JP2003268469A - Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS - Google Patents

Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS

Info

Publication number
JP2003268469A
JP2003268469A JP2002075593A JP2002075593A JP2003268469A JP 2003268469 A JP2003268469 A JP 2003268469A JP 2002075593 A JP2002075593 A JP 2002075593A JP 2002075593 A JP2002075593 A JP 2002075593A JP 2003268469 A JP2003268469 A JP 2003268469A
Authority
JP
Japan
Prior art keywords
purity
ppm
alloy
nitrogen trifluoride
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002075593A
Other languages
Japanese (ja)
Inventor
Akira Mihashi
章 三橋
Katsuo Sugawara
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002075593A priority Critical patent/JP2003268469A/en
Publication of JP2003268469A publication Critical patent/JP2003268469A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Ni alloy anode of generating little sludge of nickel complex salts, which is used for manufacturing a nitrogen trifluoride gas (NF<SB>3</SB>) with a molten-salt electrolytic method. <P>SOLUTION: The Ni alloy anode for manufacturing the nitrogen trifluoride gas is made of a Ni alloy which includes a high-purity Ni having a purity of 99.99 mass% or higher, as a base, Al and Si at a ratio of respectively 20-300 ppm Si and 20-300 ppm Al, as alloy contents, and one or more elements of P, Mg, Zn, and Pb, of 30-300 ppm in total, as needed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、三フッ化窒素ガ
ス(NF3)を溶融塩電解法により製造するために使用
するニッケル錯塩スラッジの生成が少ないNi合金アノ
ード電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni alloy anode electrode which is used for producing nitrogen trifluoride gas (NF 3 ) by a molten salt electrolysis method and which produces less nickel complex salt sludge.

【0002】[0002]

【従来の技術】三フッ化窒素ガスは、半導体装置製造時
のドライエッチング、プラズマCVD装置のドライクリ
ーニング、TFTを用いた液晶表示装置における枚様式
装置のクリーニングなどに使用されることは一般に知ら
れている。この三フッ化窒素ガスの製造方法はいろいろ
あるが、その一つの製造方法としてフッ化アンモニウム
(NH4F)−フッ化水素(HF)系溶融塩(組成はモ
ル比でHF/NH4Fが1〜3)を電解液とし、高純度
Niからなるアノード電極を用いて溶融塩電解する製造
方法が知られている。
2. Description of the Related Art Nitrogen trifluoride gas is generally known to be used for dry etching at the time of manufacturing a semiconductor device, dry cleaning of a plasma CVD device, cleaning of a sheet type device in a liquid crystal display device using a TFT, and the like. ing. There are various methods for producing this nitrogen trifluoride gas, and as one of the methods, ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt (the composition is HF / NH 4 F in molar ratio) is used. There is known a production method in which molten salt electrolysis is performed by using 1 to 3) as an electrolytic solution and an anode electrode made of high-purity Ni.

【0003】この高純度Niアノード電極を用いて溶融
塩電解法により三フッ化窒素ガスを製造する方法は、電
解中にNiが僅かに電解液中に溶解していくので、長期
間電解を継続すると、Niアノード電極は消耗し、やが
てアノード電極の更新が必要になる。一方、電解中に溶
解したNiは大部分がカソード電極に析出するが、一部
はニッケル錯塩スラッジとなって電解液中に蓄積され、
電解液を汚染する。このニッケル錯塩スラッジがさらに
増加すると、電解液の粘度が増加し、電解槽内で局所的
な温度分布が発生し、電解に悪影響を及ぼす。例えば、
電解槽の冷却または加熱の温度制御が困難になったり、
生成したニッケル錯塩スラッジが電解槽下部に沈降、蓄
積し、電極と短絡してガスを発生し、爆発する危険性が
ある。したがって、電解液についてもやがて更新が必要
になる。Niアノード電極および電解液の頻繁な交換
は、作業効率を低下させる。そのために、ニッケル錯塩
スラッジが電解槽下部に蓄積しないように種々の工夫が
なされており、その一つの方法として、電解液を強制的
に対流させることによりNiカソード電極の溶解により
生成するニッケル錯塩スラッジの生成を抑制する方法が
提案されている(特開平8−176872号公報参
照)。
In the method of producing nitrogen trifluoride gas by the molten salt electrolysis method using this high-purity Ni anode electrode, Ni slightly dissolves in the electrolytic solution during electrolysis, so that electrolysis is continued for a long time. Then, the Ni anode electrode is consumed, and it becomes necessary to renew the anode electrode in due course. On the other hand, most of the Ni dissolved during electrolysis is deposited on the cathode electrode, but part of it is accumulated as nickel complex salt sludge in the electrolytic solution.
Contaminate the electrolyte. If this nickel complex salt sludge further increases, the viscosity of the electrolytic solution increases, and a local temperature distribution occurs in the electrolytic cell, which adversely affects electrolysis. For example,
It becomes difficult to control the temperature of cooling or heating the electrolytic cell,
There is a risk that the generated nickel complex salt sludge will settle and accumulate in the lower part of the electrolytic cell, short-circuit with the electrode, generate gas, and explode. Therefore, the electrolytic solution will eventually need to be updated. Frequent replacement of the Ni anode electrode and electrolyte reduces working efficiency. For this reason, various measures have been taken to prevent nickel complex salt sludge from accumulating in the lower part of the electrolytic cell. Has been proposed (see Japanese Patent Laid-Open No. 8-176872).

【0004】[0004]

【発明が解決しようとする課題】しかし、この電解液を
強制対流させる方法は、確かにニッケル錯塩スラッジの
沈降および蓄積をある程度抑制することができるもの
の、Niカソード電極はニッケル錯塩スラッジの形成を
抑制する電極ではないので、所定の電解期間を過ぎると
ニッケル錯塩スラッジが沈降および蓄積することは避け
られず、十分な効果が得られていない。
However, although this method of forced convection of the electrolytic solution can certainly suppress the sedimentation and accumulation of nickel complex salt sludge to some extent, the Ni cathode electrode suppresses the formation of nickel complex salt sludge. Since it is not an electrode that operates, it is unavoidable that nickel complex salt sludge settles and accumulates after a predetermined electrolysis period, and a sufficient effect is not obtained.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
ニッケル錯塩スラッジの生成の少ないNiアノード電極
を開発して一層長期間ニッケル錯塩スラッジの沈降およ
び蓄積を抑制し、もってNiアノード電極および電解液
の交換回数を減らし、一層の操業効率をあげるべく研究
を行った。その結果、(a)溶融塩電解法により三フッ
化窒素ガスを製造する方法において使用するNiアノー
ド電極は高純度であるほど好ましいと従来から考えられ
ていたが、99.99質量%以上の純度を有する高純度
Niに、合金成分として、SiおよびAlを、Si:2
0〜300ppm、Al:20〜300ppmを共に含
有するNi合金で構成してなるNi合金アノード電極を
用いて溶融塩電解法により三フッ化窒素ガスを製造する
と、生成するニッケル錯塩スラッジの量が格段に減少す
る、(b)純度:99.99質量%以上の高純度Ni
に、合金成分として、SiおよびAlを、Si:20〜
300ppm、Al:20〜300ppm含有させ、さ
らにさらにP,Mg,Zn,Pbの内の1種または2種
以上を合計で30〜300ppm含有させると、なお一
層の優れた効果を奏する、などの研究結果を得たのであ
る。
Therefore, the present inventors have
We have developed a Ni anode electrode that produces less nickel complex salt sludge to suppress sedimentation and accumulation of nickel complex salt sludge for a longer period of time, thus reducing the number of exchanges of the Ni anode electrode and electrolytic solution, and conducting research to further improve operating efficiency. went. As a result, it has been conventionally considered that the higher the purity of the Ni anode electrode used in the method of producing nitrogen trifluoride gas by the molten salt electrolysis method (a), the more preferable it is, but the purity of 99.99% by mass or more. With high purity Ni containing Si and Al as alloy components, Si: 2
When nitrogen trifluoride gas is produced by a molten salt electrolysis method using a Ni alloy anode electrode composed of a Ni alloy containing both 0 to 300 ppm and Al: 20 to 300 ppm, the amount of nickel complex salt sludge produced is remarkably high. (B) Purity: 99.99% by mass or more of high-purity Ni
In addition, Si and Al are added as alloy components, and Si: 20-
A study such that 300 ppm, Al: 20 to 300 ppm are contained, and further, if one or more of P, Mg, Zn, and Pb are contained in a total of 30 to 300 ppm, further excellent effects are exhibited. The result was obtained.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、(1)99.99質量%以上の純
度を有する高純度Niに、合金成分として、Siおよび
Alを、それぞれ、Si:20〜300ppm、Al:
20〜300ppmの割合で含有するNi合金で構成し
てなる三フッ化窒素ガス製造用Ni合金アノード電極、
(2)99.99質量%以上の純度を有する高純度Ni
に、合金成分として、SiおよびAlを、それぞれ、S
i:20〜300ppm、Al:20〜300ppmの
割合で含有し、さらにP,Mg,Zn,Pbの内の1種
または2種以上を合計で30〜300ppm含有するN
i合金で構成してなる三フッ化窒素ガス製造用Ni合金
アノード電極、に特徴を有するものである。
The present invention has been made on the basis of the above research results, and (1) high-purity Ni having a purity of 99.99 mass% or more, and Si and Al as alloy components, respectively. Si: 20 to 300 ppm, Al:
A Ni alloy anode electrode for producing nitrogen trifluoride gas, which is composed of a Ni alloy contained in a proportion of 20 to 300 ppm,
(2) High-purity Ni having a purity of 99.99 mass% or more
And Si and Al as alloy components, respectively, in S
i: 20 to 300 ppm, Al: 20 to 300 ppm, and one or more of P, Mg, Zn, and Pb in a total amount of 30 to 300 ppm N
It is characterized by a Ni alloy anode electrode for producing nitrogen trifluoride gas, which is composed of an i alloy.

【0007】この発明の微量のSiおよびAlを共に含
有するNi合金アノード電極を用いて溶融塩電解法によ
り三フッ化窒素ガスを製造するとニッケル錯塩スラッジ
の生成が格段に少なくなる理由は、この発明のNi合金
アノード電極は微量のSiおよびAlを共に含有するた
めに不均質溶解の原因となる不動態化を防止し、さらに
結晶粒が微細化されているためにNi合金アノード電極
は均質に溶解し、そのためにニッケル錯塩スラッジの生
成が格段に少なくなるものと考えられるが明らかではな
い。SiおよびAlのいずれかしか含有しない場合や、
前記両成分を含有してもそのいずれかの含有量が20p
pm未満であったりする場合には前記作用に所望の効果
が得られず、一方その含有量がSiおよびAlのいずれ
かでも300ppmを越えると、溶融塩電解により生成
する三フッ化窒素ガスに不純物ガスが多く混入すること
になるので好ましくない。したがって、SiおよびAl
の含有量をそれぞれSi:20〜300ppm、Al:
20〜300ppmと定めた。
The reason why the production of the nickel complex salt sludge is remarkably reduced when the nitrogen trifluoride gas is produced by the molten salt electrolysis method using the Ni alloy anode electrode containing both trace amounts of Si and Al of the present invention is Since the Ni alloy anode electrode of 1 contains both trace amounts of Si and Al, it prevents passivation that causes inhomogeneous dissolution, and since the crystal grains are refined, the Ni alloy anode electrode dissolves homogeneously. However, it is considered that the generation of nickel complex salt sludge is significantly reduced, but it is not clear. If it contains only Si or Al,
Even if both of the above components are contained, the content of either one is 20 p
If it is less than pm, the desired effect cannot be obtained in the above-mentioned action. On the other hand, if the content of either Si or Al exceeds 300 ppm, the nitrogen trifluoride gas produced by the molten salt electrolysis contains impurities. It is not preferable because a large amount of gas is mixed. Therefore, Si and Al
Content of Si: 20 to 300 ppm, Al:
It was set to 20 to 300 ppm.

【0008】さらに、99.99質量%以上の純度を有
する高純度Niに、Si:20〜300ppm、Al:
20〜300ppmを含有させ、さらにP,Mg,Z
n,Pbの内の1種または2種以上を合計で30〜30
0ppm含有させると、生成するニッケル錯塩スラッジ
の量はさらに一層少なくなるが、その量が30ppm未
満では一層の効果が得られず、一方、300ppmを越
えて含有させると溶融塩電解により生成する三フッ化窒
素ガスに不純物ガスが多く混入することになるので好ま
しくない。したがって、P,Mg,Zn,Pbの内の1
種または2種以上を合計で30〜300ppmに定め
た。この発明の三フッ化窒素ガス製造用Ni合金アノー
ド電極を製造するために使用する高純度Niの純度は、
上記の通り99.99質量%以上の高純度とすることは
不可欠の要件であって、99.99質量%未満の純度で
は生成するニッケル錯塩スラッジの量は減少せず、生成
する三フッ化窒素ガスに不純物ガスが多く混入するので
好ましくないからである。
Further, in high-purity Ni having a purity of 99.99 mass% or more, Si: 20 to 300 ppm, Al:
20 to 300 ppm, and further P, Mg, Z
One or two or more of n and Pb are 30 to 30 in total
When the content of 0 ppm is contained, the amount of nickel complex salt sludge formed is further reduced, but when the content is less than 30 ppm, further effect cannot be obtained. A large amount of impurity gas is mixed in the nitrogen oxide gas, which is not preferable. Therefore, one of P, Mg, Zn, and Pb
The total amount of species or two or more species was set to 30 to 300 ppm. The purity of the high-purity Ni used for producing the Ni alloy anode electrode for producing nitrogen trifluoride gas of the present invention is
As described above, it is an indispensable requirement to have a high purity of 99.99% by mass or more. If the purity is less than 99.99% by mass, the amount of nickel complex salt sludge produced does not decrease, and the produced nitrogen trifluoride is reduced. This is because a large amount of impurity gas is mixed in the gas, which is not preferable.

【0009】[0009]

【発明の実施の形態】つぎに、この発明の高純度Ni合
金アノード電極を実施例により具体的に説明する。電熱
式溶解るつぼで、それぞれ表1〜2に示される純度の高
純度Niを真空溶解し、これにNi―Si合金およびN
i−Al合金の形で、それぞれ20〜300ppmの範
囲内の所定の量のSiおよびAlを添加含有させてNi
合金を溶製し、さらにこのNi合金の一部にP,Mg,
Zn,Pbの内の1種または2種以上を合計で30〜3
00ppmの範囲内の所定の量を添加含有させ、直径:
100mm×長さ:120mmのインゴットに鋳造し、
これに1100℃の温度で熱間鍛造を施して幅:125
mm×厚さ:23mmの板材とした後、さらに冷間圧延
を施して幅:125mm×厚さ:10mmの冷延板と
し、さらにこれに450〜750℃の範囲内の温度に1
時間保持の条件で再結晶化熱処理を施して、それぞれ表
1〜2に示される平均結晶粒径とし、ついでこれより長
さ:100mm×幅:50mm×厚さ:10mmの寸法
に切り出し、最終的に面削加工にて厚さ:7.5mmと
することにより、それぞれ表1〜2に示されるSiおよ
びAl含有量の本発明高純度Ni合金アノード電極(以
下、本発明アノード電極という)1〜18をそれぞれ製
造した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the high-purity Ni alloy anode electrode of the present invention will be specifically described by way of Examples. An electrothermal melting crucible was used to vacuum-melt high-purity Ni having the purity shown in Tables 1 and 2, and to this, a Ni-Si alloy and N
Ni in the form of an i-Al alloy by adding predetermined amounts of Si and Al in the range of 20 to 300 ppm, respectively.
The alloy is melted, and P, Mg,
One or two or more of Zn and Pb in total is 30 to 3
A predetermined amount within the range of 00 ppm is added and contained, and the diameter:
100mm x length: cast into 120mm ingot,
This is subjected to hot forging at a temperature of 1100 ° C. and a width of 125
mm × thickness: 23 mm plate material, and then further cold-rolled into a width: 125 mm × thickness: 10 mm cold-rolled plate, and further 1 to a temperature in the range of 450 to 750 ° C.
Recrystallization heat treatment was carried out under the condition of holding time to obtain the average crystal grain size shown in Tables 1 and 2, respectively, and then cut out into a size of length: 100 mm x width: 50 mm x thickness: 10 mm to finally obtain By surface-polishing to have a thickness of 7.5 mm, the high-purity Ni alloy anode electrodes of the present invention (hereinafter referred to as the present invention anode electrodes) having Si and Al contents shown in Tables 1 to 2 respectively. 18 were produced respectively.

【0010】また、比較の目的で、同じく表2に示され
る通りSiおよびAlのうちの少なくともいずれかの含
有量がこの発明の範囲から外れた以外は同一の条件で比
較高純度Ni合金アノード電極(以下、比較アノード電
極という)1〜6を製造し、さらに前記真空溶解した純
度:99.996%の高純度Niをそのまま使用して従
来高純度Niアノード電極(以下、従来アノード電極と
いう)をそれぞれ作製した。さらに前記真空溶解した純
度:99.996%の高純度Niをそのまま使用して高
純度Niからなる長さ:100mm×幅:50mm×厚
さ:10mmの寸法を有するカソード電極を作製し用意
した。
For the purpose of comparison, a comparative high purity Ni alloy anode electrode was used under the same conditions except that the content of at least one of Si and Al was out of the range of the present invention, as shown in Table 2 as well. 1 to 6 (hereinafter referred to as comparative anode electrodes) were manufactured, and the conventional high-purity Ni anode electrode (hereinafter referred to as conventional anode electrode) was used as it was by vacuum-melting high-purity Ni having a purity of 99.996%. Each was produced. Further, the vacuum-melted high-purity Ni having a purity of 99.996% was used as it was, and a cathode electrode having dimensions of length: 100 mm × width: 50 mm × thickness: 10 mm made of high-purity Ni was prepared and prepared.

【0011】さらに、モル比でHF/NH4Fが1.7
の酸性弗化アンモニウム塩を用意し、この酸性弗化アン
モニウム塩をSUS304ステンレス鋼にフッ素樹脂を
ライニングした容器に装入し、容器内の酸性弗化アンモ
ニウム塩を温度:90℃に保持して酸性弗化アンモニウ
ム溶融塩を作製した。
Further, the molar ratio of HF / NH 4 F is 1.7.
The acidic ammonium fluoride salt is prepared, and the acidic ammonium fluoride salt is charged into a container in which SUS304 stainless steel is lined with a fluororesin, and the acidic ammonium fluoride salt in the container is kept at a temperature of 90 ° C. A molten ammonium fluoride salt was prepared.

【0012】この本発明アノード電極1〜18、比較ア
ノード電極1〜6および従来アノード電極をそれぞれ溶
融塩内の陽極側に浸漬し、さらに前記高純度Niからな
るカソード電極を溶融塩内の陰極側に浸漬し、アノード
電極とカソード電極の間に電流:10A/dm2の直流
電流を24時間通電し、その後、通電を停止して生成し
たニッケル錯塩スラッジを沈殿回収し、回収したニッケ
ル錯塩スラッジをさらに真空中で加熱乾燥してニッケル
錯塩スラッジの質量を測定し、その結果を表1〜2に示
した。
Each of the anode electrodes 1 to 18 of the present invention, the comparative anode electrodes 1 to 6 and the conventional anode electrode is immersed in the anode side in the molten salt, and the cathode electrode made of the high-purity Ni is further attached to the cathode side in the molten salt. Immerse in the anode electrode and apply a direct current of 10 A / dm 2 between the anode electrode and the cathode electrode for 24 hours, and then stop the energization to precipitate and recover the nickel complex salt sludge, and collect the recovered nickel complex salt sludge. Further, the mass of nickel complex salt sludge was measured by heating and drying in vacuum, and the results are shown in Tables 1-2.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【発明の効果】【The invention's effect】

【0015】表1〜2に示される結果から、Si:20
〜300ppmおよびAl:20〜300ppmを共に
含有するNi合金で構成された本発明アノード電極1〜
18を使用して溶融塩電解すると、高純度Niからなる
従来アノード電極を用いて溶融塩電解した場合に比べて
ニッケル錯塩スラッジの生成量が格段に少ないことが分
かる。しかし20〜300ppmの範囲を外れてSiお
よびAlを含む比較アノード電極1〜6はニッケル錯塩
スラッジの生成量が多くなったり、不純物ガスの発生が
多くなるなどして好ましくないことが分かる。上述のよ
うに、この発明のNi合金アノード電極は、溶融塩電解
に際して、ニッケル錯塩スラッジの生成量が格段に少な
いところから、操業中のアノード電極および溶融電解液
の交換回数を減らすことができ、したがって三フッ化窒
素ガスを効率良く製造することができてFA化に寄与す
るほか、低コスト化も可能とするなど工業上有用な効果
をもたらすものである。
From the results shown in Tables 1 and 2, Si: 20
˜300 ppm and Al: 20-300 ppm together, the present invention anode electrode 1 composed of a Ni alloy
It is understood that when molten salt electrolysis is performed using No. 18, the production amount of nickel complex salt sludge is significantly smaller than that in the case where molten salt electrolysis is performed using a conventional anode electrode made of high-purity Ni. However, it can be seen that the comparative anode electrodes 1 to 6 containing Si and Al out of the range of 20 to 300 ppm are not preferable because the amount of nickel complex salt sludge generated increases and the amount of impurity gas increases. As described above, the Ni alloy anode electrode of the present invention can reduce the number of exchanges of the anode electrode and the molten electrolytic solution during operation, since the amount of nickel complex salt sludge generated is significantly small during molten salt electrolysis. Therefore, the nitrogen trifluoride gas can be produced efficiently, which contributes to FA production and also brings about industrially useful effects such as cost reduction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 99.99質量%以上の純度を有する高
純度Niに、合金成分として、SiおよびAlを、それ
ぞれ、 Si:20〜300ppm、 Al:20〜300ppm、 の割合で含有するNi合金で構成してなることを特徴と
する三フッ化窒素ガス製造用Ni合金アノード電極。
1. A Ni alloy containing high-purity Ni having a purity of 99.99% by mass or more, and Si and Al as alloy components in the proportions of Si: 20 to 300 ppm and Al: 20 to 300 ppm, respectively. And a Ni alloy anode electrode for producing nitrogen trifluoride gas.
【請求項2】 99.99質量%以上の純度を有する高
純度Niに、合金成分として、SiおよびAlを、それ
ぞれ、 Si:20〜300ppm、 Al:20〜300ppm、 の割合で含有し、さらにP,Mg,Zn,Pbの内の1
種または2種以上を合計で30〜300ppm含有する
Ni合金で構成してなることを特徴とする三フッ化窒素
ガス製造用Ni合金アノード電極。
2. High-purity Ni having a purity of 99.99% by mass or more contains Si and Al as alloy components in the proportions of Si: 20 to 300 ppm and Al: 20 to 300 ppm, respectively. 1 of P, Mg, Zn, Pb
A Ni alloy anode electrode for producing nitrogen trifluoride gas, comprising a Ni alloy containing 30 to 300 ppm in total of one kind or two or more kinds.
JP2002075593A 2002-03-19 2002-03-19 Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS Withdrawn JP2003268469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075593A JP2003268469A (en) 2002-03-19 2002-03-19 Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075593A JP2003268469A (en) 2002-03-19 2002-03-19 Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS

Publications (1)

Publication Number Publication Date
JP2003268469A true JP2003268469A (en) 2003-09-25

Family

ID=29204623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075593A Withdrawn JP2003268469A (en) 2002-03-19 2002-03-19 Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS

Country Status (1)

Country Link
JP (1) JP2003268469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049834A1 (en) * 2017-09-06 2019-03-14 関東電化工業株式会社 Electrode and production method therefor, and production method for regenerated electrode
CN111270078A (en) * 2020-03-03 2020-06-12 中国恩菲工程技术有限公司 Method for recovering valuable metals in nickel slag

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049834A1 (en) * 2017-09-06 2019-03-14 関東電化工業株式会社 Electrode and production method therefor, and production method for regenerated electrode
CN110651069A (en) * 2017-09-06 2020-01-03 关东电化工业株式会社 Electrode and method for manufacturing same, and method for manufacturing regenerative electrode
KR20200047446A (en) * 2017-09-06 2020-05-07 칸토 덴카 코교 가부시키가이샤 Electrode and method for manufacturing same, and method for producing regenerative electrode
JPWO2019049834A1 (en) * 2017-09-06 2020-08-20 関東電化工業株式会社 Electrode, method for manufacturing the same, and method for manufacturing regenerated electrode
JP7122315B2 (en) 2017-09-06 2022-08-19 関東電化工業株式会社 Electrode, method for producing same, and method for producing regenerated electrode
US11821099B2 (en) 2017-09-06 2023-11-21 Kanto Denka Kogyo Co., Ltd. Electrode production method
KR102614534B1 (en) * 2017-09-06 2023-12-14 칸토 덴카 코교 가부시키가이샤 Electrode and its manufacturing method and manufacturing method of regenerative electrode
CN111270078A (en) * 2020-03-03 2020-06-12 中国恩菲工程技术有限公司 Method for recovering valuable metals in nickel slag

Similar Documents

Publication Publication Date Title
US6783611B2 (en) Phosphorized copper anode for electroplating
US9013009B2 (en) Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having highy-purity lanthanum as main component
JP5445725B1 (en) Method for producing Al-Sc alloy
JP2863058B2 (en) Heat-resistant metal alloy that can be processed into a homogeneous and pure ingot and a method for producing the alloy
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
WO2020196013A1 (en) Method and apparatus for producing aluminum material
NO344829B1 (en) Process for electrolytic production and refining of silicon
WO2006037999A2 (en) Electro-reduction process
JP5623643B2 (en) High purity erbium, sputtering target made of high purity erbium, metal gate film mainly containing high purity erbium, and method for producing high purity erbium
JP2009001866A (en) Erbium sputtering target, and method for producing the same
JP2003268469A (en) Ni ALLOY ANODE FOR MANUFACTURING NITROGEN TRIFLUORIDE GAS
JPH0748658A (en) Material for sacrificial electrode for preventing corrosion excellent in corrosion resistance
CN1010486B (en) Process for producing grid alloy of battery
JP3985130B2 (en) High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield
JPH0357200B2 (en)
JP2000212678A (en) High purity tantalum for thin film formation and its production
CN108441892B (en) Method for refining high-purity titanium through metastable state high-temperature molten salt electrolysis based on complex ions
KR101734119B1 (en) The way of predetermining the conditions for electrolytic reduction of metal and the way of electrolytic reduction of rare-earth metal applied thereby
CN112159993A (en) Yttrium-containing mixed rare earth metal, rare earth hydrogen storage alloy and preparation method thereof
WO2004074555A1 (en) Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
JP5738993B2 (en) High purity yttrium, method for producing high purity yttrium, high purity yttrium sputtering target, metal gate film formed using high purity yttrium sputtering target, and semiconductor device and device including the metal gate film
JP2017214612A (en) Electrolytic refining method for copper
CN116706345A (en) Magnesium alloy anode plate for magnesium air battery and preparation method thereof
JP2000103609A (en) Production of nitrogen trifluoride gas

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607