JP3985660B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3985660B2
JP3985660B2 JP2002325371A JP2002325371A JP3985660B2 JP 3985660 B2 JP3985660 B2 JP 3985660B2 JP 2002325371 A JP2002325371 A JP 2002325371A JP 2002325371 A JP2002325371 A JP 2002325371A JP 3985660 B2 JP3985660 B2 JP 3985660B2
Authority
JP
Japan
Prior art keywords
trench
oxide film
film
resist
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325371A
Other languages
Japanese (ja)
Other versions
JP2004158790A (en
Inventor
啓明 氷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002325371A priority Critical patent/JP3985660B2/en
Publication of JP2004158790A publication Critical patent/JP2004158790A/en
Application granted granted Critical
Publication of JP3985660B2 publication Critical patent/JP3985660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板にトレンチを形成して素子間分離を行なう半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体基板としてSOI(Silicon On Insulator)基板を用い、素子間を埋め込み酸化膜に到達するトレンチで分離するトレンチ素子分離構造は、分離幅をLOCOS構造などと比較してかなり狭めることができる。このことから、デバイスの高密度化には不可欠の技術とされ、近年、自動車用等のIC、LSIに広く採用されている。
【0003】
このトレンチ分離に求められる性能としては、分離耐圧、トレンチ上部の平坦度、耐久性等がある。中でも、高集積化の観点からは、形成したトレンチの上部に微細配線を形成することが必要であり、このためトレンチ上部の平坦度が重要となる。また、工程コストの点から、トレンチ形成工程は可能な限り簡略化することが求められる。このような性能とコストを両立させるために、トレンチの形成方法には種々の方法が提案されている。
【0004】
(従来技術1)
その一つとして、特許文献1に開示されている方法がある。その製造工程の概要を図4に示す。まず出発材料として支持基板(Si)1、埋め込み酸化膜(SiO2)2、SOI層(Si)3からなるSOI基板を用意する。そしてSOI層3表面にパッド酸化膜4及びシリコン窒化膜(Si34膜)5を形成する。その後、シリコン酸化膜(SiO2膜)6をCVD法等により形成する(図4(a)参照)。次にレジストをマスクとして、SiO2膜6、Si34膜5、パッド酸化膜4をSOI層4に達するまでエッチングして開口部を形成し、続いてSiO2膜6をマスクにSOI層3を選択的にエッチングし、埋め込み酸化膜3にまで達するトレンチ7を形成する(図4(b)参照)。
【0005】
そして、形成したトレンチ7の内壁面にC.D.E.処理を施して、トレンチエッチング時のダメージを除去した後、トレンチ7の内壁面にウェット熱酸化により側壁酸化膜8を形成する(図4(c)参照)。続いて、トレンチ7内を埋設するように多結晶シリコン9を堆積し、ドライエッチング処理によりSiO2膜6上に堆積した余分な多結晶シリコン9をエッチバックし、SiO2膜6を露出させる(図4(d)参照)。この後、Si34膜5をストッパとしてCMPにより、SiO2膜6とトレンチ7内の多結晶シリコン9を同時に研磨除去して平坦化を行なう(図4(e)参照)。次いで多結晶シリコン9の上部を熱酸化してキャップ酸化膜10を形成し、最後にSi34膜5を除去してトレンチ構造を完成させる(図4(f)参照)。
【0006】
この方法は、トレンチ7内に埋設する多結晶シリコン9の高さ制御を容易にして平坦度を高める点に特徴がある。しかしながら、この方法によるとSiO2膜6と多結晶シリコン9を同時に研磨することが必要であり、コスト増加を招きやすい。さらに、この場合、Si34膜5は研磨のストッパとして機能するように選択比に応じた膜厚に設計されているが、Si34膜5の膜厚及び研磨のウェハ面内バラツキから、Si34膜5は研磨時に削れることが前提である。このためSi34膜5をLOCOS用の酸化マスクとして用いることは困難であり、LOCOS形成時には、改めてSi34膜を形成することが必要で、工程簡略化とコスト削減の制約となっていた。
【0007】
(従来技術2)
上記従来技術1の問題点を解決する方法として、トレンチ形成直後に希フッ酸等の薬液を使って、SiO2系のマスクを除去する方法が考えられる。その方法による製造工程の概要を図5に示す。準備したSOI基板の表面にパッド酸化膜4、Si34膜5、SiO2膜6を形成(図5(a)参照)後、埋め込み酸化膜2に達するトレンチ7を形成(図5(b)参照)する。ここまでの工程は、図4(a)、(b)と同様である。
【0008】
この後、希フッ酸等の薬液を使用してトレンチエッチングのマスクに使用したSiO2膜6を除去する(図5(c)参照)。次に、トレンチ7内壁面をウェット熱酸化して側壁酸化膜8を形成し、多結晶シリコン9等の埋設材料を充填する。その後、Si34膜5上の余分の多結晶シリコンをエッチバックで除去した後、充填した多結晶シリコン9の上部を熱酸化してキャップ酸化膜10を成長させ、トレンチ素子分離構造を完成させる(図5(d)参照)。
【0009】
しかし、上記した工程では、トレンチ7内に埋設された多結晶シリコン9の下端部にボイド(す)11が発生する。これはトレンチ7を形成した後、希フッ酸等の薬液を使用してマスクに使用したSiO2膜6を除去する際に、埋め込み酸化膜2もエッチングされる結果、埋め込み酸化膜2に図5(c)に示すような“えぐれ"12が生ずるためである。“えぐれ"12が発生すると、その後に側壁酸化膜8を形成し、多結晶シリコン9等の埋設材を充填した際に、図5(d)に示すようなボイド11が発生する。このようなボイドが存在すると、素子の耐圧にバラツキ等が発生する原因となるため問題であった。
【0010】
【特許文献1】
特開2001−93972
【0011】
【発明が解決しようとする課題】
本発明は、かかる従来技術の問題点を解決するためになされたもので、その目的は、簡略化された工程と低コストでもって、ボイドを発生させることもなく、トレンチ素子分離構造を製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するための請求項1に記載の発明は、SOI基板のSOI層表面にパッド酸化膜、シリコン窒化膜、シリコン酸化膜の酸化膜をこの順で形成後、レジストをマスクとしてSOI層に達する開口部を形成し、次に前記シリコン酸化膜をマスクとして前記開口部に前記SOI基板の埋め込み酸化膜に達するトレンチを形成し、その後該トレンチ内壁面に絶縁用の側壁酸化膜を形成し、次いで多結晶シリコンの埋設材料を充填することによってトレンチ素子分離構造を形成する半導体装置の製造方法において、前記トレンチ形成後、前記側壁酸化膜の形成に至る間に少なくとも次の工程を行なうことを特徴とする半導体装置の製造方法である。
(1).前記トレンチの形成後に、前記SOI基板表面のシリコン酸化膜の表面及び前記形成されたトレンチの底部が覆われるようにポジ型レジストを塗布する工程。
(2).該工程により前記シリコン酸化膜上に塗布されたレジストのみを露光、現像して除去する工程。
(3).該除去工程により露出した前記シリコン酸化膜をエッチングして除去する工程。
(4).該工程後に前記トレンチ底部に残ったレジストを除去する工程。
【0013】
このような工程を行なえば、SOI基板表面のシリコン酸化膜をエッチングして除去する際、トレンチ底部はレジストにより覆われており、埋め込み酸化膜はエッチング液に曝されない。従って、埋め込み酸化膜に“えぐれ"が生ぜず、多結晶シリコンの埋設材を充填した際に、トレンチ下部にボイドが発生しなくなる。さらに、この工程によれば、SiO2膜と多結晶シリコンを同時に研磨する必要がないため工程簡略化とコスト削減に効果がある。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態にかかる半導体装置の製造方法について図1〜図3を参照して説明する。なお、図中、図4、図5と同一又は相当部分には同一符号が付してある。
【0015】
本実施形態においても、出発材料であるSOI基板の表面に酸化膜を形成し、トレンチを形成するまでの工程は、従来の技術の図4(a)(b)、図5(a)(b)と同様である。即ち、まずSOI基板を用意する。SOI基板は、支持基板(Si)1、埋め込み酸化膜(SiO2)2、SOI層(Si)3からなる構成を有する(図3(a)参照)。このような構造は、ウェハの貼合わせによる方法、あるいは酸素イオンをシリコン基板に打ち込んで内部に絶縁層を形成するSIMOX(Separation by Implanted Oxygen)と呼ばれる方法で形成される。
【0016】
次に、準備したSOI基板のSOI層3表面にトレンチエッチングのマスクとなる絶縁膜を堆積する(図3(b)参照)。図の例では、約43nmのパッド酸化膜4を熱酸化にて形成後、約160nmのシリコン窒化膜(Si34膜)5を堆積し、さらにその上に例えば常圧CVD法によりシリコン酸化膜(ノンドープSiO2膜)6を約1800nm形成する。
【0017】
次いで、表面にレジスト13を塗布し、トレンチ形成用フォトマスクを用いて露光することで、所定の部分のレジスト13を除去して窓を開口する。残ったレジスト13をマスクとして、SiO2膜6、Si34膜5、パッド酸化膜4をSOI層3に達するまでドライエッチングして開口部14を形成する(図1(c)参照)。この後、レジスト13を剥離する。続いて、SiO2膜6をマスクとして露出したSOI層3をエッチングするトレンチエッチングを行ない、埋め込み酸化膜2にまで達するトレンチ7を形成する(図1(d)参照)。
【0018】
前述の従来技術2で説明した工程では、この後、マスクとして使用したシリコン酸化膜6を除去する工程を実施したが、本実施形態の場合には、図2(a)〜(d)に示すフローに従って処理し、問題となったボイト(す)の発生を防止する。すなわち、まず図2(a)に示すようにトレンチ7を形成した基板の表面にポジ型のレジスト15を塗布する。このとき使用するレジスト15の粘度は、レジストの持つ流動性で、トレンチ7の底部にレジストが行き渡ることが可能な粘度とする。従って、トレンチ7の底部にもレジスト16が溜まる。
【0019】
レジスト15、16が塗布されたならば、次に基板表面全面を露光する。このとき基板表面のレジスト15は十分に露光されるのに対して、トレンチ7の底部に溜まったレジスト16には、十分な光が行き渡らず、露光されない状態で残るようにする。レジスト15、16としてポジ型レジストを使用しているので、基板表面のレジスト15は感光してその後の現像により取り除かれる。これに対し、トレンチ7の底部に溜まったレジスト16は感光されていないので、現像しても取り除かれず残存することになる(図2(b)参照)。
【0020】
このように基板表面の露光に際に、トレンチ7底部のレジスト16が露光されないようにするには、光を基板表面に対して傾けて入射させると、トレンチ7底部に直接到達する光の成分をカットすることができて効果的である。この角度αとしては、例えば、幅2μm、深さ16μmのトレンチの場合、
α≧tan-1(2/16)=7°
すなわち、7°オフ以上傾けるのが効果的である。
【0021】
このようにして露光が完了したならば現像し、エッチングしてトレンチエッチングのマスクとして使用したSiO2膜6を除去する。このとき、トレンチ7底部の埋め込み酸化膜2は、レジスト16により保護されているのでエッチングを免れる(図2(c)参照)。エッチング後、キャロス等の薬液により、トレンチ7底部に残っているレジスト16を溶解除去する(図2(d)参照)。この結果、埋め込み酸化膜2に“えぐれ"は生ぜず、きれいな形状のトレンチ7が出来上がる。
【0022】
次に、トレンチ7内壁面をウェット熱酸化して絶縁分離用の側壁酸化膜8を形成する(図3(a)参照)。このとき、図1(a)で形成したSi34膜5が酸化のマスクとなって、基板表面には酸化膜が形成されない。次に埋設用の多結晶シリコン9をLP−CVD法等の被覆性の良い方法で堆積し(図3(b)参照)、エッチバック等の方法でトレンチ7内部を除き基板表面の不要な多結晶シリコン9を除去する(図3(c)参照)。最後に、再びSi34膜5をマスクとして酸化することにより、トレンチ7の上部にキャップ酸化膜10を形成し(図3(d)参照)、必要に応じてSi34膜5を取り除いてトレンチ素子分離構造を完成させる。
【0023】
このような本実施形態の工程によれば、基板表面のSiO2膜6をエッチングして除去する際、トレンチ7底部はレジスト16により覆われており、埋め込み酸化膜2はエッチング液に曝されない。従って、埋め込み酸化膜2に“えぐれ"が生ぜず、多結晶シリコン9等の埋設材を充填した際に、トレンチ7下部にボイドが発生することが防止される。さらに、この工程によれば、SiO2膜6と多結晶シリコン9とを同時に研磨する必要がないため工程簡略化とコスト削減に効果がある。また、キャプ酸化後に残ったSi34膜5は、LOCOS形成時の酸化マスクとして利用することも可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に従いトレンチ7を形成するまでの工程図である。
【図2】本発明の一実施形態に従いトレンチ形成後、基板表面のSiO2酸化膜6を除去するまでの工程図である。
【図3】本発明の一実施形態に従い側壁酸化膜8の形成からトレンチ素子分離構造を完成させるまでの工程図である。
【図4】従来技術1によるトレンチ素子分離構造完成までの工程図である。
【図5】従来技術2によるトレンチ素子分離構造完成までの工程図である。
【符号の説明】
図面中、1はSOI基板の支持基板、2はSOI基板の埋め込み酸化膜、3はSOI基板のSOI層、4はパッド酸化膜、5はシリコン窒化膜(Si34膜)、6はシリコン酸化膜(SiO2膜)、7はトレンチ、8は側壁酸化膜、9は多結晶シリコン、10はキャップ酸化膜、11はボイド(す)、12は“えぐれ"、13、15、16はレジスト、14は開口部を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device in which a trench is formed in a semiconductor substrate and element isolation is performed.
[0002]
[Prior art]
A trench element isolation structure in which an SOI (Silicon On Insulator) substrate is used as a semiconductor substrate and the elements are separated by a trench reaching a buried oxide film can have a considerably narrower isolation width than a LOCOS structure or the like. For this reason, it is considered an indispensable technique for increasing the density of devices, and in recent years, it has been widely used in ICs and LSIs for automobiles and the like.
[0003]
The performance required for this trench isolation includes isolation breakdown voltage, flatness of the upper portion of the trench, durability, and the like. Among these, from the viewpoint of high integration, it is necessary to form fine wiring on the upper part of the formed trench, and for this reason, the flatness of the upper part of the trench is important. In addition, from the viewpoint of process cost, it is required to simplify the trench formation process as much as possible. In order to achieve both performance and cost, various methods have been proposed for forming trenches.
[0004]
(Prior art 1)
As one of them, there is a method disclosed in Patent Document 1. An outline of the manufacturing process is shown in FIG. First, an SOI substrate including a support substrate (Si) 1, a buried oxide film (SiO 2 ) 2, and an SOI layer (Si) 3 is prepared as a starting material. Then, a pad oxide film 4 and a silicon nitride film (Si 3 N 4 film) 5 are formed on the surface of the SOI layer 3. Thereafter, a silicon oxide film (SiO 2 film) 6 is formed by a CVD method or the like (see FIG. 4A). Next, using the resist as a mask, the SiO 2 film 6, Si 3 N 4 film 5 and pad oxide film 4 are etched until they reach the SOI layer 4 to form openings, and then the SOI layer is formed using the SiO 2 film 6 as a mask. 3 is selectively etched to form a trench 7 reaching the buried oxide film 3 (see FIG. 4B).
[0005]
C. is formed on the inner wall surface of the formed trench 7. D. E. After performing the treatment to remove the damage during the trench etching, the sidewall oxide film 8 is formed on the inner wall surface of the trench 7 by wet thermal oxidation (see FIG. 4C). Subsequently, polycrystalline silicon 9 is deposited so as to fill the trench 7, and the excess polycrystalline silicon 9 deposited on the SiO 2 film 6 is etched back by dry etching to expose the SiO 2 film 6 ( (Refer FIG.4 (d)). Thereafter, the SiO 2 film 6 and the polycrystalline silicon 9 in the trench 7 are simultaneously polished and planarized by CMP using the Si 3 N 4 film 5 as a stopper (see FIG. 4E). Next, the upper portion of the polycrystalline silicon 9 is thermally oxidized to form a cap oxide film 10, and finally the Si 3 N 4 film 5 is removed to complete the trench structure (see FIG. 4F).
[0006]
This method is characterized in that the height of the polycrystalline silicon 9 embedded in the trench 7 can be easily controlled to increase the flatness. However, according to this method, it is necessary to polish the SiO 2 film 6 and the polycrystalline silicon 9 at the same time, which tends to increase the cost. Furthermore, in this case, Si 3 N 4 film 5 are designed in a thickness corresponding to the selected ratio to serve as a polishing stopper, Si 3 N 4 film 5 thickness and polishing the wafer plane variation Therefore, it is assumed that the Si 3 N 4 film 5 is shaved during polishing. For this reason, it is difficult to use the Si 3 N 4 film 5 as an oxidation mask for LOCOS, and it is necessary to form a Si 3 N 4 film again at the time of LOCOS formation, which is a limitation of process simplification and cost reduction. It was.
[0007]
(Prior art 2)
As a method for solving the problems of the above-described prior art 1, a method of removing the SiO 2 mask using a chemical solution such as dilute hydrofluoric acid immediately after the trench formation is considered. An outline of the manufacturing process by this method is shown in FIG. After forming the pad oxide film 4, Si 3 N 4 film 5 and SiO 2 film 6 on the surface of the prepared SOI substrate (see FIG. 5A), the trench 7 reaching the buried oxide film 2 is formed (FIG. 5B). )refer. The steps so far are the same as those shown in FIGS.
[0008]
Thereafter, the SiO 2 film 6 used for the trench etching mask is removed using a chemical such as dilute hydrofluoric acid (see FIG. 5C). Next, the inner wall surface of the trench 7 is wet-thermally oxidized to form a sidewall oxide film 8 and filled with a buried material such as polycrystalline silicon 9. Thereafter, excess polycrystalline silicon on the Si 3 N 4 film 5 is removed by etching back, and the upper portion of the filled polycrystalline silicon 9 is thermally oxidized to grow a cap oxide film 10 to complete a trench element isolation structure. (See FIG. 5D).
[0009]
However, in the above-described process, a void 11 is generated at the lower end portion of the polycrystalline silicon 9 embedded in the trench 7. This is because the buried oxide film 2 is also etched when the SiO 2 film 6 used as a mask is removed using a chemical solution such as dilute hydrofluoric acid after the trench 7 is formed. This is because the “spot” 12 as shown in FIG. When the “blank” 12 is generated, when the sidewall oxide film 8 is formed and filled with a buried material such as polycrystalline silicon 9, a void 11 as shown in FIG. 5D is generated. The presence of such voids is a problem because it causes variations in the breakdown voltage of the element.
[0010]
[Patent Document 1]
JP 2001-93972 A
[0011]
[Problems to be solved by the invention]
The present invention has been made to solve the problems of the prior art, and its purpose is to manufacture a trench isolation structure with a simplified process and low cost without generating voids. It is to provide a method.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a pad oxide film, a silicon nitride film, and an oxide film of a silicon oxide film are formed in this order on the surface of the SOI layer of the SOI substrate, and then the SOI layer is formed using a resist as a mask. Next, a trench reaching the buried oxide film of the SOI substrate is formed in the opening using the silicon oxide film as a mask, and then an insulating sidewall oxide film is formed on the inner wall surface of the trench. and then in the manufacturing method of a semiconductor device for forming a trench isolation structure by filling the buried material polycrystalline silicon down, after the trench formation, to perform at least the following step between leading to the formation of the sidewall oxide film A method for manufacturing a semiconductor device.
(1). After forming the trench, applying a positive resist so as to cover the surface of the silicon oxide film on the surface of the SOI substrate and the bottom of the formed trench.
(2). A step of exposing and developing only the resist applied on the silicon oxide film by the step.
(3). Etching the silicon oxide film exposed in the removing step;
(Four). Removing the resist remaining at the bottom of the trench after the step;
[0013]
By performing such a process, when the silicon oxide film on the SOI substrate surface is removed by etching, the bottom of the trench is covered with a resist, and the buried oxide film is not exposed to the etching solution. Therefore, not generated is "scooped" into the buried oxide film, when filled with potting material of polycrystalline silicon down, a void is not generated in the lower trench. Further, according to this process, it is not necessary to polish the SiO 2 film and the polycrystalline silicon at the same time, which is effective in simplifying the process and reducing the cost.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A method for manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to FIGS. In addition, in the figure, the same code | symbol is attached | subjected to FIG. 4, FIG.
[0015]
Also in the present embodiment, the steps from forming an oxide film on the surface of the SOI substrate, which is a starting material, to forming a trench are the same as those in the prior art shown in FIGS. 4 (a), 4 (b), 5 (a), 5 (b). ). That is, first, an SOI substrate is prepared. The SOI substrate has a configuration including a support substrate (Si) 1, a buried oxide film (SiO 2 ) 2, and an SOI layer (Si) 3 (see FIG. 3A). Such a structure is formed by a method called wafer bonding or a method called SIMOX (Separation by Implanted Oxygen) in which oxygen ions are implanted into a silicon substrate to form an insulating layer therein.
[0016]
Next, an insulating film serving as a mask for trench etching is deposited on the surface of the SOI layer 3 of the prepared SOI substrate (see FIG. 3B). In the example shown in the figure, a pad oxide film 4 having a thickness of about 43 nm is formed by thermal oxidation, a silicon nitride film (Si 3 N 4 film) 5 having a thickness of about 160 nm is deposited, and silicon oxide is further formed thereon by, for example, atmospheric pressure CVD. A film (non-doped SiO 2 film) 6 is formed to about 1800 nm.
[0017]
Next, a resist 13 is applied on the surface, and exposure is performed using a photomask for trench formation, whereby a predetermined portion of the resist 13 is removed and a window is opened. Using the remaining resist 13 as a mask, the SiO 2 film 6, the Si 3 N 4 film 5, and the pad oxide film 4 are dry-etched until reaching the SOI layer 3 to form an opening 14 (see FIG. 1C). Thereafter, the resist 13 is peeled off. Subsequently, trench etching is performed to etch the exposed SOI layer 3 using the SiO 2 film 6 as a mask, thereby forming a trench 7 reaching the buried oxide film 2 (see FIG. 1D).
[0018]
In the process described in the above-described prior art 2, the process of removing the silicon oxide film 6 used as a mask is performed thereafter. In the case of this embodiment, the process is shown in FIGS. Process according to the flow to prevent the occurrence of problematic voting. That is, first, as shown in FIG. 2A, a positive resist 15 is applied to the surface of the substrate on which the trench 7 is formed. The viscosity of the resist 15 used at this time is a viscosity that allows the resist to reach the bottom of the trench 7 due to the fluidity of the resist. Accordingly, the resist 16 also accumulates at the bottom of the trench 7.
[0019]
After the resists 15 and 16 are applied, the entire surface of the substrate is exposed. At this time, the resist 15 on the substrate surface is sufficiently exposed, whereas the resist 16 accumulated at the bottom of the trench 7 is not exposed to sufficient light so that it remains unexposed. Since positive resists are used as the resists 15 and 16, the resist 15 on the substrate surface is exposed and removed by subsequent development. On the other hand, since the resist 16 accumulated at the bottom of the trench 7 is not exposed to light, it remains without being removed even after development (see FIG. 2B).
[0020]
In this way, in order to prevent the resist 16 at the bottom of the trench 7 from being exposed when the substrate surface is exposed, when light is incident on the substrate surface at an angle, the light component that directly reaches the bottom of the trench 7 is reduced. It can be cut and is effective. As this angle α, for example, in the case of a trench having a width of 2 μm and a depth of 16 μm,
α ≧ tan −1 (2/16) = 7 °
That is, it is effective to incline at least 7 ° off.
[0021]
When the exposure is completed in this manner, development and etching are performed to remove the SiO 2 film 6 used as a mask for trench etching. At this time, since the buried oxide film 2 at the bottom of the trench 7 is protected by the resist 16, the etching is avoided (see FIG. 2C). After the etching, the resist 16 remaining at the bottom of the trench 7 is dissolved and removed by a chemical solution such as carros (see FIG. 2D). As a result, no “growing” occurs in the buried oxide film 2 and a trench 7 having a clean shape is completed.
[0022]
Next, the inner wall surface of the trench 7 is wet-thermally oxidized to form a sidewall oxide film 8 for isolation (see FIG. 3A). At this time, the Si 3 N 4 film 5 formed in FIG. 1A serves as an oxidation mask, and no oxide film is formed on the substrate surface. Next, polycrystalline silicon 9 for burying is deposited by a method with good coverage such as LP-CVD (see FIG. 3B), and unnecessary large portions of the substrate surface are removed except for the inside of trench 7 by a method such as etch back. The crystalline silicon 9 is removed (see FIG. 3C). Finally, by oxidizing again using the Si 3 N 4 film 5 as a mask, a cap oxide film 10 is formed on the upper portion of the trench 7 (see FIG. 3D), and the Si 3 N 4 film 5 is formed as necessary. The trench element isolation structure is completed by removing.
[0023]
According to the process of this embodiment, when the SiO 2 film 6 on the substrate surface is removed by etching, the bottom of the trench 7 is covered with the resist 16 and the buried oxide film 2 is not exposed to the etching solution. Therefore, no “burrows” occur in the buried oxide film 2 and a void is prevented from occurring in the lower portion of the trench 7 when the buried material such as polycrystalline silicon 9 is filled. Further, according to this process, it is not necessary to polish the SiO 2 film 6 and the polycrystalline silicon 9 at the same time, which is effective in simplifying the process and reducing the cost. Further, the Si 3 N 4 film 5 remaining after cap oxidation can be used as an oxidation mask at the time of LOCOS formation.
[Brief description of the drawings]
FIG. 1 is a process diagram until a trench 7 is formed according to an embodiment of the present invention.
FIG. 2 is a process diagram until the SiO 2 oxide film 6 on the substrate surface is removed after the trench formation according to one embodiment of the present invention.
FIG. 3 is a process diagram from the formation of the sidewall oxide film 8 to the completion of the trench element isolation structure according to one embodiment of the present invention.
FIG. 4 is a process diagram up to completion of a trench isolation structure according to prior art 1;
FIG. 5 is a process diagram up to completion of a trench isolation structure according to the prior art 2;
[Explanation of symbols]
In the drawings, 1 is a support substrate of an SOI substrate, 2 is a buried oxide film of the SOI substrate, 3 is an SOI layer of the SOI substrate, 4 is a pad oxide film, 5 is a silicon nitride film (Si 3 N 4 film), and 6 is silicon. Oxide film (SiO 2 film), 7 is a trench, 8 is a side wall oxide film, 9 is polycrystalline silicon, 10 is a cap oxide film, 11 is a void, 12 is “gure”, 13, 15 and 16 are resists , 14 indicate openings.

Claims (1)

SOI基板のSOI層表面にパッド酸化膜、シリコン窒化膜、シリコン酸化膜の酸化膜をこの順で形成後、レジストをマスクとしてSOI層に達する開口部を形成し、次に前記シリコン酸化膜をマスクとして前記開口部に前記SOI基板の埋め込み酸化膜に達するトレンチを形成し、その後該トレンチ内壁面に絶縁用の側壁酸化膜を形成し、次いで多結晶シリコンの埋設材料を充填することによってトレンチ素子分離構造を形成する半導体装置の製造方法において、前記トレンチの形成後に、前記SOI基板表面のシリコン酸化膜の表面及び前記形成されたトレンチの底部が覆われるようにポジ型レジストを塗布する工程と、該工程により前記シリコン酸化膜上に塗布されたレジストのみを露光、現像して除去する工程と、該工程により露出した前記シリコン酸化膜をエッチングして除去する工程と、該工程後に前記トレンチ底部に残ったレジストを除去する工程とを少なくとも実施した後に前記トレンチ内壁面の側壁酸化膜形成に移ることを特徴とする半導体装置の製造方法。Pad oxide film, a silicon nitride film on the SOI layer surface of the SOI substrate, after forming the oxide film of the silicon oxide film in this order to form an opening reaching the SOI layer using the resist as a mask, then the mask the silicon oxide film wherein the opening trench is formed to reach the buried oxide film of the SOI substrate, and then forming a sidewall oxide film for insulation to the trench walls and then polycrystalline silicon down trench by filling buried material as In the method of manufacturing a semiconductor device forming an isolation structure, after forming the trench, applying a positive resist so as to cover the surface of the silicon oxide film on the surface of the SOI substrate and the bottom of the formed trench; Exposing and developing only the resist coated on the silicon oxide film by the process, and removing the resist by the process; In addition, after performing at least the step of removing the silicon oxide film by etching and the step of removing the resist remaining at the bottom of the trench after the step, the process moves to the formation of the sidewall oxide film on the inner wall surface of the trench. A method for manufacturing a semiconductor device.
JP2002325371A 2002-11-08 2002-11-08 Manufacturing method of semiconductor device Expired - Fee Related JP3985660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325371A JP3985660B2 (en) 2002-11-08 2002-11-08 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325371A JP3985660B2 (en) 2002-11-08 2002-11-08 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004158790A JP2004158790A (en) 2004-06-03
JP3985660B2 true JP3985660B2 (en) 2007-10-03

Family

ID=32804623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325371A Expired - Fee Related JP3985660B2 (en) 2002-11-08 2002-11-08 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3985660B2 (en)

Also Published As

Publication number Publication date
JP2004158790A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3363420B2 (en) Method of manufacturing patterned silicon-on-insulator substrate with self-aligned trench
JPH02102556A (en) Method of forming isolation region in substrate of integrated circuit structure
JP3130511B2 (en) Element isolation structure for semiconductor power integrated circuit and method of forming the same
US7273794B2 (en) Shallow trench isolation fill by liquid phase deposition of SiO2
JP3719854B2 (en) Manufacturing method of semiconductor device
JP3985660B2 (en) Manufacturing method of semiconductor device
US6103581A (en) Method for producing shallow trench isolation structure
JPH0555361A (en) Semiconductor device and manufacture thereof
JPH09289245A (en) Fabrication method of semiconductor device
JP3160928B2 (en) Element isolation formation method
KR100596876B1 (en) Method for forming device isolation film of semiconductor device
KR100559042B1 (en) Method of shallow trench isolation film in a semiconductor device
JP4438317B2 (en) Manufacturing method of semiconductor device
KR100302878B1 (en) Trench manufacturing method for isolating semiconductor devices
JPH1126569A (en) Manufacture of semiconductor device
KR100921329B1 (en) Method of forming an isolation layer in a semiconductor device
KR100202196B1 (en) Method of forming an element isolation region in a semiconductor device
KR100567872B1 (en) Method for forming isolation layer in a semiconductor manufacturing device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
KR100455093B1 (en) Method of forming an isolation layer in a semiconductor device
KR100587084B1 (en) method for fabricating semiconductor device
KR100826790B1 (en) Method for fabricating trench of semiconductor device
KR20070090089A (en) Semiconductor device and manufacturing method thereof
KR20020086099A (en) Trench manufacturing method for isolating semiconductor devices
KR19980045858A (en) Trench device isolation structure (STI) formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees