JP2000212678A - High purity tantalum for thin film formation and its production - Google Patents

High purity tantalum for thin film formation and its production

Info

Publication number
JP2000212678A
JP2000212678A JP11012588A JP1258899A JP2000212678A JP 2000212678 A JP2000212678 A JP 2000212678A JP 11012588 A JP11012588 A JP 11012588A JP 1258899 A JP1258899 A JP 1258899A JP 2000212678 A JP2000212678 A JP 2000212678A
Authority
JP
Japan
Prior art keywords
tantalum
ppm
metal elements
content
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11012588A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Shunichiro Yamaguchi
俊一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11012588A priority Critical patent/JP2000212678A/en
Publication of JP2000212678A publication Critical patent/JP2000212678A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress an abnormal discharging phenomenon and the generation of particles at the time of sputtering by sputtering tantalum in which each content of Nb, W, Mo, transition metal elements, high m.p. metal elements, heavy metal elements other than those, radioactive elements such as U and alkali metal elements is controlled to a ratio equal to or below the specified one. SOLUTION: This high purity tantalum for thin film formation contains, by weight, <=10 ppm Nb, W and Mo, <=1 ppm transition metal elements, high m.p. metal elements and heavy metal elements other than those, <=1 ppb radioactive elements such as U and Th and <=1 ppm alkali metal elements such as Na and K. Each content of oxygen and carbon is desirably controlled to <=100 ppm. Ta2O5 is added to an electrolytic bath of fluoride-chloride or the like, and tantalum scrap having >=10% tantalum content is subjected to electrolytic refining at 600 to 1000 deg.C. High purity tantalum powder electrodeposited on a cathode is press-formed and is thereafter uniformly melted by an electron beam or the like to form into an ingot, which is cut into a target shape to obtain a sputtering target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は、タンタル化合物又はタンタル
スクラップを溶融塩電解して高純度電解析出(電析)タ
ンタルを得、さらにこの高純度電解析出(電析)タンタ
ルを電子ビーム等により溶解して揮発成分を除去し、高
融点金属、放射性元素、アルカリ金属、重金属並びにガ
ス成分を可能な限り除去して、半導体装置の薄膜形成に
有効な高純度タンタル及び低コストで製造できる方法に
関する。なお、以下に説明するppmまたはppbは全
て重量ppmまたは重量ppbを意味する(以下、「重
量」の記載を省略する)。
According to the present invention, high purity electrolytic deposition (electrodeposition) tantalum is obtained by subjecting a tantalum compound or tantalum scrap to molten salt electrolysis, and the high purity electrolytic deposition (electrodeposition) tantalum is dissolved by an electron beam or the like. The present invention relates to a high-purity tantalum effective for forming a thin film of a semiconductor device and a method for producing the same at low cost by removing volatile components, removing high-melting point metals, radioactive elements, alkali metals, heavy metals and gas components as much as possible. Note that all ppm or ppb described below means ppm by weight or ppb by weight (hereinafter, description of “weight” is omitted).

【0002】[0002]

【従来の技術】近年、半導体の飛躍的な進歩に端を発し
て様々な電子機器が生まれ、さらにその性能の向上と新
しい機器の開発が日々刻々なされている。このような中
で、電子デバイス機器がより微小化し、かつ集積度が高
まる方向にある。これら多くの製造工程の中で多数の薄
膜が形成されるが、タンタルもその特異な金属的性質か
らタンタル及びその合金膜、タンタルシリサイド膜、あ
るいはタンタル酸化物膜等として、多くの電子機器用薄
膜の形成に利用されている。このようなタンタル(合
金、化合物を含む)の薄膜を形成する場合には、半導体
装置を汚染する物質が存在しないこと、すなわちそれ自
体が極めて高い純度を必要とする。
2. Description of the Related Art In recent years, a variety of electronic devices have been born starting from the dramatic progress of semiconductors, and their performance has been improved and new devices have been developed every day. In such a situation, electronic device devices have been miniaturized and the degree of integration has been increasing. Many thin films are formed in many of these manufacturing processes, and tantalum is also used as a thin film for electronic devices as tantalum and its alloy film, tantalum silicide film, or tantalum oxide film due to its unique metallic properties. It is used to form In the case of forming such a thin film of tantalum (including an alloy and a compound), there is no substance contaminating the semiconductor device, that is, the semiconductor device itself requires extremely high purity.

【0003】半導体装置等に使用される薄膜は一層薄く
かつ短小化される方向にあり、相互間の距離が極めて小
さく集積密度が向上しているために、薄膜を構成する物
質あるいはその薄膜に含まれる不純物が隣接する薄膜に
拡散するという問題が発生する。これにより自膜及び隣
接膜の構成物質のバランスが崩れ、本来所有していなけ
ればならない膜の機能が低下するという大きな問題が起
こる。このような薄膜の製造工程において、数百度に加
熱される場合があり、また半導体装置を組み込んだ電子
機器の使用中にも温度が上昇する。このような温度上昇
は前記物質の拡散係数をさらに上げ、拡散による電子機
器の機能低下に大きな問題を生ずることとなる。
[0003] Thin films used in semiconductor devices and the like tend to be thinner and shorter, and the distance between them is extremely small and the integration density is improved. The problem arises that impurities to be diffused into the adjacent thin film. As a result, the balance between the constituent materials of the self-film and the adjacent film is lost, and a major problem occurs in that the function of the film that must be originally possessed is reduced. In the process of manufacturing such a thin film, the thin film may be heated to several hundred degrees, and the temperature may increase during use of an electronic device incorporating the semiconductor device. Such a rise in temperature further increases the diffusion coefficient of the substance, and causes a serious problem in that the function of electronic devices is reduced due to diffusion.

【0004】特に半導体装置では、不純物であるUやT
h等の放射性元素は放射線によるMOSへの悪影響があ
り、Na、K等のアルカリ金属やアルカリ土類金属はM
OS界面特性の劣化を引き起こし、Fe、Ni、Cr等
の遷移金属若しくは重金属又は目的とする以外のW、M
o、Nb等の不純物高融点金属は界面準位の発生や接合
リークが起こすという問題がある。このため、これらが
タンタル材を通じて半導体装置への汚染源とならないよ
うに、効果的に抑制することが必要である。
In particular, in semiconductor devices, impurities such as U and T
Radioactive elements such as h have an adverse effect on MOS due to radiation, and alkali metals and alkaline earth metals such as Na and K are M
The transition interface or heavy metal such as Fe, Ni, Cr, etc. or W, M
Impurity refractory metals such as o and Nb have a problem that interface levels are generated and junction leakage occurs. For this reason, it is necessary to effectively control these so that they do not become a source of contamination to the semiconductor device through the tantalum material.

【0005】また、一般に上記のタンタル及びその合金
膜、タンタルシリサイド膜、あるいはタンタル酸化物膜
等はスパッタリングや真空蒸着等の物理的蒸着法により
形成することが多い。この外気相反応法等の化学蒸着法
によっても成膜することができる。この一例としてスパ
ッタリング法について説明する。このスパッタリング法
は陰極に設置したターゲットに、Ar+などの正イオン
を物理的に衝突させてターゲットを構成する金属原子を
その衝突エネルギーで放出させる手法である。
In general, the above-mentioned tantalum and its alloy film, tantalum silicide film, tantalum oxide film and the like are often formed by physical vapor deposition such as sputtering and vacuum vapor deposition. A film can also be formed by a chemical vapor deposition method such as the external gas phase reaction method. The sputtering method will be described as an example. This sputtering method is a method in which positive ions such as Ar + physically collide with a target provided on a cathode, and metal atoms constituting the target are emitted with the collision energy.

【0006】このスパッタリング膜の形成に際して、タ
ンタル(合金・化合物)ターゲットに不純物が存在する
と、スパッタチャンバ内に浮遊する粗大化した粒子が基
板上に付着して薄膜回路を短絡させたり薄膜の突起物の
原因となるパーテイクルの発生量が増し、またターゲッ
ト中にガス成分である酸素、炭素、水素、窒素等が存在
するとスパッタリング中に、該ガスによる突発が原因と
考えられる異常放電を起こし、均一な膜が形成されない
という問題が発生する。
In the formation of this sputtered film, if impurities are present in the tantalum (alloy / compound) target, coarse particles floating in the sputter chamber adhere to the substrate and short-circuit the thin-film circuit, or form a thin-film projection. The amount of generated particles causing the increase increases, and if oxygen, carbon, hydrogen, nitrogen, and the like, which are gas components, are present in the target, during sputtering, an abnormal discharge which is considered to be caused by the sudden occurrence of the gas is caused, and the uniform discharge occurs. The problem that a film is not formed occurs.

【0007】このようなことから、従来不純物となる遷
移金属やアルカリ金属その他の不純物元素、さらに酸素
等のガス成分が低減された高純度のタンタルの製造が望
まれていた。従来、この高純度タンタルの製造方法とし
ては、弗化タンタルカリウム(KTaF)結晶をナ
トリウム還元し、これを電子ビーム溶解してインゴット
化していた。しかし、この方法は高価な弗化タンタルカ
リウム(KTaF)結晶を使用しなければならず、
さらに製造されたタンタルはUやTh等の放射性元素、
W、Mo、Nb等の不純物高融点金属や重金属が多く存
在するという問題があった。また、この他にもタンタル
酸化物(Ta)をカーボンで還元する方法もある
が、これにより生成したものはさらに純度が悪かった。
このようなことから、工業的規模での真のタンタルの高
純度化は実現できていなかった。
In view of the above, it has been desired to produce high-purity tantalum having a reduced content of impurities such as transition metals, alkali metals, and other impurity elements as well as oxygen, which are impurities. Conventionally, as a method of producing this high-purity tantalum, potassium tantalum fluoride (K 2 TaF 7 ) crystal is reduced with sodium, and this is ingot-formed by electron beam melting. However, this method must use expensive potassium tantalum fluoride (K 2 TaF 7 ) crystals,
Furthermore, the manufactured tantalum is a radioactive element such as U or Th,
There is a problem that a large amount of impurities such as W, Mo, Nb and other high melting point metals and heavy metals exist. In addition, there is a method of reducing tantalum oxide (Ta 2 O 5 ) with carbon, but the product produced by this method has a further lower purity.
For this reason, high purity of true tantalum on an industrial scale has not been realized.

【0008】[0008]

【発明が解決しょうとする課題】本発明は、上記の諸問
題点の解決、特に積層薄膜を構成する物質の相互拡散に
起因する汚染物質の抑制、及びスパッタリングによる成
膜に際しては、異常放電現象やパーテイクルを極力制限
することができるターゲット等に使用できる高純度タン
タル及びその製造方法を提供することを目的としたもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, in particular, suppresses contaminants caused by interdiffusion of materials constituting a laminated thin film, and exhibits an abnormal discharge phenomenon when forming a film by sputtering. It is an object of the present invention to provide high-purity tantalum that can be used as a target or the like capable of limiting particles and particles as much as possible, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
め本発明は、1 Nb、W、Moの各元素が10ppm
以下、遷移金属元素、高融点金属元素及び前記以外の重
金属元素の含有量が1ppm以下、U、Th等の放射性
元素の各含有量が1ppb以下、Na、K等のアルカリ
金属元素の各含有量が1ppm以下であることを特徴と
する薄膜形成用高純度タンタル2 ガス成分である酸素
及び炭素含有量が100ppm以下であることを特徴と
する上記1記載の薄膜形成用高純度タンタル3 タンタ
ル化合物又はタンタルスクラップを溶融塩電解して電解
析出高純度タンタルとした後、電子ビーム等により溶解
して揮発成分を除去することを特徴とする薄膜形成用高
純度タンタルの製造方法。、を提供する。
In order to solve the above-mentioned problems, the present invention provides a method in which each element of 1 Nb, W and Mo contains 10 ppm.
Hereinafter, the contents of transition metal elements, high melting point metal elements and heavy metal elements other than those described above are 1 ppm or less, the contents of radioactive elements such as U and Th are 1 ppb or less, and the contents of alkali metal elements such as Na and K. 2. The high-purity tantalum 2 for forming a thin film, wherein the content of oxygen and carbon as gas components is 100 ppm or less. A method for producing high-purity tantalum for forming a thin film, characterized in that tantalum scrap is subjected to molten salt electrolysis to obtain high-purity tantalum by electrolytic deposition, and then dissolved by an electron beam or the like to remove volatile components. ,I will provide a.

【0010】[0010]

【発明の実施の形態】本発明に用いるタンタルの原料と
しては、タンタルスクラップを使用することができる。
タンタルスクラップはタンタル含有量が10%以上のも
のであればよい。また、その形態は不純物を含むタンタ
ル金属の他、Ta等の酸化物、塩化物、弗化物で
あってもよい。溶融塩電解用の浴としては、弗化物−塩
化物、弗化物浴を使用することができる。この電解浴に
例えばTaを添加して電解精製する。電解温度は
浴の組成によって変えるが、通常600〜1000°C
の範囲で実施する。アノードにはグラファイトを使用
し、カソードにはNi棒等を用いる。電解中アノードか
らはCO、COガスが発生する。そして、カソードに
電着した高純度のタンタル粉を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a raw material of tantalum used in the present invention, tantalum scrap can be used.
The tantalum scrap may have a tantalum content of 10% or more. In addition, the form may be an oxide such as Ta 2 O 5 , a chloride, or a fluoride in addition to tantalum metal containing impurities. As a bath for molten salt electrolysis, a fluoride-chloride or fluoride bath can be used. For example, Ta 2 O 5 is added to the electrolytic bath to perform electrolytic purification. The electrolysis temperature varies depending on the composition of the bath.
Implement within the range. Graphite is used for the anode, and Ni rod or the like is used for the cathode. During the electrolysis, CO and CO 2 gases are generated from the anode. Then, high-purity tantalum powder electrodeposited on the cathode can be obtained.

【0011】この溶融塩電解によって得た高純度タンタ
ル粉を一旦プレスした後、電子ビーム溶解、真空アーク
溶解、プラズマ溶解、水冷銅るつぼを使用した誘導溶解
等により均一に溶解し、さらに揮発成分を除去する。こ
れを鋳造してインゴットとする。いずれの場合も、酸素
の混入を防止するために真空中または不活性雰囲気中で
溶解する。ガス成分や揮発し易いアルカリ金属元素など
の不純物は、この工程でさらに減少する。これにより、
Nb、W、Moの各元素が10ppm以下、遷移金属元
素、高融点金属元素又は前記以外の重金属元素の各含有
量が1ppm以下、U、Th等の放射性元素の含有量が
1ppb以下、Na、K等のアルカリ金属元素の各含有
量が1ppm以下である高純度タンタルが得られる。
After the high-purity tantalum powder obtained by the molten salt electrolysis is pressed once, it is uniformly dissolved by electron beam melting, vacuum arc melting, plasma melting, induction melting using a water-cooled copper crucible, and the volatile components are further reduced. Remove. This is cast into an ingot. In any case, the dissolution is performed in a vacuum or in an inert atmosphere to prevent entry of oxygen. Impurities such as gas components and easily volatile alkali metal elements are further reduced in this step. This allows
Each element of Nb, W, Mo is 10 ppm or less, each content of transition metal element, high melting point metal element or other heavy metal element is 1 ppm or less, content of radioactive elements such as U and Th is 1 ppb or less, Na, High-purity tantalum in which the content of each of the alkali metal elements such as K is 1 ppm or less is obtained.

【0012】必要に応じて、このようにして作製したイ
ンゴットをターゲット形状に切り出し、表面を研磨し
て、不純物量を制限した薄膜形成用タンタルスパッタリ
ングターゲットとする。これを、高純度シリコンを用い
て粉末冶金法等により高純度タンタルシリサイドのター
ゲットとすることもできる。スパッタリングを実施する
場合には、このタンタルターゲット(合金、シリサイド
等の化合物を含む)を銅製のバッキングプレートにろう
付けし、これをスパッタチャンバに挿入し、例えばタン
タルシリサイドはVLSIやMOSデバイスの配線材
料、ゲート電極あるいはドレイン電極として使用でき
る。
If necessary, the ingot thus manufactured is cut into a target shape, and the surface is polished to obtain a tantalum sputtering target for forming a thin film with a limited amount of impurities. This can be used as a target of high purity tantalum silicide by powder metallurgy using high purity silicon. When performing sputtering, this tantalum target (including a compound such as an alloy and a silicide) is brazed to a copper backing plate and inserted into a sputtering chamber. For example, tantalum silicide is used as a wiring material for VLSI and MOS devices. , Can be used as a gate electrode or a drain electrode.

【0013】このようなタンタル薄膜は半導体装置に使
用される各種の薄膜に隣接することになるので、上記の
U、Th等の放射性元素、Na、K等のアルカリ金属、
Fe、Ni、Cr等の遷移金属若しくは高融点金属又は
不純物となるW、Mo、Nb等の重金属は特に低減させ
る必要がある。これによって、タンタル(合金、シリサ
イド等の化合物を含む)膜から発生する汚染物質または
影響を減すことができるとともに、配線又は電極材料等
として有効に機能する緻密な膜を形成することができ
る。
Since such a tantalum thin film is adjacent to various thin films used in a semiconductor device, the above-mentioned radioactive elements such as U and Th, alkali metals such as Na and K,
It is particularly necessary to reduce transition metals such as Fe, Ni and Cr or high melting point metals or heavy metals such as W, Mo and Nb which become impurities. This can reduce contaminants or influence generated from the tantalum (including compounds such as alloys and silicide) film and form a dense film that effectively functions as a wiring or electrode material.

【0014】次に、本発明を実施例及び比較例に基づい
て詳細に説明する.なお、本実施例はあくまで1例であ
り、この例に制限されるものではない。すなわち、本発
明は特許請求の範囲によってのみ制限されるもので、本
発明に含まれる実施例以外の態様あるいは変形を全て包
含するものである。 (実施例1)Ta150Kgを原料として使用
し、KCl−KF−KTaF−Taの電解浴
を用いて電解析出タンタルを得た。電解浴中のTa濃度
は8wt%である。電解条件は温度720°C、電流密
度0.1A/cmである。Ta濃度を5〜10wt%
に保つために、半連続的にTaを添加した。アノ
ードからはCO、COガスの発生が確認された。この
溶融塩電解によってカソード側に約50Kgの電解析出
物である高純度タンタル粉得られた。この高純度タンタ
ル粉を電子ビーム溶解装置に適合するように所定の形に
プレス成型した後、電子ビームにより均一溶解してイン
ゴットを得た。
Next, the present invention will be described in detail based on examples and comparative examples. This embodiment is merely an example, and the present invention is not limited to this example. That is, the present invention is limited only by the scope of the claims, and covers all aspects or modifications other than the examples included in the present invention. (Example 1) Using 150 kg of Ta 2 O 5 as a raw material, electrolytically deposited tantalum was obtained using an electrolytic bath of KCl-KF-K 2 TaF 7 -Ta 2 O 5 . The Ta concentration in the electrolytic bath is 8% by weight. Electrolysis conditions are a temperature of 720 ° C. and a current density of 0.1 A / cm 2 . Ta concentration of 5 to 10 wt%
Ta 2 O 5 was added semi-continuously to keep Generation of CO and CO 2 gases was confirmed from the anode. By this molten salt electrolysis, a high-purity tantalum powder as an electrolytic deposit of about 50 kg was obtained on the cathode side. This high-purity tantalum powder was press-molded into a predetermined shape so as to be compatible with an electron beam melting apparatus, and then uniformly melted with an electron beam to obtain an ingot.

【0015】原料としてのTa、溶融塩電解によ
るタンタル電解析出物及び電子ビーム後のインゴットの
不純物の分析結果を表1に示す。この表1から明らかな
ように、Ta原料の段階ではU、Th等の放射性
元素、Na、K等のアルカリ金属、Fe、Ni、Cr等
の遷移金属若しくは高融点金属又は不純物となるW、M
o、Nb等の重金属並びに酸素、炭素のガス成分はいず
れも高いが、溶融塩電解後はいずれの不純物元素は著し
く減少している。この段階では、酸素やNa、K等のア
ルカリ金属、Fe、Ni、Cr等の遷移金属は、まだ目
的とする低減量に至っていない(Kは浴からの汚染によ
り、むしろ上昇する)。しかし、電子ビーム溶解後は揮
発性成分が除去され、酸素は20ppmにまで減少して
いる。以上から、Nb、W、Moの各元素が10ppm
以下、遷移金属元素、高融点金属元素又は前記以外の重
金属元素の各含有量が1ppm以下、U、Th等の放射
性元素の各含有量が1ppb以下、Na、K等のアルカ
リ金属元素の各含有量が1ppm以下である薄膜形成用
高純度タンタルを得る初期の目的が達せられた。
Table 1 shows the results of analysis of Ta 2 O 5 as a raw material, tantalum electrolytic deposits by molten salt electrolysis, and impurities in the ingot after the electron beam. As is clear from Table 1, at the stage of the Ta 2 O 5 raw material, it becomes a radioactive element such as U and Th, an alkali metal such as Na and K, a transition metal such as Fe, Ni, and Cr, or a high melting point metal or an impurity. W, M
The heavy metals such as o and Nb, and the gas components of oxygen and carbon are all high, but all the impurity elements are significantly reduced after the electrolysis of the molten salt. At this stage, oxygen, alkali metals such as Na and K, and transition metals such as Fe, Ni, and Cr have not yet reached the intended reduction amount (K increases due to contamination from the bath). However, after electron beam melting, volatile components have been removed and oxygen has been reduced to 20 ppm. From the above, each element of Nb, W, and Mo is 10 ppm
Hereinafter, each content of a transition metal element, a high melting point metal element or a heavy metal element other than the above is 1 ppm or less, each content of a radioactive element such as U or Th is 1 ppb or less, and each content of an alkali metal element such as Na or K is contained. The initial purpose of obtaining high-purity tantalum for forming a thin film having an amount of 1 ppm or less has been achieved.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例2)Taスクラップ100Kgを
原料として使用し、NaF−KF−LiF−KTaF
の電解浴を用いて電解析出タンタルを得た。電解浴中
のTa濃度は8wt%である。電解条件は温度800°
C、電流密度0.1A/cmである。アノードにはタ
ンタル含有金属を用いた。この溶融塩電解によってカソ
ード側に約20Kgの電解析出物である高純度タンタル
粉得られた。この高純度タンタル粉を電子ビーム溶解装
置に適合するように所定の形にプレス成型した後、電子
ビームにより均一溶解してインゴットを得た。
Example 2 Using 100 kg of Ta scrap as a raw material, NaF-KF-LiF-K 2 TaF was used.
Using the electrolytic bath No. 7 , electrolytically deposited tantalum was obtained. The Ta concentration in the electrolytic bath is 8% by weight. Electrolysis condition is temperature 800 °
C, the current density is 0.1 A / cm 2 . A tantalum-containing metal was used for the anode. By this molten salt electrolysis, high-purity tantalum powder as an electrolytic deposit of about 20 kg was obtained on the cathode side. This high-purity tantalum powder was press-molded into a predetermined shape so as to be compatible with an electron beam melting apparatus, and then uniformly melted with an electron beam to obtain an ingot.

【0018】原料としてのTaスクラップ、溶融塩電解
によるタンタル電解析出物及び電子ビーム後のインゴッ
トの不純物の分析結果を表2に示す。この表2から明ら
かなように、Taスクラップ原料の段階ではU、Th等
の放射性元素、Na、K等のアルカリ金属、Fe、N
i、Cr等の遷移金属若しくは高融点金属又は不純物と
なるW、Mo、Nb等の重金属並びに酸素、炭素のガス
成分はいずれも高いが、溶融塩電解後はいずれの不純物
元素も著しく減少している。この段階では、実施例1と
同様に酸素やNa、K等のアルカリ金属、Fe、Ni、
等の遷移金属は、まだ目的とする低減量に至っていない
(Na、Kは浴からの汚染により、むしろ上昇する)。
しかし、電子ビーム溶解後は揮発性成分が除去され、酸
素は40ppmにまで減少している。以上から、Nb、
W、Moの各元素が10ppm以下、遷移金属元素、高
融点金属元素又は前記以外の重金属元素の各含有量が1
ppm以下、U、Th等の放射性元素の各含有量が1p
pb以下、Na、K等のアルカリ金属元素の各含有量が
1ppm以下である薄膜形成用高純度タンタルを得る初
期の目的が達せられた。このように、本発明は半導体装
置等に使用されるタンタルまたはタンタル化合物膜から
の汚染物質が極めて低減させることができるという優れ
た効果を有している。
Table 2 shows the results of analysis of Ta scrap as a raw material, tantalum electrolytic deposits by molten salt electrolysis, and impurities of the ingot after the electron beam. As is clear from Table 2, at the stage of the Ta scrap raw material, radioactive elements such as U and Th, alkali metals such as Na and K, Fe, N
The transition metal such as i, Cr or the high melting point metal or the heavy metal such as W, Mo, Nb, which is an impurity, and the gas components of oxygen and carbon are all high. I have. At this stage, as in Embodiment 1, oxygen, alkali metals such as Na and K, Fe, Ni,
Transition metals such as these have not yet reached the desired reduction (Na, K rather rise due to contamination from the bath).
However, after the electron beam melting, the volatile components were removed and the oxygen was reduced to 40 ppm. From the above, Nb,
Each element of W and Mo is 10 ppm or less, and each content of transition metal element, high melting point metal element or heavy metal element other than the above is 1
ppm or less, each content of radioactive elements such as U and Th is 1p
The initial object of obtaining high-purity tantalum for forming a thin film having a content of alkali metal elements such as pb or less and an alkali metal element such as Na or K of 1 ppm or less was achieved. As described above, the present invention has an excellent effect that contaminants from a tantalum or tantalum compound film used for a semiconductor device or the like can be extremely reduced.

【0019】[0019]

【表2】 [Table 2]

【0020】次に、上記実施例1及び2で得られたタン
タルインゴットから円盤形状にタンタルターゲットを成
型し、これをバッキングプレートに取付け、スパッタリ
ングして薄膜のシート抵抗とパーティクルの発生個数を
調べた。その結果を表3に示す。また、比較のために純
度99.9%のタンタルターゲットを使用し、同条件で
スパッタリングを行った。その結果も同表3に載せた。
この表3から明らかなように、比較例では350μΩ・
cmであるのに対して、純度の高い実施例1及び2のシ
ート抵抗はそれぞれ250μΩ・cm及び260μΩ・
cmであり、本実施例の良好な性質が確認できた。ま
た、パーティクルの発生数は比較例では50ケ/ ウェ
ハーであるのに対し実施例1及び2では10ケ/ ウェ
ハー及び15ケ/ ウェハーであり、パーティクルの発
生数が著しく低いことが分かる。
Next, a disk-shaped tantalum target was molded from the tantalum ingots obtained in Examples 1 and 2 above, mounted on a backing plate, and sputtered to examine the sheet resistance of the thin film and the number of generated particles. . Table 3 shows the results. For comparison, sputtering was performed under the same conditions using a tantalum target having a purity of 99.9%. The results are also shown in Table 3.
As is clear from Table 3, in the comparative example, 350 μΩ ·
cm, whereas the sheet resistances of the highly pure Examples 1 and 2 are 250 μΩ · cm and 260 μΩ · cm, respectively.
cm, which confirms the favorable properties of this example. In addition, the number of generated particles was 50 / wafer in the comparative example, but was 10 / wafer and 15 / wafer in Examples 1 and 2, indicating that the number of generated particles was extremely low.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明は、溶融塩電解法と電子ビーム等
の溶解法を併用することによって、Nb、W、Moの各
元素を10ppm以下、遷移金属元素、高融点金属元素
又は前記以外の重金属元素の各含有量を1ppm以下、
U、Th等の放射性元素の各を1ppb以下、Na、K
等のアルカリ金属元素の各含有量を1ppm以下とした
薄膜形成用高純度タンタルを得ることができる。そして
このタンタルの純度の向上により、半導体装置等の積層
薄膜を構成する際のタンタルからの汚染物質を効果的に
防止することができるとともに、薄膜の形成の際に使用
されるスパッタリング時の異常放電現象やパーティクル
発生が効果的に抑制でき、さらに本発明はスクラップか
らでも低コストで容易に製造できるという優れた効果を
有する。
According to the present invention, the combined use of the molten salt electrolysis method and the dissolving method such as an electron beam can reduce the content of each of Nb, W, and Mo to 10 ppm or less, a transition metal element, a high melting point metal element and other elements. Each content of heavy metal element is 1 ppm or less,
Each of radioactive elements such as U and Th is 1 ppb or less, Na, K
It is possible to obtain a high-purity tantalum for forming a thin film in which the content of each of the alkali metal elements such as is 1 ppm or less. By improving the purity of tantalum, contaminants from tantalum when forming a laminated thin film such as a semiconductor device can be effectively prevented, and abnormal discharge during sputtering used when forming the thin film is performed. Phenomena and particle generation can be effectively suppressed, and the present invention has an excellent effect that it can be easily manufactured at low cost even from scrap.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年3月12日(1999.3.1
2)
[Submission date] March 12, 1999 (1999.3.1.
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】[0016]

【表1】 [Table 1]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】[0019]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Nb、W、Moの各元素が10重量pp
m以下、遷移金属元素、高融点金属元素及び前記以外の
重金属元素の各含有量が1重量ppm以下、U、Th等
の放射性元素の各含有量が1重量ppb以下、Na、K
等のアルカリ金属元素の各含有量が1重量ppm以下で
あることを特徴とする薄膜形成用高純度タンタル。
1. Each element of Nb, W, and Mo is 10 weight pp.
m or less, each content of transition metal element, high melting point metal element and heavy metal element other than the above is 1 wt ppm or less, each content of radioactive elements such as U and Th is 1 wt ppb or less, Na, K
High-purity tantalum for forming a thin film, wherein each content of an alkali metal element such as the above is 1 wt ppm or less.
【請求項2】 ガス成分である酸素及び炭素含有量が1
00重量ppm以下であることを特徴とする請求項1記
載の薄膜形成用高純度タンタル。
2. The content of oxygen and carbon as gas components is 1
2. The high-purity tantalum for forming a thin film according to claim 1, wherein the content is not more than 00 ppm by weight.
【請求項3】 タンタル化合物又はタンタルスクラップ
を溶融塩電解して電解析出高純度タンタルとした後、電
子ビーム等により溶解して揮発成分を除去することを特
徴とする薄膜形成用高純度タンタルの製造方法。
3. A high-purity tantalum for thin film formation, wherein a tantalum compound or tantalum scrap is subjected to molten salt electrolysis to obtain electrolytically deposited high-purity tantalum, and then dissolved by an electron beam or the like to remove volatile components. Production method.
JP11012588A 1999-01-21 1999-01-21 High purity tantalum for thin film formation and its production Pending JP2000212678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11012588A JP2000212678A (en) 1999-01-21 1999-01-21 High purity tantalum for thin film formation and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11012588A JP2000212678A (en) 1999-01-21 1999-01-21 High purity tantalum for thin film formation and its production

Publications (1)

Publication Number Publication Date
JP2000212678A true JP2000212678A (en) 2000-08-02

Family

ID=11809527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11012588A Pending JP2000212678A (en) 1999-01-21 1999-01-21 High purity tantalum for thin film formation and its production

Country Status (1)

Country Link
JP (1) JP2000212678A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363662A (en) * 2001-06-01 2002-12-18 Nikko Materials Co Ltd Method for recovery of high-purity tantalum, high-purity tantalum sputtering target, and thin film deposited by using this sputtering target
US6566161B1 (en) * 1998-05-27 2003-05-20 Honeywell International Inc. Tantalum sputtering target and method of manufacture
JP2005501175A (en) * 2001-01-11 2005-01-13 キャボット コーポレイション Tantalum and niobium billet and method for producing the same
WO2010134417A1 (en) * 2009-05-22 2010-11-25 Jx日鉱日石金属株式会社 Tantalum sputtering target
WO2011018970A1 (en) * 2009-08-11 2011-02-17 Jx日鉱日石金属株式会社 Tantalum sputtering target
WO2011018971A1 (en) * 2009-08-11 2011-02-17 Jx日鉱日石金属株式会社 Tantalum sputtering target
WO2015050041A1 (en) * 2013-10-01 2015-04-09 Jx日鉱日石金属株式会社 Tantalum sputtering target
JP2017521558A (en) * 2014-06-26 2017-08-03 メタリシス リミテッド Method for producing metal tantalum

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566161B1 (en) * 1998-05-27 2003-05-20 Honeywell International Inc. Tantalum sputtering target and method of manufacture
US6955938B2 (en) 1998-05-27 2005-10-18 Honeywell International Inc. Tantalum sputtering target and method of manufacture
US6958257B2 (en) 1998-05-27 2005-10-25 Honeywell International Inc. Tantalum sputtering target and method of manufacture
US7102229B2 (en) 1998-05-27 2006-09-05 Honeywell International Inc. Capacitor containing high purity tantalum
JP2005501175A (en) * 2001-01-11 2005-01-13 キャボット コーポレイション Tantalum and niobium billet and method for producing the same
JP2002363662A (en) * 2001-06-01 2002-12-18 Nikko Materials Co Ltd Method for recovery of high-purity tantalum, high-purity tantalum sputtering target, and thin film deposited by using this sputtering target
CN102356179A (en) * 2009-05-22 2012-02-15 吉坤日矿日石金属株式会社 Tantalum sputtering target
WO2010134417A1 (en) * 2009-05-22 2010-11-25 Jx日鉱日石金属株式会社 Tantalum sputtering target
US10266924B2 (en) 2009-05-22 2019-04-23 Jx Nippon Mining & Metals Corporation Tantalum sputtering target
JP5144760B2 (en) * 2009-05-22 2013-02-13 Jx日鉱日石金属株式会社 Tantalum sputtering target
CN102575336A (en) * 2009-08-11 2012-07-11 吉坤日矿日石金属株式会社 Tantalum sputtering target
TWI419986B (en) * 2009-08-11 2013-12-21 Jx Nippon Mining & Metals Corp Tantalum sputtering target
JP2011168890A (en) * 2009-08-11 2011-09-01 Jx Nippon Mining & Metals Corp Tantalum sputtering target
JP2011137240A (en) * 2009-08-11 2011-07-14 Jx Nippon Mining & Metals Corp Sputtering target of tantalum
JP4913261B2 (en) * 2009-08-11 2012-04-11 Jx日鉱日石金属株式会社 Tantalum sputtering target
CN102471874A (en) * 2009-08-11 2012-05-23 吉坤日矿日石金属株式会社 Tantalum sputtering target
JP2011137239A (en) * 2009-08-11 2011-07-14 Jx Nippon Mining & Metals Corp Sputtering target of tantalum
WO2011018971A1 (en) * 2009-08-11 2011-02-17 Jx日鉱日石金属株式会社 Tantalum sputtering target
JP5290393B2 (en) * 2009-08-11 2013-09-18 Jx日鉱日石金属株式会社 Tantalum sputtering target
KR101338630B1 (en) 2009-08-11 2013-12-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Tantalum sputtering target
KR101338758B1 (en) * 2009-08-11 2013-12-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Tantalum sputtering target
JP2011144454A (en) * 2009-08-11 2011-07-28 Jx Nippon Mining & Metals Corp Tantalum sputtering target
TWI419987B (en) * 2009-08-11 2013-12-21 Jx Nippon Mining & Metals Corp Tantalum sputtering target
TWI426148B (en) * 2009-08-11 2014-02-11 Jx Nippon Mining & Metals Corp Tantalum sputtering target
WO2011018970A1 (en) * 2009-08-11 2011-02-17 Jx日鉱日石金属株式会社 Tantalum sputtering target
US9845528B2 (en) 2009-08-11 2017-12-19 Jx Nippon Mining & Metals Corporation Tantalum sputtering target
JP5969138B2 (en) * 2013-10-01 2016-08-17 Jx金属株式会社 Tantalum sputtering target
CN105593399A (en) * 2013-10-01 2016-05-18 吉坤日矿日石金属株式会社 Tantalum sputtering target
WO2015050041A1 (en) * 2013-10-01 2015-04-09 Jx日鉱日石金属株式会社 Tantalum sputtering target
US10431439B2 (en) 2013-10-01 2019-10-01 Jx Nippon Mining & Metals Corporation Tantalum sputtering target
JP2017521558A (en) * 2014-06-26 2017-08-03 メタリシス リミテッド Method for producing metal tantalum
JP2021105215A (en) * 2014-06-26 2021-07-26 メタリシス リミテッド Production method of metal tantalum
JP7064632B2 (en) 2014-06-26 2022-05-10 メタリシス リミテッド How to make metal tantalum

Similar Documents

Publication Publication Date Title
EP2330231B1 (en) Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target
USRE34598E (en) Highly pure titanium
EP2330224B1 (en) High-purity copper and process for electrolytically producing high-purity copper
JP5080543B2 (en) High purity Ni-V alloy, target made of the same Ni-V alloy, Ni-V alloy thin film, and method for producing high purity Ni-V alloy
TWI511926B (en) High purity lanthanum, a high purity lanthanum, a sputtering target composed of high purity lanthanum, and a metal gate film having a high purity lanthanum as a main component
CN107109633B (en) Copper alloy sputtering target and method for producing same
JP2015034337A (en) Copper stock for high-purity copper sputtering target, and high-purity copper sputtering target
WO2007007498A1 (en) High-purity hafnium, target and thin film comprising high-purity hafnium, and process for producing high-purity hafnium
JP4198811B2 (en) Manufacturing method of high purity titanium
JP2000212678A (en) High purity tantalum for thin film formation and its production
JPH05214519A (en) Titanium sputtering target
US6309529B1 (en) Method for producing sputtering target material
JP2002129313A (en) High purity copper sputtering target generating reduced particles
JP2601843B2 (en) Semiconductor device and method of manufacturing the same
JP2698752B2 (en) High purity titanium material for forming a thin film, target and thin film formed using the same
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JPH0653954B2 (en) Method for producing high-purity titanium
JP2000204494A (en) High-purity titanium and its production
JP2003138322A (en) Method of manufacturing high-purity metal, high-purity metal, sputtering target consisting of this high-purity metal and thin film formed by this sputtering target
JPH04176889A (en) Apparatus for producing high-purity y
EP2730668A1 (en) High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
JP4286367B2 (en) Sputtering target, wiring film and electronic component
JP2006524290A (en) Homogeneous solid solution alloys for sputter deposited thin films

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001