JP3985130B2 - High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield - Google Patents

High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield Download PDF

Info

Publication number
JP3985130B2
JP3985130B2 JP2001251151A JP2001251151A JP3985130B2 JP 3985130 B2 JP3985130 B2 JP 3985130B2 JP 2001251151 A JP2001251151 A JP 2001251151A JP 2001251151 A JP2001251151 A JP 2001251151A JP 3985130 B2 JP3985130 B2 JP 3985130B2
Authority
JP
Japan
Prior art keywords
plating
purity
anode material
electrolytic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251151A
Other languages
Japanese (ja)
Other versions
JP2003064437A (en
Inventor
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001251151A priority Critical patent/JP3985130B2/en
Priority to TW92103699A priority patent/TWI255869B/en
Publication of JP2003064437A publication Critical patent/JP2003064437A/en
Application granted granted Critical
Publication of JP3985130B2 publication Critical patent/JP3985130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電解Niめっき処理に際して、高いめっき歩留、すなわち使用寿命の延命化を可能とし、この結果陽極材の交換回数の減少をもたらすことから、電解めっき装置のFA化に寄与するほか、低コスト化を可能とする高純度Ni合金陽極材に関するものである。
【0002】
【従来の技術】
例えば近年の半導体装置などの製造には、高純度Ni薄膜の形成が不可欠であり、またこの高純度Ni薄膜の形成は、陽極材として99.99質量%以上の高純度(不可避不純物含有量:0.01質量%以下)を有するNiを用い、電解めっき法により行なわれている。
【0003】
【発明が解決しようとする課題】
一方、近年の電解めっき装置のFA化および高純度Ni薄膜形成の低コスト化の面から、高純度Ni陽極材にはめっき歩留の向上、すなわち使用寿命の一段の延命化、さらに述べれば高純度Ni陽極材1個当たりの高純度Ni薄膜の形成割合の向上が常に求められているのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の電解Niめっき用高純度Ni陽極材に着目し、これのめっき歩留の向上を図るべく研究を行った結果、(a)一般に電解Niめっき処理においては、電解液中での高純度Ni陽極材からのNiの溶出を一定にするために、前記陽極材には常に一定の電流、例えば2A/dm2が流れるように負荷電圧を制御しており、したがって前記負荷電圧は前記電極材からのNi溶出によって変化する表面性状に対応して上昇するものであり、例えば1.3Vの初期負荷電圧(めっき開始5分後の電圧)が約2.5Vに上昇した時点で電極材の使用寿命としていること。
(b)一方、上記陽極材からのNiの溶出は、樹枝状に進行し、最終的に前記陽極材は海綿状になり、例えば約2.5Vの負荷電圧は電極材の海綿状態様を示すものであり、この時点で使用寿命としているが、それは、ここでさらにめっきを続行すると負荷電圧が急激に上昇し、陰極であるめっき面で加水分解が起り、この加水分解で発生した水素と酸素のうち特に水素がNiめっき薄膜内に巻き込まれ、ピンホールとして存在して薄膜特性を著しく害うようになるという理由によるものであること。
(c)99.99質量%以上の純度を有する高純度Niに、合金成分として、SiおよびAlを、それぞれ、
Si:40〜300ppm、
Al:40〜300ppm、
の割合で含有させて、合金成分として、
Si:40〜300ppm、
Al:40〜300ppm、
を含有し、残りがNiと不可避不純物(ただし、不可避不純物の含有量は0.01質量%以下)からなる組成を有するものとした高純度Ni合金を電解Niめっきの陽極材として用いると、電解Niめっき処理中の前記陽極材からのNiの溶出形態が微細化、すなわち電解Niめっき初期の樹枝状溶出形態および同最終期の海綿状溶出形態が微細化し、これによって陽極材における負荷電圧の上昇が著しく抑制され、相対的に長時間に亘ってのめっき処理が可能となることから、めっき歩留が向上し、相対的に電極材当たりのめっき処理量が増大するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、合金成分として、
Si:40〜300ppm、
Al:40〜300ppm、
を含有し、残りがNiと不可避不純物(ただし、不可避不純物の含有量は0.01質量%以下)からなる組成を有する高純度Ni合金で構成した、高いめっき歩留を示す電解Niめっき用高純度Ni合金陽極材に特徴を有するものである。
【0006】
なお、この発明の高純度Ni合金陽極材を構成する高純度Ni合金において、SiおよびAlには上記の通り共存含有した状態で電解めっき処理中の電極材の溶出態様を著しく微細化し、もってめっき電圧の上昇を抑制して、使用寿命の長期化に寄与する作用があり、したがってSiおよびAlのいずれかしか含有しない場合や、前記両成分を含有してもそのいずれかの含有量が40ppm未満であったりする場合には前記作用に所望の効果が得られず、一方その含有量がSiおよびAlのいずれかでも300ppmを越えると、陽極材表面からのNiの電解液中への溶出が抑制されるようになり、これがめっき電圧上昇の原因となり、相対的に使用寿命の短命化、すなわちめっき歩留の低下をもたらすようになることから、その含有量を、それぞれSi:40〜300ppm、Al:40〜300ppmと定めた。
また、上記高純度Ni合金の不可避不純物の含有量を0.01質量%以下とすることは不可欠の要件であって、不可避不純物の含有量が0.01質量%を超えると、Niめっき薄膜の特性が低下し、例えば半導体装置に適用することができなくなるからである。
【0007】
【発明の実施の形態】
つぎに、この発明の高純度Ni合金陽極材を実施例により具体的に説明する。
電熱式溶解るつぼで、それぞれ表1に示される純度の高純度Niを真空溶解し、これにNi―Si合金およびNi−Al合金(いずれの合金の不可避不純物の含有量も0.01質量%以下)の形で、それぞれ40〜300ppmの範囲内の所定の量のSiおよびAlを添加含有させて高純度Ni合金を溶製し、直径:100mm×長さ:120mmのインゴットに鋳造し、これに1100℃の温度で熱間鍛造を施して幅:125mm×厚さ:23mmの板材とした後、さらに冷間圧延を施して幅:125mm×厚さ:10mmの冷延板とし、さらにこれに450〜750℃の範囲内の温度に1時間保持の条件で再結晶化熱処理を施して、それぞれ表1に示される平均結晶粒径とし、ついでこれより長さ:100mm×幅:50mm×厚さ:10mmの寸法に切り出し、最終的に面削加工にて厚さ:7.5mmとすることにより、それぞれ表1に示されるSiおよびAl含有量の本発明高純度Ni合金陽極材(以下、本発明陽極材という)1〜12をそれぞれ製造した。
【0008】
また、比較の目的で、同じく表1に示される通りSiおよびAlのうちの少なくともいずれかの含有量がこの発明の範囲から外れた以外は同一の条件で比較高純度Ni合金陽極材(以下、比較陽極材という)1〜6をそれぞれ製造した。
【0009】
ついで、この結果得られた本発明陽極材1〜12および比較陽極材1〜6について、脱脂および酸洗処理した状態で、撹拌羽根付き電解めっき槽に装入し、
陰極材:無酸素銅、
電解液:塩化ニッケル:5g/l、スルファミン酸ニッケル:350g/l、ほう酸:40g/l、界面活性剤0.06g/l、を含有し、pH:4.0のスルファミン酸溶液、
電解液の温度:55℃、
電流密度:2A/dm2
の条件で上記陰極材の表面にNiめっきを施すめっき試験を行ない、めっき中の表示電圧が2.5V(2.5Vの表示電圧は陰極材表面で加水分解が起る電圧である)に上昇するまでのめっき時間を測定した。
【0010】
【表1】

Figure 0003985130
【0011】
【発明の効果】
表1に示される結果から、SiおよびAl含有量がいずれも40〜300ppmである本発明陽極材1〜12は、いずれも長いめっき時間を示し、これは電解Niめっき処理に際して、陽極材が高いめっき歩留を示すことを意味するのに対して、比較陽極材1〜6に見られるようにSiおよびAlのうちの少なくともいずれかの含有量がこの発明の範囲から外れると、相対的にめっき時間は短いものとなり、陽極材のめっき歩留の向上は困難であることが明らかである。
上述のように、この発明の高純度Ni合金陽極材は、電解Niめっき処理に際して、高いめっき歩留、すなわち使用寿命の延命化を可能とし、この結果陽極材の交換回数の減少をもたらすことから、電解めっき装置のFA化に寄与するほか、低コスト化も可能とするなど工業上有用な効果をもたらすものである。[0001]
BACKGROUND OF THE INVENTION
This invention, in the electrolytic Ni plating treatment, enables high plating yield, that is, extending the service life, resulting in a decrease in the number of replacement of the anode material, contributing to the FA of the electrolytic plating apparatus, The present invention relates to a high-purity Ni alloy anode material that enables cost reduction.
[0002]
[Prior art]
For example, formation of a high-purity Ni thin film is indispensable for the manufacture of semiconductor devices and the like in recent years, and this high-purity Ni thin film is formed with a high purity (inevitable impurity content: 99.99% by mass or more as an anode material). Ni having a content of 0.01% by mass or less is performed by an electrolytic plating method.
[0003]
[Problems to be solved by the invention]
On the other hand, from the aspect of the recent electroplating equipment FA and cost reduction of the formation of high purity Ni thin film, high purity Ni anode material has improved plating yield, that is, further extended the service life, At present, the improvement in the formation ratio of the high-purity Ni thin film per purity Ni anode material is always required.
[0004]
[Means for Solving the Problems]
In view of the above, the present inventors focused on the above-described high-purity Ni anode material for electrolytic Ni plating and conducted research to improve the plating yield. As a result, (a) In the electrolytic Ni plating treatment, in order to make the elution of Ni from the high purity Ni anode material in the electrolyte constant, the load voltage is such that a constant current, for example, 2 A / dm 2 always flows through the anode material. Therefore, the load voltage rises corresponding to the surface properties that change due to the elution of Ni from the electrode material. For example, an initial load voltage of 1.3 V (voltage 5 minutes after the start of plating) When the voltage rises to about 2.5V, the service life of the electrode material is assumed.
(B) On the other hand, the elution of Ni from the anode material proceeds in a dendritic form, and finally the anode material becomes spongy. For example, a load voltage of about 2.5 V indicates the state of sponge of the electrode material. At this point, the service life is considered to be the service life. However, if the plating is continued further, the load voltage rises rapidly and hydrolysis occurs on the plating surface, which is the cathode, and hydrogen and oxygen generated by this hydrolysis are generated. Among them, hydrogen is particularly involved in the Ni-plated thin film and exists as a pinhole, which causes the thin film characteristics to be seriously damaged.
(C) To high-purity Ni having a purity of 99.99% by mass or more, Si and Al as alloy components,
Si: 40 to 300 ppm,
Al: 40 to 300 ppm,
As an alloy component,
Si: 40 to 300 ppm,
Al: 40 to 300 ppm,
When a high-purity Ni alloy having a composition composed of Ni and the remainder consisting of Ni and inevitable impurities (however, the content of inevitable impurities is 0.01% by mass or less) is used as an anode material for electrolytic Ni plating, The elution form of Ni from the anode material during the Ni plating treatment is refined, that is, the dendritic elution form in the initial stage of electrolytic Ni plating and the spongy elution form in the final stage are refined, thereby increasing the load voltage in the anode material. Is significantly suppressed, and the plating process can be performed for a relatively long time, so that the plating yield is improved and the amount of plating process per electrode material is relatively increased.
The research results shown in (a) to (c) above were obtained.
[0005]
This invention was made based on the above research results, and as an alloy component,
Si: 40 to 300 ppm,
Al: 40 to 300 ppm,
And the rest is made of high-purity Ni alloy having a composition composed of Ni and inevitable impurities (however, the content of inevitable impurities is 0.01% by mass or less) It is characterized by a purity Ni alloy anode material.
[0006]
In the high-purity Ni alloy constituting the high-purity Ni alloy anode material of the present invention, the elution mode of the electrode material during the electrolytic plating process is remarkably refined in a state where Si and Al are coexistent as described above, and plating is thereby performed. It has the effect of suppressing the increase in voltage and contributing to the extension of the service life. Therefore, when only one of Si and Al is contained, or even when both of the above components are contained, the content of either of them is less than 40 ppm. However, if the content exceeds 300 ppm for either Si or Al, elution of Ni from the anode material surface into the electrolyte is suppressed. Since this causes a rise in plating voltage and relatively shortens the service life, that is, lowers the plating yield, its content is Respectively Si: 40~300ppm, Al: was defined as 40~300ppm.
In addition, it is an indispensable requirement that the content of inevitable impurities in the high-purity Ni alloy is 0.01% by mass or less, and if the content of inevitable impurities exceeds 0.01% by mass , This is because the characteristics are deteriorated and cannot be applied to, for example, a semiconductor device.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, the high-purity Ni alloy anode material of the present invention will be specifically described with reference to examples.
In an electrothermal melting crucible, high-purity Ni of the purity shown in Table 1 is melted in vacuum, and Ni—Si alloy and Ni—Al alloy (the content of inevitable impurities in any alloy is 0.01% by mass or less) ), A high-purity Ni alloy is melted by adding a predetermined amount of Si and Al within the range of 40 to 300 ppm, and cast into an ingot having a diameter of 100 mm × length of 120 mm. After hot forging at a temperature of 1100 ° C. to obtain a plate material having a width: 125 mm × thickness: 23 mm, further cold rolling is performed to obtain a cold-rolled plate having a width: 125 mm × thickness: 10 mm. Recrystallization heat treatment is performed at a temperature in the range of ˜750 ° C. under the condition of holding for 1 hour to obtain the average crystal grain size shown in Table 1, respectively, and then length: 100 mm × width: 50 mm × thickness: 10m The high purity Ni alloy anode material of the present invention having the Si and Al contents shown in Table 1 (hereinafter, the present invention) 1 to 12) (referred to as anode materials) were produced.
[0008]
For comparison purposes, a comparative high-purity Ni alloy anode material (hereinafter referred to as the following) is used under the same conditions except that the content of at least one of Si and Al deviates from the scope of the present invention as shown in Table 1. 1 to 6) (referred to as comparative anode materials) were produced.
[0009]
Next, for the present anode materials 1-12 and comparative anode materials 1-6 obtained as a result, in a state of being degreased and pickled, they were charged into an electrolytic plating tank with stirring blades,
Cathode material: oxygen-free copper,
Electrolytic solution: nickel chloride: 5 g / l, nickel sulfamate: 350 g / l, boric acid: 40 g / l, surfactant 0.06 g / l, pH: 4.0 sulfamic acid solution,
Electrolyte temperature: 55 ° C
Current density: 2 A / dm 2
A plating test is performed in which the surface of the cathode material is plated with Ni under the above conditions, and the display voltage during plating rises to 2.5 V (the display voltage of 2.5 V is a voltage at which hydrolysis occurs on the surface of the cathode material). The plating time until completion was measured.
[0010]
[Table 1]
Figure 0003985130
[0011]
【The invention's effect】
From the results shown in Table 1, the anode materials 1 to 12 of the present invention having both Si and Al contents of 40 to 300 ppm both show a long plating time, which is high in the electrolytic Ni plating treatment. While it means that the plating yield is shown, when the content of at least one of Si and Al is out of the scope of the present invention as seen in the comparative anode materials 1 to 6, the plating is relatively performed. It is clear that the time is short and it is difficult to improve the plating yield of the anode material.
As described above, the high-purity Ni alloy anode material of the present invention enables high plating yield, that is, extension of the service life when electrolytic Ni plating is performed, resulting in a decrease in the number of replacements of the anode material. In addition to contributing to the FA of the electroplating apparatus, it also provides industrially useful effects such as enabling cost reduction.

Claims (1)

合金成分として、
Si:40〜300ppm、
Al:40〜300ppm、
を含有し、残りがNiと不可避不純物(ただし、不可避不純物の含有量は0.01質量%以下)からなる組成を有する高純度Ni合金で構成したことを特徴とする高いめっき歩留を示す電解Niめっき用高純度Ni合金陽極材。
As an alloy component,
Si: 40 to 300 ppm,
Al: 40 to 300 ppm,
Electrolysis showing a high plating yield characterized by comprising a high-purity Ni alloy having a composition consisting of Ni and the remainder consisting of Ni and inevitable impurities (however, the content of inevitable impurities is 0.01% by mass or less) High purity Ni alloy anode material for Ni plating.
JP2001251151A 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield Expired - Fee Related JP3985130B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001251151A JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield
TW92103699A TWI255869B (en) 2001-08-22 2003-02-21 Ni alloy as an anode for Ni electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251151A JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield

Publications (2)

Publication Number Publication Date
JP2003064437A JP2003064437A (en) 2003-03-05
JP3985130B2 true JP3985130B2 (en) 2007-10-03

Family

ID=19079842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251151A Expired - Fee Related JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield

Country Status (2)

Country Link
JP (1) JP3985130B2 (en)
TW (1) TWI255869B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393499B2 (en) 2003-02-21 2008-07-01 Mitsubishi Materials Corporation Ni alloy anode material for Ni electroplating
JP2008184637A (en) * 2007-01-29 2008-08-14 Nec Electronics Corp ELECTROLYTIC Ni PLATING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
CN105200267B (en) * 2014-06-11 2017-11-17 丹阳市凯鑫合金材料有限公司 Lithium battery rivet pure nickel N6 and its production method

Also Published As

Publication number Publication date
TW200416308A (en) 2004-09-01
TWI255869B (en) 2006-06-01
JP2003064437A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4123330B2 (en) Phosphorus copper anode for electroplating
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
KR20120137507A (en) Cu-si-co alloy for electronic materials, and method for producing same
JP5322423B2 (en) Method for producing lead-based alloy substrate for lead battery
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
CN108682866B (en) Novel lead-calcium-tin-aluminum alloy, positive plate grid comprising same and lead-acid storage battery
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
CN110846687A (en) Mg-Zn-Zr intermediate alloy and preparation method thereof
JP2007254803A (en) Titanium-copper
JP3985130B2 (en) High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield
JP2666912B2 (en) Aluminum alloy for electrolytic capacitor electrode foil
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP2011219860A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2011252216A (en) Cu-Co-Si-BASED ALLOY PLATE AND METHOD FOR PRODUCING THE SAME
JP5094025B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2001279351A (en) Rolled copper alloy foil and its production method
US7393499B2 (en) Ni alloy anode material for Ni electroplating
JPH09302424A (en) Manufacture of zinc-titanium base alloy, and manganese dry battery
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2007131922A (en) Aluminum foil for electrolytic capacitor
US20120193001A1 (en) Aluminum based anodes and process for preparing the same
JPH03122239A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JP2003268469A (en) Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3985130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees