強度を高くすると、イオンによって薄膜がスパッタされて膜厚が減少する問題が顕在化する。図7は、この問題を調査した実験の結果を示したものであり、第二の基体ホルダー34に印加する負の直流電圧を大きさを変化させながら、膜厚がどの程度減少するかを測定した結果を示している。
【0100】
図7に示すように、第二の基体ホルダー34に印加する負の直流電圧が0〜−25V程度までの条件では膜厚は殆ど減少しないが、−25Vを越えると、膜厚の減少が顕在化してくる。図7からは明らかではないが、実用上考えられる最も小さな1000Wのソース電力の条件において、基体ホルダー34に印加する負の直流電圧が−100Vを越えると、膜厚の減少は2.5nm/分を越え、実用上問題が生じる。従って、基体ホルダー34に印加する負の直流電圧は−100V以下であることが好ましい。
また、基体ホルダー34に印加する負の直流電圧が−5V以下になると、比抵抗を改善する効果は、電圧を印加しない場合と殆ど変わらない。従って、基体ホルダー34に印加する負の直流電圧は−5V以上とすることが好ましい。
【0101】
また、図8は、電界設定手段35が設定するイオン引き出し用電界の強度が後処理に与える影響について説明した図であり、第二の実施例において第二の基体ホルダー34に供給する高周波電力の大きさと後処理後の窒化チタン薄膜の比抵抗との関係を示した図である。
この図8には、上記第二の実施例の条件において、第二の基体ホルダー34に供給する高周波電力の値を変化させながら後処理を行った実験の結果が示されている。図8から分かる通り、基体ホルダー34に供給する高周波電力を大きくしていくと、後処理後の窒化チタン薄膜の比抵抗は減少していく。
これは、高周波電力が大きくなると、基体1に与えられる負の自己バイアス電圧(の絶対値)が大きくなり、プラズマPと基体1との間のイオン引き出し用電界の強度(電位傾度)が大きくなってプラズマP中のイオンがより多く薄膜に入射した結果によるものと推定される。
【0102】
図9は、高周波電力と自己バイアス電圧との関係について調べた結果の図であり、高周波電力を変えながら、基体1に与えられる負の自己バイアス電圧(図4のV の大きさ)を測定した結果が示されている。図9に示す通り、第二の基体ホルダー34に供給する高周波電力を大きくしていくと、基体1に与えられる負の自己バイアス電圧は大きくなることが分かり、上記推定の正しいことが確認される。
また、図9から分かる通り、ソース電力が大きくなると、自己バイアス電圧は逆に小さくなる。これは、次のような理由である。一般に、ソース電力が高くなるとプラズマ密度が高くなる。プラズマ密度が高くなると、プラズマ中に流れる電流が大きくなるので、基体バイアス用電力(基体用高周波電源353が第二の基体ホルダー34に供給する高周波電力)を一定に維持した場合、自己バイアス電圧は小さくなる。つまり、一定の基体バイアス用電力下では、ソース電力が大きくなるにつれ、自己バイアス電圧は小さくなるのである。
【0103】
図9には明示されていないが、実用上最も多く使用される2〜3kWのソース電力の条件では、基体用高周波電源の出力を1kW以上にすると、自己バイアス電圧は−100V以上になり、前述の通り窒化チタン薄膜をスパッタエッチングしてしまう問題が顕在化する。従って、基体用高周波電源353の出力は1kW以下にすることが好ましい。
また、基体用高周波電源353の出力が50Wを下回ると、いずれのソース電力の条件においても自己バイアス電圧は−10Vを下回るようになる。従って、自己バイアス電圧がこの程度まで小さくなると、イオン引き出し用電界の強度が小さくなるので、効率的なイオンの引き出しができなくなり、窒化チタンの後処理の処理速度が低下する問題がある。このため、基体用高周波電源353の出力は50W以上であることが好ましい。
【0104】
また、上記説明から分かるように、基体1に誘起される自己バイアス電圧の大きさは、基体バイアス用電力の大きさとソース電力の大きさとの組み合わせによっても決まる。この点を以下に説明する。図10は、自己バイアス電圧の制御について説明図であり、自己バイアス電圧の絶対値を100V以下に抑える条件の一例について説明した図である。
上述した通り、一定のソース電力下で基体バイアス用電力を大きくすると自己バイアス電圧は大きくなり、一定基体バイアス用電力下でソース電力を大きくすると自己バイアス電圧は小さくなる。従って、自己バイアス電圧をある限度以下に保つには、ソース電力を小さくした場合には基体バイアス用電力を小さくし、基体バイアス用電力を大きくした場合にはソース電力を大きくする。
図10は、この関係について、水素、窒素及びアルゴンの混合ガスのプラズマ(圧力0.3Pa)を例にとって示したものである。図10中、斜線で示す領域の条件において自己バイアス電圧の絶対値は100V以下になる。従って、領域内でソース電力と基体バイアス用電力とを選定することが好ましい。
【0105】
以上説明した通り、本願発明の各実施形態又は各実施例の構成によれば、高アスペクト比のホール内に充分なボトムカバレッジ率で化学的に安定な高品質の窒化チタン薄膜を作成することが可能となる。このため、益々集積度が高まる次世代のデバイスの製造に非常に有効である。
具体的には、例えば、256メガビットDRAMの拡散防止膜として要求されている開口直径0.25μmアスペクト比5.5のコンタクトホールに、90%以上のボトムカバレッジ率で、且つ、産業上有用である5nm/分程度の成膜速度で窒化チタン薄膜が作成できる上、その比抵抗を200μΩcm程度まで小さくする改質が当該コンタクトホールの底部まで確実に行える。
【0106】
上記各実施形態及び各実施例では、後処理用ガスとして窒素と水素とアルゴンの混合ガスが使用されたが、窒素とアルゴンの混合ガスでもよい。また、アンモニア等のガスを用いても、窒化チタン薄膜の後処理ができる可能性がある。
また、前述した通り、アルゴンは気体放電の放電開始電圧を低くするために導入されている。即ち、アルゴンのようなイオン化エネルギーの小さいガスを混合すると、比較的低い電圧でも放電を開始できるようになる。従って、後処理の効果をもたらすガスに比べてイオン化エネルギーが低く、他のガス分子との反応等により窒化チタン薄膜を汚損する恐れのないガスであれば、アルゴン以外の他のガスを用いてもよい。
【0107】
また、10Pa以下の圧力で1010個/cm 以上の低圧高密度プラズマを形成するプラズマ形成手段の構成としては、前述したシングルループタイプの高周波アンテナを使用した第一第二の実施形態の構成の他、ダブルループタイプやコイル状の高周波アンテナ、さらに渦巻き状の高周波アンテナ等を使用することができる。また、ヘリコン波プラズマを形成する第三の実施形態の他、電子サイクロトロン共鳴(ECR)方式のプラズマ形成手段によっても、10Pa以下の圧力で1010個/cm 以上の低圧高密度プラズマを形成することができる。
【0108】
さらに、原料ガスの種類としては、TDEATの他、テトラキスジメチルアミノチタン(TDMAT)等の他のTDAATを使用することができる。但し、TDEATやTDMATは、他のTDAATに比べて蒸気圧が高く、原料供給の際に扱い易いというメリットがある。
【0109】
尚、薄膜作成装置の構成としては、反応容器2と処理容器3とを一つにする構成も可能である。即ち、例えば、第一の実施形態において、処理容器3に備えられた後処理用ガス導入手段32及びプラズマ形成手段33と同様のものを反応容器2に備えるようにすれば、反応容器2内で窒化チタン薄膜の作成と後処理とを連続してできるようになる。このような構成は、生産性の点では劣るが、真空容器が一つで足りるので装置コストの点で有利であり、また占有スペースも小さくできるメリットがある。
【0110】
また、本願発明において、成膜対象である基体1には、前述した半導体ウェーハや液晶基板の他、情報記録ディスク用の基板や各種センサーヘッド等が該当する。
【0111】
【発明の効果】
以上説明した通り、本願の請求項1から17記載の薄膜作成方法又は請求項18から34記載の薄膜作成装置によれば、高アスペクト比のホール内に充分なボトムカバレッジ率で化学的に安定な高品質の窒化チタン薄膜を作成することが可能となる。このため、益々集積度が高まる次世代のデバイスの製造に非常に有効である。
また、請求項4もしくは5の薄膜作成方法又は請求項21もしくは22の薄膜作成装置によれば、上記効果に加え、プラズマを形成する気体放電を容易に始動させることができるので、プラズマ形成手段の構成が簡略化できるというメリットがある。
また、請求項6の薄膜作成方法又は請求項23の薄膜作成装置によれば、上記効果に加え、高周波誘導結合方式によってエネルギーがプラズマに与えられるので、10Pa以下で1010個/cm 以上の低圧高密度プラズマを容易に得ることができる。
また、請求項7の薄膜作成方法又は請求項24の薄膜作成装置によれば、上記効果に加え、プラズマの拡散が防止されるので、よりプラズマ密度が高くなる。このため、後処理をより効率的に行うことでき、処理時間を短くできる等のメリットがある。
また、請求項8の薄膜作成方法又は請求項25の薄膜作成装置によれば、上記効果に加え、ホールの深さ方向に沿った電界によってイオンが加速されるので、よりアスペクト比の高いホールの底面に対してもより効率的に後処理をすることが可能になる。このため、よりアスペクト比の高いホール内に良質な窒化チタン薄膜を作成するのに適したものとなる。
また、請求項9の薄膜作成方法によれば、上記効果に加え、アスペクト比5.5以上のホールに対して90%以上で窒化チタン薄膜を作成することができ、このようなホールを有するデバイスの製作に極めて有効となる。
また、請求項10の薄膜作成方法又は請求項27の薄膜作成装置によれば、上記効果に加え、スパッタエッチングによる膜厚減少を抑制しながら効果的に改質ができるので、実用上より好ましい結果が得られる。
また、請求項12の薄膜作成方法又は請求項29の薄膜作成装置によれば、上記効果に加え、イオン引き出し用電界を設定するための負の自己バイアス電圧を基体に充分与えることが可能なより実用的な構成になる。
また、請求項13の薄膜作成方法又は請求項30の薄膜作成装置によれば、上記効果に加え、負の自己バイアス電圧を与える高周波の周波数がプラズマのイオン振動数より高いので、イオンのエネルギー分布が広くなって高エネルギー成分のイオンが基体に入射する問題が回避される。このため、過剰なスパッタエッチングによる窒化チタン薄膜の損傷が防止され、この点で好適な構成となる。
また、請求項14の薄膜作成方法又は請求項31の薄膜作成装置によれば、上記効果に加え、充分な強度のイオン引き出し用電界によって効率よく後処理が行えるとともに過剰なスパッタエッチングによる窒化チタン薄膜の損傷が防止され、この点で好適な構成となる。
また、請求項15の薄膜作成方法又は請求項32の薄膜作成装置によれば、自己バイアス電圧が−100V以下に抑えられるようソース電力と基体バイアス用電力とが選定されるので、この点からも、過剰なスパッタエッチングによる窒化チタン薄膜の損傷が防止されるという効果が得られる。
また、請求項16の薄膜作成方法又は請求項33の薄膜作成装置によれば、上記効果に加え、窒化チタン薄膜の作成と後処理とが真空中で連続して行われるので、窒化チタン薄膜が大気に晒されることによる酸素の取り込みや塵埃の付着等の問題が回避される。この点でさらに良質な窒化チタン薄膜の作成が可能となる。
また、請求項17の薄膜作成方法又は請求項34の薄膜作成装置によれば、上記効果に加え、原料の蒸気圧が高いので、原料供給の際に原料を取扱い易く、原料ガスを供給する手段の構成が容易となるという効果が得られる。
【図面の簡単な説明】
【図1】 第一の実施形態の薄膜作成装置の概略構成を示した正面図である。
【図2】 図1に示す装置におけるアンテナ電位調整用磁石338の効果について説明した図であり、アンテナ電位調整用磁石338のコイルに流れる電流と高周波アンテナ331に生じた自己バイアス電圧との関係を調べた実験の結果を示した図である。
【図3】 第二の実施形態の薄膜作成装置の概略構成を示した正面図である。
【図4】 負の自己バイアス電圧の説明図である。
【図5】 第三の実施形態の薄膜作成装置の要部の概略構成を示した正面図である。
【図6】 電界設定手段35が設定するイオン引き出し用電界の強度が後処理に与える影響について説明した図であり、第一の実施例において基体ホルダー34に印加する負の直流電圧と後処理後の窒化チタン薄膜の比抵抗との関係を示した図である。
【図7】 電界設定手段35が設定するイオン引き出し用電界電界の強度が後処理に与える影響について説明した図であり、第一の実施例において基体ホルダー34に印加する負の直流電圧と後処理時にスパッタされる窒化チタン薄膜の量(単位時間当たりの膜厚減少量)との関係を示した図である。
【図8】 電界設定手段35が設定するイオン引き出し用電界の強度が後処理に与える影響について説明した図であり、第二の実施例において基体ホルダー34に供給する高周波電力の大きさと後処理後の窒化チタン薄膜の比抵抗との関係を示した図である。
【図9】 高周波電力と自己バイアス電圧との関係について調べた結果の図である。
【図10】 自己バイアス電圧の制御について説明図であり、自己バイアス電圧の絶対値を100V以下に抑える条件の一例について説明した図である。
【図11】 ボトムカバレッジ率の説明図である。
【符号の説明】
1 基体
10 ホール
12 底部
2 反応容器
21 第一の排気系
22 原料ガス導入手段
24 ゲートバルブ
25 器壁ヒータ
23 第一の基体ホルダー
26 添加ガス導入系
3 処理容器
31 第二の排気系
32 後処理用ガス導入手段
321 窒素ガス導入系
322 水素ガス導入系
323 アルゴンガス導入系
33 プラズマ形成手段
331 高周波アンテナ
333 プラズマ用高周波電源
34 第二の基体ホルダー
35 電界設定手段
351 負の直流電源
353 基体用高周波電源
4 搬送チャンバー
42 搬送機構
P プラズマ

Claims (34)

  1. 気化したテトラキスジアルキルアミノチタンからなる原料ガスを用いて化学蒸着法により基体の表面に窒化チタンを主成分とする薄膜を作成する第一の工程と、作成された薄膜をプラズマの作用を利用して改質する後処理を行う第二の工程とを含む薄膜作成方法であって、前記第二の工程では、所定の後処理用ガスを使用して10Pa以下の圧力で電子密度1010個/cm 以上の低圧高密度プラズマを形成するとともに、当該低圧高密度プラズマと基体との間に電界を設定し、この電界によって当該低圧高密度プラズマからイオンを引き出して基体に入射させて前記改質を行う方法であり、前記電界は、基体に−5V〜−100Vの範囲の電圧を印加することで設定される方法であることを特徴とする薄膜作成方法。
  2. 前記後処理用ガスは、前記第一の工程で作成された薄膜中に存在する炭素を除去するか、もしくは、当該薄膜中に存在する未結合の反応基又は活性種と反応して安定な化学種を生成するイオンを前記低圧高密度プラズマ中で生成するものであることを特徴とする請求項1記載の薄膜作成方法。
  3. 前記後処理用ガスは、窒素又は窒素と水素とを含むことを特徴する請求項2記載の薄膜作成方法。
  4. 前記低圧高密度プラズマは、気体放電によって形成されるものであり、前記後処理用ガスには、当該気体放電の放電開始電圧を下げる補助ガスが混合されていることを特徴とする請求項1、2又は3記載の薄膜作成方法。
  5. 前記補助ガスは、アルゴンであることを特徴とする請求項4記載の薄膜作成方法。
  6. 前記低圧高密度プラズマは、前記後処理用ガスに対して高周波エネルギーを与えて形成され、当該高周波エネルギーは、誘導結合方式によって後処理用ガスに与えられることを特徴とする請求項1、2、3、4又は5記載の薄膜作成方法。
  7. 前記高周波エネルギーは、一端がプラズマ用高周波電源に接続され他端が所定のキャパシタンスを介して接地されているとともに前記処理容器内に配置されている高周波アンテナを介して前記後処理用ガスに与えられることを特徴とする請求項6記載の薄膜作成方法。
  8. 前記基体の表面には微細なホールが形成されているとともに前記窒化チタンを主成分とする薄膜は第一の工程においてこのホールの内面を被覆するように作成され、前記電界は、このホールの深さ方向に沿った向きに設定されていることを特徴とする請求項1から7のいずれかに記載の薄膜作成方法。
  9. 前記基体の表面に形成されたホールはアスペクト比5.5以上の微細なホールであり、前記第一の工程では、成膜時の圧力を10Pa以下にして成膜を行うことを特徴する請求項8記載の薄膜作成方法。
  10. 前記電界は、−5V〜−100Vの範囲内の負の直流電圧を基体に与えることにより設定されることを特徴とする請求項1から9のいずれかに記載の薄膜作成方法。
  11. 前記電界は、基体に高周波電力を印加することで高周波とプラズマとの相互作用により生じる負の自己バイアス電圧によって設定されることを特徴とする請求項1からのいずれかに記載の薄膜作成方法。
  12. 前記高周波電力の周波数は、100kHz〜1500MHzの範囲内であることを特徴とする請求項11記載の薄膜作成方法。
  13. 前記高周波電力の周波数は、前記低圧高密度プラズマのイオン振動数よりも高い周波数とすることを特徴とする請求項11又は12記載の薄膜作成方法。
  14. 前記高周波電力を、50W〜1000Wとすることを特徴とした請求項11、12又は13記載の薄膜作成方法。
  15. 前記低圧高密度プラズマは、前記後処理用ガスに対して高周波エネルギーを与えて形成されるものであり、この高周波エネルギーの大きさと前記高周波電力の大きさとは、前記自己バイアス電圧が−5V〜−100Vとなるように選定されることを特徴とする請求項11、12、13又は14記載の薄膜作成方法。
  16. 基体を大気に晒すことなく真空雰囲気に配置しながら前記第一の工程と前記第二の工程を行うことを特徴とする請求項1から15のいずれかに記載の薄膜作成方法。
  17. 前記テトラキスジアルキルアミノチタンは、テトラキスジエチルアミノチタン又はテトラキスジメチルアミノチタンであることを特徴とする請求項1から16のいずれかに記載の薄膜作成方法。
  18. 気化したテトラキスジアルキルアミノチタンからなる原料ガスを用いて化学蒸着法により基体の表面に窒化チタンを主成分とする薄膜を作成する反応容器と、作成された薄膜を改質する後処理を行う処理容器とを備えた薄膜作成装置であって、
    処理容器は、内部に後処理用ガスを導入する後処理用ガス導入手段と、導入された後処理用ガスにエネルギーを与えて10Pa以下の圧力で電子密度が1010個/cm 以上の低圧高密度プラズマを形成して当該低圧高密度プラズマ中のイオンの作用によって前記後処理を行うプラズマ形成手段と、形成した低圧高密度プラズマと基体との間に電界を設定して前記低圧高密度プラズマ中のイオンを基体に入射させる電界設定手段とを有し、
    電界設定手段は、基体に−5V〜−100Vの範囲の電圧を印加することで前記電界を設定するものであることを特徴とする薄膜作成装置。
  19. 前記後処理用ガス導入手段は、前記第一の工程で作成された薄膜中に存在する炭素を除去するか、もしくは、当該薄膜中に存在する未結合の反応基又は活性種と反応して安定な化学種を生成するイオンを前記低圧高密度プラズマ中で生成する後処理用ガスを導入するものであることを特徴とする請求項18記載の薄膜作成装置。
  20. 前記後処理用ガスは、窒素又は窒素と水素とを含むことを特徴とする請求項19記載の薄膜作成装置。
  21. 前記プラズマ形成手段は、気体放電によって前記低圧高密度プラズマを形成するものであり、前記後処理用ガス導入手段は、当該気体放電の放電開始電圧を下げる補助ガスを後処理用ガスに混合して導入するものであることを特徴とする請求項18、19又は20記載の薄膜作成装置。
  22. 前記補助ガスは、アルゴンであることを特徴とする請求項21記載の薄膜作成装置。
  23. 前記プラズマ形成手段は、前記後処理用ガスに対して誘導結合方式によって高周波エネルギーを与えてプラズマを形成するものであることを特徴とする請求項18から22のいずれかに記載の薄膜作成装置。
  24. 前記プラズマ形成手段は、一端がプラズマ用高周波電源に接続され他端が所定のキャパシタンスを介して接地されているとともに前記処理容器内に配置されている高周波アンテナを介して前記後処理用ガスに高周波エネルギーを与えるものであることを特徴とする請求項23に記載の薄膜作成装置。
  25. 前記反応容器は、基体の表面に形成された微細なホールの内面を被覆するよう前記窒化チタンを主成分とする薄膜を作成するものであり、前記電界設定手段は、当該薄膜で被覆された微細なホールの深さ方向に沿った方向に前記電界を設定するものであることを特徴とする請求項18から24のいずれかに記載の薄膜作成装置。
  26. 前記電界設定手段は、基体を保持する基体ホルダーに負の直流電圧を印加する負の直流電源によって構成されていることを特徴とする請求項18から25のいずれかに記載の薄膜作成装置。
  27. 前記負の直流電源は、基体を保持する基体ホルダーに−5Vから−100Vの電圧を印加するものであることを特徴とする請求項26に記載の薄膜作成装置。
  28. 前記電界設定手段は、基体に高周波電圧を印加し高周波と前記低圧高密度プラズマとの相互作用により基体に負の自己バイアス電圧を生じさせる基体用高周波電源からなることを特徴とする請求項18から25のいずれかに記載の薄膜作成装置。
  29. 前記基体用高周波電源は、基体を保持する基体ホルダーに、100kHz〜1500MHzの周波数の高周波電圧を印加するものであることを特徴とする請求項第28記載の薄膜作成装置。
  30. 前記基体用高周波電源は、基体を保持する基体ホルダーに、前記低圧高密度プラズマのイオン振動数よりも高い周波数の高周波電圧を印加するものであることを特徴とする請求項28又は29記載の薄膜作成装置。
  31. 前記基体用高周波電源は、基体を保持する基体ホルダーに、50W〜1000Wの高周波電力を供給するものであることを特徴とする請求項28、29又30のいずれかに記載の薄膜作成装置。
  32. 前記プラズマ形成手段は、前記後処理用ガスに対して高周波エネルギーを与えてプラズマを形成するものであり、この高周波エネルギーの大きさと前記高周波電力の大きさとは、前記自己バイアス電圧が−5V〜−100Vとなるように選定されている請求項28、29、30又は31のいずれかに記載の薄膜作成装置。
  33. 前記反応容器と前記処理容器とは気密に連通して接続されており、前記基体を大気に晒すことなく前記反応容器から前記処理容器に搬送する搬送機構を備えていることを特徴とする請求項18から32のいずれかに記載の薄膜処理装置。
  34. 前記テトラキスジアルキルアミノチタンは、テトラキスジエチルアミノチタン又はテトラキスジメチルアミノチタンであることを特徴とする請求項18から33のいずれかに記載の薄膜作成装置。
JP24619897A 1997-08-27 1997-08-27 薄膜作成方法及び薄膜作成装置 Expired - Fee Related JP3986631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24619897A JP3986631B2 (ja) 1997-08-27 1997-08-27 薄膜作成方法及び薄膜作成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24619897A JP3986631B2 (ja) 1997-08-27 1997-08-27 薄膜作成方法及び薄膜作成装置

Publications (2)

Publication Number Publication Date
JPH1161422A JPH1161422A (ja) 1999-03-05
JP3986631B2 true JP3986631B2 (ja) 2007-10-03

Family

ID=17144976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24619897A Expired - Fee Related JP3986631B2 (ja) 1997-08-27 1997-08-27 薄膜作成方法及び薄膜作成装置

Country Status (1)

Country Link
JP (1) JP3986631B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686683B2 (en) * 2020-04-30 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for detecting contamination of thin-films

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134436A (ja) * 2000-10-16 2002-05-10 Applied Materials Inc プラズマ処理装置及び方法並びに基板生産物
KR100792152B1 (ko) 2006-07-11 2008-01-04 한국원자력연구원 플라즈마 방전을 이용한 전극촉매용 백금계 금속 박막 제조장치 및 이를 이용한 전극촉매용 백금계 금속 박막의 제조방법
DE102021103455A1 (de) * 2020-04-30 2021-11-04 Taiwan Semiconductor Manufacturing Co., Ltd. System und verfahren zur erkennung der verunreinigung vondünnschichten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686683B2 (en) * 2020-04-30 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for detecting contamination of thin-films

Also Published As

Publication number Publication date
JPH1161422A (ja) 1999-03-05

Similar Documents

Publication Publication Date Title
KR100445018B1 (ko) 고종횡비 실리콘 반도체 디바이스 콘텍트들을 금속화하는 방법 및 장치
US5989999A (en) Construction of a tantalum nitride film on a semiconductor wafer
US7588667B2 (en) Depositing rhuthenium films using ionized physical vapor deposition (IPVD)
Shwartz Handbook of semiconductor interconnection technology
US6699530B2 (en) Method for constructing a film on a semiconductor wafer
EP0179665B1 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
KR20230044167A (ko) Mram 스택을 패터닝하기 위한 건식 플라즈마 에칭 방법
US6444036B2 (en) Construction of a film on a semiconductor wafer
KR100232040B1 (ko) 플라즈마 cvd장치 및 방법과 드라이에칭장치 및 방법
US5508066A (en) Method for forming a thin film
EP1100119A1 (en) Plasma processing method
JPH0629248A (ja) プラズマエッチ方法及び装置
JPH10229057A (ja) 誘導結合プラズマによるチャンバ内スパッタリングにおいて側壁カバレージを改善する方法及び装置
US6155198A (en) Apparatus for constructing an oxidized film on a semiconductor wafer
KR101846049B1 (ko) Cu 배선의 제조 방법 및 기억 매체
TW201703074A (zh) 蝕刻磁性層之方法
JPH09312297A (ja) 薄膜のプラズマアニール
US6451179B1 (en) Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
JP3986631B2 (ja) 薄膜作成方法及び薄膜作成装置
JP2023516856A (ja) ドープされたald窒化タンタルにおける不純物の除去
WO2009117494A2 (en) Methods for forming a titanium nitride layer
JPH1180965A (ja) 薄膜作成方法及び薄膜作成装置並びにプラズマ処理装置
KR980011764A (ko) 전면 고밀도 플라즈마 증착 제공 방법 및 그 장치
US20020168847A1 (en) Methods of forming a nitridated surface on a metallic layer and products produced thereby
Takenaka et al. Control of deposition profile of Cu for large-scale integration (LSI) interconnects by plasma chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees