JPH06330386A - Formation of hard anodic oxide film and aluminum alloy for forming the film - Google Patents

Formation of hard anodic oxide film and aluminum alloy for forming the film

Info

Publication number
JPH06330386A
JPH06330386A JP14157593A JP14157593A JPH06330386A JP H06330386 A JPH06330386 A JP H06330386A JP 14157593 A JP14157593 A JP 14157593A JP 14157593 A JP14157593 A JP 14157593A JP H06330386 A JPH06330386 A JP H06330386A
Authority
JP
Japan
Prior art keywords
anodic oxide
film
oxide film
intermetallic compound
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14157593A
Other languages
Japanese (ja)
Inventor
Seiju Maejima
正受 前嶋
Koichi Saruwatari
光一 猿渡
Shuichi Matsumoto
秀一 松本
Kenzo Okada
健三 岡田
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Sky Aluminium Co Ltd
Original Assignee
Fujikura Ltd
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Sky Aluminium Co Ltd filed Critical Fujikura Ltd
Priority to JP14157593A priority Critical patent/JPH06330386A/en
Publication of JPH06330386A publication Critical patent/JPH06330386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a high-hardness anodic oxide film uniform in the thickness direction on an aluminum alloy by using an ordinary-temp. electrolytic bath. CONSTITUTION:An aluminum alloy, e.g. Al-Mn, Al-Mn-Mg alloy, etc., in which an intermetallic compd. deposit insoluble or sparingly soluble in sulfuric acid and having 0.01-3mum particle diameter is dispersed at a density of >=1X10<4> units/mm<2> and is used as a substrate 1. The surface of the substrate 1 is anodized by a sulfuric-acid electrolytic bath kept at 12-30 deg.C to form a hard anodic oxide film 2 having >=350Hv hardness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種精密機械器具の
部品あるいは摺動部品など、硬さや耐摩耗性が要求され
る部材として使用されるアルミニウム合金材料につい
て、Hv350以上の硬質陽極酸化皮膜を形成する方法、
およびその硬質陽極酸化皮膜形成用のアルミニウム合金
に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hard anodic oxide coating having a Hv of 350 or more for an aluminum alloy material used as a member required to have hardness and wear resistance, such as parts of various precision machinery or sliding parts. How to form,
And an aluminum alloy for forming a hard anodized film thereof.

【0002】[0002]

【従来の技術】主として軽量性が要求される精密機械器
具部品や摺動部品などとして、従来からアルミニウム合
金材料が広く使用されているが、この場合表面に高硬度
を与えたり、良好な耐摩耗性を与えるために、硬質陽極
酸化皮膜を形成することが多い。
2. Description of the Related Art Aluminum alloy materials have been widely used for precision machinery / equipment parts, sliding parts, etc., which are mainly required to be lightweight, but in this case, they give high hardness to the surface and have good wear resistance. A hard anodized film is often formed in order to impart the property.

【0003】硬質陽極酸化皮膜は、一般にはHv350以
上の硬さの陽極酸化皮膜を称しており、このような硬質
陽極酸化皮膜を形成する方法としては、従来一般には低
温法が広く採用されている。この低温法は、硫酸をベー
スとする電解浴を用い、浴温を10℃以下の低温とする
とともに、電流密度を3〜5A/dm2 と高い値として、
比較的短時間で陽極酸化を行なうものであり、このよう
に低温、高電流密度、短時間の処理によって電解浴によ
る化学的侵食を抑制し、硬質の陽極酸化皮膜を得ること
ができる。工業的にはJIS 1000番系の純アルミ
ニウム系Al合金、あるいは5052合金などの耐食合
金などについて、例えば浴温5℃、10〜15%濃度の
硫酸浴を用い、電流密度3A/dm2 、処理時間60分で
50μm厚程度の硬質陽極酸化皮膜が得られ、この場合
の硬質陽極酸化皮膜の硬さは表面硬さがHv350〜40
0程度、皮膜断面の硬さは皮膜と地金との境界近くでHv
400〜450程度となる。
The hard anodic oxide film is generally referred to as an anodic oxide film having a hardness of Hv 350 or higher. As a method for forming such a hard anodic oxide film, a low temperature method has been generally adopted conventionally. . This low-temperature method uses an electrolytic bath based on sulfuric acid, sets the bath temperature to a low temperature of 10 ° C. or lower, and sets the current density to a high value of 3 to 5 A / dm 2 ,
Anodization is performed in a relatively short time, and by such treatment at low temperature, high current density and short time, chemical erosion by the electrolytic bath can be suppressed and a hard anodized film can be obtained. Industrially, JIS 1000 series pure aluminum Al alloys or corrosion resistant alloys such as 5052 alloys are treated with a bath temperature of 5 ° C. and a sulfuric acid bath with a concentration of 10 to 15%, a current density of 3 A / dm 2 , and a treatment. A hard anodized film having a thickness of about 50 μm can be obtained in 60 minutes, and the hardness of the hard anodized film in this case has a surface hardness of Hv 350 to 40.
0, the hardness of the coating cross section is Hv near the boundary between the coating and the metal
It will be about 400 to 450.

【0004】[0004]

【発明が解決しようとする課題】前述のように低温法に
よって硬質陽極酸化皮膜を形成した場合、皮膜の厚さ方
向に硬度差が生じ、厚さ方向の全域にわたって均一に高
硬度とすることができない問題がある。すなわち、皮膜
の内部すなわち地金に近い部分では高硬度が得られる
が、皮膜の上部すなわち表面近くの部分は、硬度が低く
なる現象が生じる。これは、硬質陽極酸化皮膜の厚み方
向の各部分のうち、地金に近い内部は電解浴に直接曝さ
れていないため硬質となっているが、表面付近は電解浴
に直接曝されて、処理期間中に化学的、電気化学的溶解
作用を受けて溶解し、特にポアの部分でその開口端付近
が拡径されてしまい、表面付近の部分が軟質化してしま
うために生じる現象であり、従来の通常の低温法による
硬質陽極酸化処理では避けることができない現象であっ
た。
When a hard anodic oxide film is formed by the low temperature method as described above, a hardness difference occurs in the thickness direction of the film, and it is possible to make the hardness uniform and high throughout the thickness direction. There is a problem that cannot be done. That is, a high hardness can be obtained inside the coating, that is, in a portion close to the base metal, but a phenomenon occurs in which hardness decreases in an upper portion of the coating, that is, a portion near the surface. Of the parts in the thickness direction of the hard anodic oxide film, the inside close to the bare metal is hard because it is not directly exposed to the electrolytic bath, but the vicinity of the surface is directly exposed to the electrolytic bath and treated. It is a phenomenon that occurs due to the fact that during the period, it is chemically and electrochemically dissolved and melted, especially at the pore part the diameter near the opening end is expanded and the part near the surface softens. This is a phenomenon that cannot be avoided by the hard anodizing treatment by the usual low temperature method.

【0005】そこで特に表面まで均一に硬質であること
が要求される航空機部品や超精密寸法部品等の場合に
は、軟質な表面層を例えば厚さ20μm程度にわたって
研削除去して表面に硬質な部分を露出させ、これらの部
品に使用することも行なわれているが、この場合には余
計な工程が必要となって大幅なコストアップを招かざる
を得ず、そこでこのような切削を要しないように厚み方
向に均一に硬質な硬質陽極酸化皮膜を生成する方法の開
発が強く望まれている。
Therefore, particularly in the case of aircraft parts and ultra-precision parts which are required to be evenly hard up to the surface, a soft surface layer is ground and removed over a thickness of, for example, about 20 μm to obtain a hard portion on the surface. Is exposed and used for these parts, but in this case an extra process is required and it will inevitably cause a significant cost increase, so it is necessary to avoid such cutting. It is strongly desired to develop a method for uniformly forming a hard anodized film that is hard in the thickness direction.

【0006】また前述のような低温法によって硬質陽極
酸化皮膜を形成した場合、低温で酸化皮膜が成長する際
に体積膨張が生じるため、皮膜中に微小なクラック(ひ
び割れ)が発生することを避け得ない。そしてこのよう
に皮膜に微小なクラックが存在する材料を例えば摺動部
品に使用した場合には円滑な摺動運動が妨げられること
があり、またクラックの部分が腐食発生の起点となるた
め耐食性が低下してしまうなど、硬質陽極酸化皮膜とし
ての本来の機能を充分に発揮できなくなる問題がある。
さらに前述のように皮膜中の微小なクラックは耐熱性に
も悪影響を与える。すなわち、本来陽極酸化皮膜は硬質
であるほどクラックが生じやすいが、前述のように微小
なクラックが生じた陽極酸化皮膜が150℃程度以上の
高温に曝されれば、いわゆるヒートショックによりクラ
ックが急激に成長し、機械的性質が低下するばかりでな
く、電気絶縁性などの電気的特性が劣化するとともに、
耐食性などの化学的特性も悪化するなど、種々の問題が
生じる。
Further, when a hard anodic oxide film is formed by the low temperature method as described above, volume expansion occurs when the oxide film grows at a low temperature, so that formation of minute cracks in the film is avoided. I don't get it. When a material having minute cracks in the coating is used for sliding parts, smooth sliding motion may be hindered, and the cracked portion becomes the starting point of corrosion generation, so corrosion resistance is There is a problem that the original function as a hard anodic oxide film cannot be fully exhibited, such as deterioration.
Further, as described above, minute cracks in the coating also adversely affect heat resistance. That is, although the harder the anodic oxide film is, the more easily cracks occur, but if the anodic oxide film with minute cracks as described above is exposed to a high temperature of about 150 ° C. or higher, the cracks suddenly increase due to so-called heat shock. , And not only the mechanical properties deteriorate, but also the electrical properties such as electrical insulation deteriorate.
Various problems occur such as deterioration of chemical properties such as corrosion resistance.

【0007】さらにまた、前述のような低温法による硬
質陽極酸化皮膜形成においては、電解液を低温に冷却す
るための冷却装置や、電解浴槽を低温に保持するための
断熱構造などを必要とし、そのため設備コスト、ランニ
ングコストが高くならざるを得ない問題もある。
Further, in forming the hard anodic oxide film by the low temperature method as described above, a cooling device for cooling the electrolytic solution to a low temperature, a heat insulating structure for keeping the electrolytic bath at a low temperature, etc. are required, Therefore, there is a problem that the facility cost and running cost must be high.

【0008】一方、前述のような低温法の欠点を解消す
るため、従来から種々の方法が考えられており、例えば
硫酸にシュウ酸等の有機酸を添加することによって化学
的電解力を小さくする方法も知られているが、この場合
にはコストアップを招くとともに生産性の低下を招き、
根本的な解決とはならない。また陽極酸化処理における
電流波形を交直重畳波形その他の特殊波形としたり、あ
るいは定電圧電解を行なうなど、種々の方法が試みられ
てはいるが、いずれも前述のような問題を満足できる程
度まで解決することは困難であった。
On the other hand, in order to solve the above-mentioned drawbacks of the low temperature method, various methods have hitherto been considered. For example, the chemical electrolysis force is reduced by adding an organic acid such as oxalic acid to sulfuric acid. Although a method is also known, in this case, it causes an increase in cost and a decrease in productivity,
It is not a fundamental solution. Various methods have been tried, such as changing the current waveform in the anodizing process to AC / DC superimposition waveform or other special waveform, or performing constant voltage electrolysis, but all of them have been solved to the extent that the above problems can be satisfied. It was difficult to do.

【0009】この発明は以上の事情を背景としてなされ
たもので、皮膜の厚み方向に均一な高硬度を有する硬質
陽極酸化皮膜を、特に大きなコスト上昇を招くことなく
形成することができ、しかも陽極酸化処理時に微小クラ
ックが生じるおそれが少ないとともに陽極酸化処理後の
クラックの発生、成長も少ない硬質陽極酸化皮膜を形成
する方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is possible to form a hard anodized film having a uniform high hardness in the thickness direction of the film without causing a significant increase in cost, and further, to make the anode It is an object of the present invention to provide a method for forming a hard anodic oxide film which is less likely to cause microcracks during the oxidation treatment and has less crack generation and growth after the anodization treatment.

【0010】[0010]

【課題を解決するための手段】前述のような問題を解決
するため本発明者等が鋭意実験・検討を重ねた結果、陽
極酸化皮膜を形成すべきアルミニウム合金基材として、
硫酸に対して不溶性もしくは少なくとも難溶性の金属間
化合物からなる微細な析出物が均一に分散しているアル
ミニウム合金を用いて硫酸電解浴にて陽極酸化処理を行
なうことによって、常温付近の浴温でも従来の低温法に
よる場合と同等以上の高硬度を有しかつ厚み方向に均一
に高硬度を有する硬質陽極酸化皮膜を形成することがで
き、しかもその場合にはクラックの発生、成長も少ない
ことを見出し、この発明をなすに至った。
Means for Solving the Problems As a result of intensive experiments and studies by the present inventors to solve the above problems, as an aluminum alloy base material on which an anodic oxide film is to be formed,
By performing anodizing treatment in a sulfuric acid electrolytic bath using an aluminum alloy in which fine precipitates composed of an intermetallic compound insoluble or at least slightly soluble in sulfuric acid are uniformly dispersed, even at a bath temperature near room temperature. It is possible to form a hard anodic oxide film having high hardness equal to or higher than that of the conventional low temperature method and having high hardness uniformly in the thickness direction, and in that case, the occurrence of cracks and growth are small. Heading out, this invention was made.

【0011】具体的には、請求項1の発明の硬質陽極酸
化皮膜の形成方法は、硫酸に対し不溶性もしくは難溶性
でかつ粒径が0.01〜3μmの範囲内の金属間化合物
析出物が1×104 個/mm2 以上の密度で分散している
アルミニウム合金を基材とし、その基材表面に、12℃
〜30℃の浴温の硫酸電解浴によって陽極酸化処理を施
して、Hv350以上の硬質陽極酸化皮膜を形成すること
を特徴とするものである。
Specifically, the method of forming a hard anodic oxide film according to the first aspect of the present invention is to form an intermetallic compound precipitate that is insoluble or sparingly soluble in sulfuric acid and has a particle size of 0.01 to 3 μm. A base material is an aluminum alloy dispersed at a density of 1 × 10 4 pieces / mm 2 or more, and the surface of the base material is 12 ° C.
It is characterized in that a hard anodized film having a Hv of 350 or more is formed by performing anodization treatment in a sulfuric acid electrolytic bath having a bath temperature of -30 ° C.

【0012】また請求項2の発明の方法は、請求項1の
発明の硬質陽極酸化皮膜の形成方法において、基材のア
ルミニウム合金として、Mn0.3〜4.3wt%を含有
し、残部がAlおよび不可避的不純物よりなるAl−M
n系合金を用い、前記金属間化合物析出物がAl−Mn
系のものとされていることを特徴とするものである。
The method of the invention of claim 2 is the method of forming a hard anodized film of the invention of claim 1, which contains 0.3 to 4.3 wt% of Mn as an aluminum alloy of the base material, and the balance is Al. And Al-M consisting of inevitable impurities
An n-based alloy is used, and the intermetallic compound precipitate is Al-Mn.
It is characterized as being of a system type.

【0013】さらに請求項3の発明の方法は、請求項1
に記載の発明の硬質陽極酸化皮膜の形成方法において、
基材のアルミニウム合金として、Mn0.3〜4.3wt
%、Mg0.05〜6.0wt%を含有し、残部がAlお
よび不可避的不純物よりなるAl−Mn−Mg系合金を
用い、前記金属間化合物析出物がAl−Mn系のものと
されていることを特徴とするものである。
Furthermore, the method of the invention of claim 3 is the method of claim 1.
In the method for forming a hard anodic oxide film of the invention described in,
As an aluminum alloy for the base material, Mn 0.3 to 4.3 wt
%, Mg 0.05 to 6.0 wt%, the balance is Al and Mn—Mg based alloy consisting of unavoidable impurities, and the intermetallic compound precipitate is Al—Mn based. It is characterized by that.

【0014】また請求項4、請求項5の発明は、いずれ
も上述のような硬質陽極酸化皮膜形成のために用いられ
るアルミニウム合金について規定したものである。
The inventions of claims 4 and 5 both define the aluminum alloy used for forming the hard anodic oxide film as described above.

【0015】すなわち請求項4の発明の硬質陽極酸化皮
膜形成用アルミニウム合金は、Mn0.3〜4.3wt%
を含有し、残部がAlおよび不可避的不純物よりなり、
粒径が0.01〜3μmの範囲内の金属間化合物析出物
が1×104 個/mm2 以上の密度で分散していることを
特徴とするものである。
That is, the aluminum alloy for forming a hard anodic oxide film according to the invention of claim 4 has an Mn of 0.3 to 4.3 wt%.
And the balance consists of Al and unavoidable impurities,
It is characterized in that the intermetallic compound precipitates having a particle size in the range of 0.01 to 3 μm are dispersed at a density of 1 × 10 4 particles / mm 2 or more.

【0016】また請求項5の発明の硬質陽極酸化皮膜形
成用アルミニウム合金は、Mn0.3〜4.3wt%、M
g0.05〜6.0wt%を含有し、残部がAlおよび不
可避的不純物よりなり、粒径が0.01〜3μmの範囲
内の金属間化合物析出物が1×104 個/mm2 以上の密
度で分散していることを特徴とするものである。
The aluminum alloy for forming a hard anodic oxide film according to the fifth aspect of the invention is Mn 0.3 to 4.3 wt%, M
g of 0.05 to 6.0 wt%, the balance of Al and unavoidable impurities, and the intermetallic compound precipitates having a grain size of 0.01 to 3 μm are 1 × 10 4 pieces / mm 2 or more. It is characterized by being dispersed at a density.

【0017】[0017]

【作用】硫酸に不溶性もしくは難溶性の微細な金属間化
合物析出物が分散しているアルミニウム合金材料に対
し、硫酸電解浴中で陽極酸化処理を施せば、分散してい
る金属間化合物析出物は、溶解ボイドやホールを形成す
ることなく、実質的に溶解せずにそのまま陽極酸化皮膜
中に残留していく。
[Function] When an anodizing treatment is performed in a sulfuric acid electrolytic bath on an aluminum alloy material in which fine intermetallic compound precipitates insoluble or hardly soluble in sulfuric acid are dispersed, the dispersed intermetallic compound precipitates are , Without forming dissolution voids or holes, it does not substantially dissolve and remains in the anodized film as it is.

【0018】一般に陽極酸化皮膜の生成過程では、アル
ミニウム合金材料の表面から多数のポアが生成され、そ
のポアのアルミニウム合金材料内部への成長に伴なって
酸化皮膜の成長(皮膜厚みの増大)が進む。この過程に
おいて、従来一般のアルミニウム合金の場合には、後述
する図2、図3に示すようにポアは表面に対しほぼ垂直
に成長して行き、ポア構造が整列構造となるが、この発
明の場合には、硫酸電解浴に対し不溶性もしくは難溶性
の微細な金属間化合物析出物が分散しているため、後述
する図1に示すように、その金属間化合物の析出物粒子
を避けるように屈折しかつ細かく枝分かれしながらポア
の成長が進行し、非整列化されたポア構造となる。この
ようにポアが屈折しかつ細かく枝分かれした非整列ポア
構造では、クラックが生じにくくなるともに、仮にクラ
ックが発生してもその伝播、成長が微細に枝分かれした
ポアによって阻止され、その結果、総合的にクラックの
発生、成長のおそれが少なくなる。
Generally, in the process of forming an anodized film, a large number of pores are formed from the surface of the aluminum alloy material, and the growth of the oxide film (increased film thickness) is accompanied by the growth of the pores inside the aluminum alloy material. move on. In this process, in the case of a conventional general aluminum alloy, the pores grow almost perpendicularly to the surface as shown in FIGS. 2 and 3 described later, and the pore structure becomes an aligned structure. In this case, since insoluble or hardly soluble fine intermetallic compound precipitates are dispersed in the sulfuric acid electrolytic bath, refraction is performed so as to avoid the intermetallic compound precipitate particles as shown in FIG. 1 described later. The pores grow while branching finely, resulting in an unaligned pore structure. In such a non-aligned pore structure in which the pores are refracted and finely branched, cracks are less likely to occur, and even if cracks occur, their propagation and growth are prevented by the finely branched pores, and as a result, The risk of cracks and growth is reduced.

【0019】また、陽極酸化の過程において金属間化合
物析出物の部分が溶解されず、かつ最終的に所望の厚み
となった陽極酸化皮膜中に多数の微細な金属間化合物析
出物粒子が分散しているため、電解浴を特に10℃以下
の低温としなくても、常温付近(12〜30℃)の硫酸
電解浴によって充分にHv350以上の高硬度を有しかつ
厚み方向に均一に高硬度を有する陽極酸化皮膜が形成さ
れる。
Further, during the anodic oxidation process, a portion of the intermetallic compound precipitate is not dissolved, and a large number of fine intermetallic compound precipitate particles are dispersed in the anodic oxide film finally having a desired thickness. Therefore, even if the electrolytic bath is not particularly kept at a low temperature of 10 ° C. or lower, a sulfuric acid electrolytic bath near room temperature (12 to 30 ° C.) has a sufficiently high hardness of Hv 350 or more and a uniform high hardness in the thickness direction. The anodic oxide film which it has is formed.

【0020】このように常温付近の硫酸電解浴でも高硬
度を有しかつ厚み方向に均一に高硬度を有する陽極酸化
皮膜が形成される理由を、従来の一般的な硬質陽極酸化
皮膜の形成の場合と比較して図1〜図3を参照しつつ以
下に説明する。
The reason why an anodized film having a high hardness and a uniform high hardness in the thickness direction is formed even in a sulfuric acid electrolytic bath near room temperature as described above is the reason why the conventional general hard anodized film is formed. This will be described below with reference to FIGS. 1 to 3 in comparison with the case.

【0021】図2は従来の低温法により理想的な硬質陽
極酸化皮膜が生成されたと仮定した場合の皮膜の状況と
皮膜厚さ方向の硬さ分布を示す図、図3は従来の低温法
により実際に硬質陽極酸化皮膜を生成した場合の現実の
皮膜の状況と皮膜厚さ方向の硬さ分布を示す図、図1は
この発明に従って硬質陽極酸化皮膜を生成した場合の皮
膜の状況と皮膜厚さ方向の硬さ分布を示す図であり、各
図において1はアルミニウム合金基材(地金)、2は陽
極酸化皮膜、3はポアであり、また特に図1において4
は金属間化合物析出物粒子である。
FIG. 2 is a diagram showing the state of the coating and the hardness distribution in the coating thickness direction when it is assumed that an ideal hard anodic oxide coating is formed by the conventional low-temperature method, and FIG. 3 is shown by the conventional low-temperature method. FIG. 1 is a diagram showing the actual condition of the film and the hardness distribution in the film thickness direction when a hard anodized film is actually formed. FIG. 1 is the condition of the film and the film thickness when a hard anodized film is formed according to the present invention. It is a figure showing hardness distribution in the depth direction, in each figure, 1 is an aluminum alloy base material (bare metal), 2 is an anodic oxide film, 3 is a pore, and particularly in FIG.
Are intermetallic compound precipitate particles.

【0022】図2の(A)に示すように、従来の低温法
でも、理想的には陽極酸化皮膜2の表面付近が溶解され
ないことを目標としており、このような理想的な場合に
は、図2の(B)に示すように陽極酸化皮膜2の厚さ方
向の硬さ分布は均一に高い水準となる筈である。しかし
ながら実際には、従来の通常の低温法による場合、図3
の(A)に示すように皮膜2の表面が電解浴にて溶解さ
れ、特にポア3の開口端周縁部付近が溶解されて、ポア
3の開口端が拡大した状態となる。特に厚い陽極酸化皮
膜を形成しようとする場合には、長時間処理によって皮
膜表面が電解浴に曝される時間が長くなるため、皮膜表
面の溶解量が多くなってしまう。このようになった状態
は、恰も陽極酸化皮膜の上層部分(表面層部分)が崩壊
しかかっているような状態と言うことができ、したがっ
て皮膜上層部に荷重が加われば上層部がグズグズと崩壊
する状態となり、硬さ測定値として低い値となってしま
う。そのため皮膜の厚さ方向の硬度分布としては、図3
の(B)に示されているように皮膜内部では比較的高硬
度を保つが、表面近くの上層部で極端に硬度が低下して
しまうのである。またこの場合、電解浴の硫酸濃度を高
めたり、浴温を高くすれば、処理中における表面の溶解
量が増大してしまい、その結果、高硬度でかつ厚膜の陽
極酸化皮膜を形成することは困難となってしまう。なお
この場合、ポア3は既に述べたように表面からほぼ垂直
に内部へ向って整列状態で成長している。
As shown in FIG. 2 (A), even in the conventional low temperature method, ideally, the goal is not to dissolve the vicinity of the surface of the anodic oxide film 2. In such an ideal case, As shown in FIG. 2B, the hardness distribution of the anodic oxide film 2 in the thickness direction should be at a uniformly high level. However, in practice, in the case of the conventional ordinary low temperature method, as shown in FIG.
(A), the surface of the coating film 2 is dissolved in the electrolytic bath, and especially the vicinity of the peripheral edge of the opening end of the pore 3 is dissolved, and the opening end of the pore 3 is enlarged. Especially when trying to form a thick anodic oxide film, the amount of dissolution on the film surface increases because the time for which the film surface is exposed to the electrolytic bath becomes long due to the long-term treatment. In this state, it can be said that the upper layer part (surface layer part) of the anodized film is about to collapse, and therefore, if a load is applied to the upper layer part of the film, the upper layer part will collapse. And the hardness measurement value becomes low. Therefore, the hardness distribution in the thickness direction of the coating is shown in FIG.
As shown in (B), the hardness is relatively high inside the coating, but the hardness is extremely lowered in the upper layer portion near the surface. In this case, if the concentration of sulfuric acid in the electrolytic bath is raised or the bath temperature is raised, the amount of surface dissolution during treatment increases, resulting in the formation of a thick anodic oxide film with high hardness. Becomes difficult. In this case, as described above, the pores 3 grow in an aligned state from the surface to the inside substantially vertically.

【0023】これに対しこの発明の場合は、図1(A)
に示しているように、硫酸に不溶性もしくは難溶性の微
細な金属間化合物析出物粒子4が分散しているため、表
面からの化学的溶解は少なく、かつ既に述べたようにポ
ア3が屈折しかつ枝分かれした非整列構造となっている
ことも化学的溶解を遅らせる一因となり、その結果表面
から内部までほぼ均一な硬さの皮膜が得られる。また、
前述のように皮膜内に微細に金属間化合物析出物粒子が
分散しているため、その周囲のアルミニウムマトリック
スの陽極酸化時の体積膨張に伴なって分散析出物粒子と
周囲のマトリックスとの間の接触圧力が増加し、また皮
膜内のポア構造が前述のように非整列構造となることも
分散析出物粒子と周囲のマトリックスとの接触圧力の増
大に寄与し、その結果皮膜全体としては圧縮方向の内部
応力が大きくなり、高硬度を示すことになる。したがっ
て以上から、図1の(B)に示すように高硬度でかつ膜
厚方向に均一な高硬度を有する皮膜が得られることにな
る。そして、前述のように硫酸電解浴に実質的に溶解し
ない金属間化合物析出物粒子の存在とそれに伴なうポア
構造の非整列化によって膜厚方向に均一に高い硬度が得
られるところから、電解浴の温度を常温付近の相対的に
高い温度としても、また電解浴の硫酸濃度を高めて浴の
導電度を大きくしても高い硬度が得られることになる。
On the other hand, in the case of the present invention, FIG.
As shown in Fig. 3, since the fine intermetallic compound precipitate particles 4 insoluble or hardly soluble in sulfuric acid are dispersed, chemical dissolution from the surface is small, and as described above, the pores 3 are refracted. In addition, the branched and non-aligned structure also contributes to delaying chemical dissolution, and as a result, a film having a substantially uniform hardness from the surface to the inside can be obtained. Also,
As described above, since the intermetallic compound precipitate particles are finely dispersed in the film, the volume between the dispersed precipitate particles and the surrounding matrix is increased due to the volume expansion of the surrounding aluminum matrix during anodization. The increase in contact pressure and the non-alignment of the pore structure in the coating as described above also contributes to the increase in contact pressure between the dispersed precipitate particles and the surrounding matrix, and as a result, the coating as a whole has a compression direction. The internal stress of the steel becomes large and it shows high hardness. Therefore, from the above, a film having a high hardness and a uniform high hardness in the film thickness direction can be obtained as shown in FIG. Then, as described above, since the presence of intermetallic compound precipitate particles that are not substantially dissolved in the sulfuric acid electrolytic bath and the resulting non-alignment of the pore structure can uniformly obtain high hardness in the film thickness direction, High hardness can be obtained even if the temperature of the bath is set to a relatively high temperature near room temperature or the sulfuric acid concentration of the electrolytic bath is increased to increase the conductivity of the bath.

【0024】ここで、金属間化合物析出物の粒径が0.
01μm未満では、前述のような析出物粒子の分散によ
る効果が得られず、一方3μmを越える粗大な金属間化
合物析出物は、1×104 個/mm2 以上の高密度で分散
させることが困難となって、金属間化合物析出物の分散
による効果が期待できなくなるから、金属間化合物析出
物の粒径は0.01〜3μmの範囲内とした。また金属
間化合物析出物の分布密度が1×104 個/mm2 未満で
も前述のような効果が得られないから、1×104 個/
mm2 以上の分布密度とする必要がある。
Here, the grain size of the intermetallic compound precipitates is 0.
If it is less than 01 μm, the effect due to the dispersion of the precipitate particles as described above cannot be obtained, while coarse intermetallic compound precipitates exceeding 3 μm can be dispersed at a high density of 1 × 10 4 particles / mm 2 or more. Since it becomes difficult and the effect due to the dispersion of the intermetallic compound precipitate cannot be expected, the particle size of the intermetallic compound precipitate is set within the range of 0.01 to 3 μm. And because the distribution density of the intermetallic compound precipitates can not be obtained the effect as described above is less than 1 × 10 4 cells / mm 2, 1 × 10 4 cells /
It is necessary to have a distribution density of mm 2 or more.

【0025】またこの発明で用いるアルミニウム合金の
成分組成は、要は硫酸電解浴に対して不溶性もしくは難
溶性を示すような金属間化合物を析出するものであれば
良く、基本的には限定されるものではないが、前述の効
果を確実かつ充分に発揮させ、併せて後述するように遠
赤外線放射特性の向上効果を得るためには、Al−Mn
系もしくはAl−Mn−Mg系の合金を用いることが好
ましい。これらのAl−Mn系もしくはAl−Mn−M
g系合金の場合、例えばAl6 Mn、Al6 (MnF
e)、αAlMn(Fe)SiなどのAl−Mn系金属
間化合物が析出し、これらはいずれも硫酸に対し不溶性
もしくは少なくとも難溶性であるから、前述のように陽
極酸化皮膜をその厚さ方向に均一に高硬度化するのに寄
与する。またこれらのAl−Mn系もしくはAl−Mn
−Mg系合金においては、前述のようなAl−Mn系金
属間化合物を前述の径、分布密度で分散させることによ
って、優れた遠赤外線放射特性を得ることができ、遠赤
外線ヒータその他各種の遠赤外線放射部材に好適に用い
ることができる。
The composition of the aluminum alloy used in the present invention is basically limited as long as it precipitates an intermetallic compound which is insoluble or hardly soluble in a sulfuric acid electrolytic bath. However, in order to surely and sufficiently exert the above-mentioned effects and also to obtain an effect of improving far-infrared radiation characteristics as described later, Al-Mn
It is preferable to use an Al-based alloy or an Al-Mn-Mg-based alloy. These Al-Mn system or Al-Mn-M
In the case of a g-based alloy, for example, Al 6 Mn, Al 6 (MnF
e), Al-Mn-based intermetallic compounds such as αAlMn (Fe) Si are deposited, and these are insoluble or at least hardly soluble in sulfuric acid. Therefore, as described above, the anodic oxide film is formed in the thickness direction. Contributes to uniformly increasing the hardness. Moreover, these Al-Mn system or Al-Mn
In the -Mg-based alloy, by dispersing the Al-Mn-based intermetallic compound as described above with the above-mentioned diameter and distribution density, excellent far-infrared radiation characteristics can be obtained, and far-infrared heaters and other various far-infrared radiation can be obtained. It can be suitably used for an infrared radiation member.

【0026】Al−Mn系合金としては、請求項2にお
いて規定したように、Mn0.3〜4.3wt%を含有
し、残部がAlおよび不可避的不純物よりなる成分組成
とすることが適当である。またAl−Mn−Mg系合金
としては、請求項3において規定したように、Mn0.
3〜4.3wt%、Mg0.05〜6.0wt%を含有し、
残部がAlおよび不可避的不純物よりなる成分組成とす
ることが適当である。
As the Al-Mn-based alloy, as defined in claim 2, it is appropriate that the composition of Mn is 0.3 to 4.3 wt% and the balance is Al and inevitable impurities. . Further, as the Al-Mn-Mg-based alloy, Mn0.
Containing 3 to 4.3 wt% and Mg 0.05 to 6.0 wt%,
It is suitable that the balance is a component composition consisting of Al and unavoidable impurities.

【0027】これらのAl−Mn系合金、Al−Mn−
Mg系合金における成分組成の限定理由を以下に述べ
る。
These Al--Mn alloys, Al--Mn--
The reasons for limiting the component composition of the Mg-based alloy will be described below.

【0028】Mn:MnはAl−Mn系金属間化合物を
生成し、前述のように陽極酸化皮膜を膜厚方向に均一に
高硬度化させるに寄与するとともに、遠赤外線特性の向
上に寄与する。ここで、Mn量が0.3wt%未満では充
分な量のAl−Mn系金属間化合物を析出させて前述の
効果を得ることが困難であり、一方Mnが4.3wt%を
越えれば、圧延性、成形性が低下する。したがってもM
n量は0.3〜4.3wt%とした。
Mn: Mn forms an Al-Mn-based intermetallic compound, which contributes to increasing the hardness of the anodic oxide film uniformly in the film thickness direction as described above, and also to improving the far-infrared characteristics. Here, if the amount of Mn is less than 0.3 wt%, it is difficult to deposit a sufficient amount of Al-Mn intermetallic compound to obtain the above-mentioned effect, while if the amount of Mn exceeds 4.3 wt%, rolling is And moldability are reduced. Therefore M
The amount of n was 0.3 to 4.3 wt%.

【0029】Mg:MgはAl−Mn系金属間化合物の
析出を促進し、前述のような析出状態を達成するに寄与
する。特にMn量が比較的少ない場合には、Mg量を多
くすることがAl−Mn系金属間化合物の析出を促進し
て前述のような析出状態を得るに有効である。但しMg
量が6.0wt%を越えれば圧延性、成形性が低下し、実
用的でなくなり、一方Mg量が0.05wt%未満ではM
g添加による前述の効果が得られない。したがってMg
を添加する場合のMg量範囲は0.05〜6.0wt%の
範囲内とした。
Mg: Mg promotes the precipitation of Al-Mn intermetallic compounds and contributes to the achievement of the above-described precipitation state. Particularly when the amount of Mn is relatively small, increasing the amount of Mg is effective for promoting the precipitation of the Al-Mn-based intermetallic compound and obtaining the above-described precipitation state. However, Mg
When the amount exceeds 6.0 wt%, rolling property and formability are deteriorated and it becomes unpractical. On the other hand, when the amount of Mg is less than 0.05 wt%, M
The above effect due to the addition of g cannot be obtained. Therefore Mg
When Mg was added, the Mg amount range was set to be in the range of 0.05 to 6.0 wt%.

【0030】以上の各成分の残部は、基本的にはAlお
よび不可避的不純物とすれば良い。ここでアルミニウム
合金における不可避的不純物の代表的なものとしてF
e,Siがあり、またFe,Siは合金の用途によって
は積極添加することもあるが、この発明で使用するAl
−Mn系合金もしくはAl−Mn−Mg系合金では、F
eを0.5wt%以下、Siを2.0wt%以下に規制する
ことが望ましい。
The balance of the above components may basically be Al and inevitable impurities. Here, as a typical inevitable impurity in an aluminum alloy, F
e and Si, and Fe and Si may be positively added depending on the use of the alloy.
In a -Mn-based alloy or an Al-Mn-Mg-based alloy, F
It is desirable to regulate e to 0.5 wt% or less and Si to 2.0 wt% or less.

【0031】さらに、通常のアルミニウム合金において
は、鋳塊の結晶粒微細化のために少量のTiを単独で、
あるいは微量のBと組合せて添加することがあるが、こ
の発明で用いるAl−Mn系合金もしくはAl−Mn−
Mg系合金にも、0.003〜0.15wt%のTiを単
独でもしくは1〜100ppm のBと組合せて添加しても
良い。
Further, in a usual aluminum alloy, a small amount of Ti alone is used for refining the crystal grains of the ingot,
Alternatively, it may be added in combination with a trace amount of B, and the Al-Mn-based alloy or Al-Mn- used in the present invention is added.
0.003 to 0.15 wt% of Ti may be added to the Mg alloy alone or in combination with 1 to 100 ppm of B.

【0032】このほか、Mgを含有する系のアルミニウ
ム合金においては、溶湯の酸化を防止するために微量の
Beを添加することが従来から行なわれているが、この
発明で用いるAl−Mn系合金もしくはAl−Mg−M
n系合金の場合にも500ppm 程度以下のBeを添加す
ることは特に支障ない。
In addition, in the aluminum alloy containing Mg, a small amount of Be has been conventionally added to prevent the oxidation of the molten metal. However, the Al--Mn alloy used in the present invention is used. Or Al-Mg-M
Even in the case of an n-based alloy, it is not particularly problematic to add Be in an amount of about 500 ppm or less.

【0033】さらに一般のAl−Mn系合金もしくはA
l−Mn−Mg系合金においては、Ni,Cr,Zr,
V,Cu,Zn等が含まれることがあり、この発明で用
いるAl−Mn系合金もしくはAl−Mn−Mg系合金
の場合も、Ni1.0wt%未満、Cr0.3wt%未満、
Zr0.3wt%未満、V0.3wt%未満、Cu1.0wt
%未満、Zn1.0wt%未満であれば金属間化合物の析
出状態に本質的な影響を与えないから、これらの範囲内
で1種または2種以上を含有することが許容される。
Further, a general Al-Mn alloy or A
In the 1-Mn-Mg-based alloy, Ni, Cr, Zr,
V, Cu, Zn, etc. may be contained, and in the case of the Al-Mn-based alloy or Al-Mn-Mg-based alloy used in the present invention, Ni is less than 1.0 wt% and Cr is less than 0.3 wt%.
Zr less than 0.3 wt%, V less than 0.3 wt%, Cu 1.0 wt
%, Zn less than 1.0 wt% does not have an essential effect on the precipitation state of the intermetallic compound, so that it is acceptable to contain one or two or more kinds within these ranges.

【0034】この発明の方法において、陽極酸化処理
は、12〜30℃の浴温の硫酸電解浴を用いて行なう。
ここで浴温が12℃未満では、電解液の冷却装置や浴槽
の低温保持のための断熱構造などが必要となり、経済的
な不利を招く。既に述べたようにこの発明では常温付近
の浴温でも膜厚方向に均一な高硬度を有する陽極酸化皮
膜を形成し得ることが最大の特徴であり、12℃以上の
浴温でも従来の低温法による場合と同等以上の高硬度を
有し、かつ従来の低温法による場合よりも格段に厚さ方
向に均一な硬度を有する陽極酸化皮膜を形成することが
できる。なお30℃を越える高温の電解浴では、処理中
の溶解現象が激しくなって、この発明で目的とする高硬
度の陽極酸化皮膜が得られなくなる。
In the method of the present invention, the anodizing treatment is carried out using a sulfuric acid electrolytic bath having a bath temperature of 12 to 30 ° C.
If the bath temperature is lower than 12 ° C, a cooling device for the electrolytic solution and a heat insulating structure for keeping the bath at a low temperature are required, which is economically disadvantageous. As described above, the greatest feature of the present invention is that an anodized film having a uniform high hardness in the film thickness direction can be formed even at a bath temperature near room temperature. It is possible to form an anodic oxide film having a high hardness equal to or higher than that of the above method and having a hardness that is much more uniform in the thickness direction than in the case of the conventional low temperature method. In an electrolytic bath having a temperature higher than 30 ° C., the dissolution phenomenon during the treatment becomes severe and the high hardness anodic oxide film intended by the present invention cannot be obtained.

【0035】また硫酸電解浴は、要は硫酸を主体とする
ものであれば良く、硫酸のほかに公知の若干の添加剤を
含むことは許容される。さらに陽極酸化処理時の電流と
しては、直流交流、交直併用、交直重畳波形など任意の
波形を用いることができるが、経済性等の観点からは直
流が好ましい。また電流密度は従来の一般的な範囲で良
い。
The sulfuric acid electrolysis bath may be any one mainly containing sulfuric acid, and it is permissible to contain some known additives in addition to sulfuric acid. Further, as the current during the anodizing treatment, any waveform such as direct current alternating current, alternating current / direct current combination, alternating current / direct current superimposed waveform can be used, but direct current is preferable from the viewpoint of economy. Further, the current density may be in the conventional general range.

【0036】なお陽極酸化皮膜の膜厚は、用途に応じて
定めれば良く、特に限定されるものではないが、一般に
は少なくとも3μm以上、また耐摩耗性が要求される部
材としては10μm以上とするのが通常である。但しこ
の発明の場合、既に述べたように陽極酸化皮膜は膜厚方
向にほぼ均一に高硬度を有し、表面付近で特に急激に硬
さが低下することが少ないため、従来行なっていたよう
に陽極酸化皮膜の表層部分の軟質な部分を機械的に除去
し、内層の高硬度の部分を露出させて使用する必要がな
く、その意味からは陽極酸化処理時の皮膜厚みは相対的
に薄くても足りることになる。
The film thickness of the anodic oxide film may be determined according to the application and is not particularly limited, but it is generally at least 3 μm or more, and 10 μm or more for a member requiring abrasion resistance. It is usually done. However, in the case of the present invention, as described above, the anodic oxide film has a high hardness almost uniformly in the film thickness direction, and the hardness does not decrease sharply particularly near the surface. It is not necessary to mechanically remove the soft part of the surface layer of the anodized film to expose the high hardness part of the inner layer for use, and in that sense the film thickness during anodization is relatively thin. Will be enough.

【0037】[0037]

【実施例】【Example】

実施例1 Mn2.04wt%、Mg0.51wt%、Fe0.13wt
%を含有し、残部が実質的にAlよりなるAl−Mn−
Mg系合金を連続鋳造圧延法によって7mm厚に鋳造した
後、1mm厚に冷間圧延し、400℃×2時間焼鈍し、1
×100×100mmの試片を切出し、試料1とした。同
時に比較材として、市販のJIS 1100合金の1mm
厚の板から同寸法の試片を切出し、試料2とし、また同
じく比較材として、市販のJIS 5052合金の1mm
厚の板から同寸法の試片を切出し、試料3とした。
Example 1 Mn 2.04 wt%, Mg 0.51 wt%, Fe 0.13 wt
%, With the balance being essentially Al. Al-Mn-
A Mg-based alloy was cast to a thickness of 7 mm by the continuous casting and rolling method, cold-rolled to a thickness of 1 mm, annealed at 400 ° C. for 2 hours, and then 1
A sample of × 100 × 100 mm was cut out to obtain a sample 1. At the same time, as a comparative material, 1 mm of commercially available JIS 1100 alloy
A sample of the same size was cut out from a thick plate to obtain Sample 2, and also as a comparative material, a commercially available JIS 5052 alloy 1 mm
A sample having the same size was cut out from a thick plate to obtain Sample 3.

【0038】なお試料1は粒径0.1〜1.0μm程度
のAl−Mn系金属間化合物析出物が、分布密度2.8
×104 個/mm2 で分散しており、一方試料2および試
料3はいずれも金属間化合物析出物が実質的に析出して
いなかった。
Sample 1 has Al-Mn-based intermetallic compound precipitates having a grain size of 0.1 to 1.0 μm and a distribution density of 2.8.
The particles were dispersed at × 10 4 particles / mm 2 , while neither sample 2 nor sample 3 had substantially no intermetallic compound precipitates.

【0039】これらの各試料について、15 vol%H2
SO4 の硫酸電解浴を用い、浴温を0℃、5℃、10
℃、15℃、20℃、25℃の種々の温度に異ならしめ
て、各浴温において電流密度3A/dm2 、電解時間60
分にて陽極酸化処理を行なった。
For each of these samples, 15 vol% H 2
A SO 4 sulfuric acid electrolytic bath is used and the bath temperature is 0 ° C., 5 ° C., 10
Different temperatures of 15 ° C, 15 ° C, 20 ° C, 25 ° C, current density 3A / dm 2 , electrolysis time 60 at each bath temperature.
Anodizing treatment was performed in minutes.

【0040】各浴温で陽極酸化処理を行なった各試料1
〜3について、陽極酸化皮膜の膜厚を調べるとともに、
陽極酸化皮膜の表面硬さおよび皮膜断面の各位置におけ
る硬さを調べた。硬さはマイクロビッカース硬度計を用
いて荷重50gで各位置それぞれ5点測定し、平均値を
求めた。また皮膜断面の各位置の硬さは、それぞれアル
ミニウム地金との境界位置から表面を向って10μmの
位置、30μmの位置、45μmの位置で測定した。そ
の結果を表1に示す。
Each sample 1 anodized at each bath temperature
For ~ 3, while checking the thickness of the anodized film,
The surface hardness of the anodized film and the hardness at each position of the film cross section were examined. The hardness was measured using a micro Vickers hardness meter at a load of 50 g at each position at 5 points, and the average value was obtained. The hardness at each position of the coating film cross section was measured at a position of 10 μm, a position of 30 μm, and a position of 45 μm from the boundary position with the aluminum base metal toward the surface. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかなように適切にAl−Mn
系金属間化合物が析出している試料1の場合には、陽極
酸化処理時の浴温が0〜25℃のいずれの場合も表面硬
さ、断面各位置の硬さがほぼ均一に高い硬度を示してい
る。特に浴温が15℃、20℃、25℃と常温に近い場
合、試料2、試料3では表面に近い部分が急激に軟化す
る傾向を示したのに対し、試料1の場合はこれらの浴温
でもほぼ均一に高い硬度を示した。
As is clear from Table 1, Al-Mn is suitable.
In the case of the sample 1 in which the intermetallic compound was precipitated, the surface hardness and the hardness at each position of the cross section were almost uniformly high regardless of the bath temperature during the anodizing treatment of 0 to 25 ° C. Shows. Particularly, when the bath temperature was close to room temperature such as 15 ° C, 20 ° C, and 25 ° C, in Samples 2 and 3, the parts near the surface tended to be rapidly softened, whereas in the case of Sample 1, these bath temperatures were However, it showed almost uniform high hardness.

【0043】実施例2 Mn2.53wt%、残部実質的にAlよりなるAl−M
n系合金について、実施例1の試料1と同様にして試料
4を作成した。この試料4は、粒径0.1〜0.3μm
程度のAl−Mn系金属間化合物が分布密度2.3×1
4 個/mm2 で分散していることが確認された。
Example 2 Al-M composed of 2.53 wt% Mn and the balance substantially Al.
With respect to the n-based alloy, Sample 4 was prepared in the same manner as Sample 1 of Example 1. This sample 4 has a particle size of 0.1 to 0.3 μm.
Al-Mn-based intermetallic compound is distributed at a density of 2.3 x 1
That are dispersed in 0 4 / mm 2 was confirmed.

【0044】この試料4について、電解浴温度を20℃
とし、その他の条件は実施例1と同一として陽極酸化処
理を施した。陽極酸化皮膜の膜厚および表面硬さ、断面
各位置の硬さを調べた結果を表2に示す。
For this sample 4, the temperature of the electrolytic bath was 20 ° C.
The other conditions were the same as in Example 1, and the anodizing treatment was performed. Table 2 shows the results of examining the film thickness and surface hardness of the anodized film, and the hardness at each position of the cross section.

【0045】[0045]

【表2】 [Table 2]

【0046】表2から明らかなように、Al−Mn系金
属間化合物が適切に分散しているAl−Mn系合金であ
る試料4の場合も、常温付近の20℃の電解浴での陽極
酸化処理によって膜厚方向に均一に高硬度を有する陽極
酸化皮膜が得られた。
As is clear from Table 2, in the case of Sample 4 which is an Al-Mn-based alloy in which the Al-Mn-based intermetallic compound is appropriately dispersed, the anodic oxidation in the electrolytic bath at 20 ° C near room temperature is also performed. By the treatment, an anodic oxide film having high hardness was obtained uniformly in the film thickness direction.

【0047】[0047]

【発明の効果】以上の説明で明らかなように、この発明
の方法によれば、12〜30℃の常温付近の浴温での陽
極酸化処理によって、膜厚方向にほぼ均一に高い硬度を
有する硬質陽極酸化皮膜を形成することができ、したが
って従来の低温法の如く電解液の冷却装置や電解浴槽の
低温保持構造などを必要とせず、そのため低コストで硬
質陽極酸化皮膜を得ることができ、また得られる硬質陽
極酸化皮膜は、膜厚方向にほぼ均一に高い硬度を有する
ことから、従来一部で適用されていた如く表面付近の軟
質部分を機械的に除去する必要もなくなり、その意味か
らも低コスト化を図ることができる。さらにこの発明の
方法によれば、陽極酸化皮膜のポア構造が細かく屈折し
かつ枝分かれした非整列構造となるため、陽極酸化処理
時のクラックの発生およびその後の熱や外部応力による
クラックの発生、成長が少なく、したがって機械的、電
気的、化学的に安定した特性を有する硬質陽極酸化皮膜
を得ることができる。
As is clear from the above description, according to the method of the present invention, the hardness is substantially uniform in the film thickness direction by the anodic oxidation treatment at the bath temperature near room temperature of 12 to 30 ° C. It is possible to form a hard anodized film, and therefore, unlike the conventional low-temperature method, a cooling device for the electrolytic solution or a low-temperature holding structure of the electrolytic bath is not required, and therefore a hard anodized film can be obtained at low cost. In addition, since the obtained hard anodized film has high hardness almost uniformly in the film thickness direction, it is not necessary to mechanically remove the soft portion near the surface as conventionally applied in some parts, and in that sense Can also reduce costs. Further, according to the method of the present invention, since the pore structure of the anodic oxide film is a finely refracted and branched non-aligned structure, the generation of cracks during the anodizing treatment and the subsequent generation of cracks due to heat or external stress, growth Therefore, it is possible to obtain a hard anodic oxide film having less mechanical properties, and thus having mechanically, electrically, and chemically stable properties.

【0048】またこの発明の硬質陽極酸化皮膜形成用ア
ルミニウム合金を用いれば、上述のような優れた特性を
有する硬質陽極酸化皮膜を安定かつ確実に形成すること
ができる。
If the aluminum alloy for forming a hard anodic oxide film of the present invention is used, a hard anodic oxide film having the above-mentioned excellent properties can be stably and reliably formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明により形成される硬質陽極酸化皮膜を
説明するための図で、(A)は皮膜断面構造の模式図、
(B)はそれに対応する皮膜厚さ方向の硬さ分布を示す
線図である。
FIG. 1 is a view for explaining a hard anodized film formed by the present invention, (A) is a schematic view of a film cross-sectional structure,
(B) is a diagram showing a hardness distribution in the film thickness direction corresponding thereto.

【図2】従来の低温法により硬質陽極酸化皮膜を形成し
た場合の理想的な状況を説明するための図で、(A)は
皮膜断面構造の模式図、(B)はそれに対応する皮膜厚
さ方向の硬さ分布を示す線図である。
FIG. 2 is a diagram for explaining an ideal situation when a hard anodic oxide film is formed by a conventional low temperature method, (A) is a schematic view of a film cross-sectional structure, and (B) is a film thickness corresponding to it. It is a diagram showing hardness distribution in the depth direction.

【図3】従来の低温法により硬質陽極酸化皮膜を実際に
形成した場合の現実の状況を説明するための図で、
(A)は皮膜断面構造の模式図、(B)はそれに対応す
る皮膜厚さ方向の硬さ分布を示す線図である。
FIG. 3 is a diagram for explaining an actual situation when a hard anodized film is actually formed by a conventional low temperature method,
(A) is a schematic diagram of a coating cross-sectional structure, and (B) is a diagram showing the hardness distribution in the coating thickness direction corresponding thereto.

【符号の説明】[Explanation of symbols]

1 アルミニウム合金基材(地金) 2 陽極酸化皮膜 3 ポア 4 金属間化合物析出物粒子 1 Aluminum alloy base material (bare metal) 2 Anodized film 3 Pore 4 Intermetallic compound precipitate particles

フロントページの続き (72)発明者 松本 秀一 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 岡田 健三 東京都中央区日本橋室町4丁目3番18号 スカイアルミニウム株式会社内 (72)発明者 松尾 守 東京都中央区日本橋室町4丁目3番18号 スカイアルミニウム株式会社内Front page continued (72) Inventor Shuichi Matsumoto 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Ltd. (72) Inventor Kenzo Okada 4-3-1 Nibashi Muromachi, Chuo-ku, Tokyo Sky Aluminum Co., Ltd. (72) Inventor Mamoru Matsuo 4-3-18 Nihombashi Muromachi, Chuo-ku, Tokyo Sky Aluminum Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫酸に対し不溶性もしくは難溶性でかつ
粒径が0.01〜3μmの範囲内の金属間化合物析出物
が1×104 個/mm2 以上の密度で分散しているアルミ
ニウム合金を基材とし、その基材表面に、12℃〜30
℃の浴温の硫酸電解浴によって陽極酸化処理を施して、
Hv350以上の硬質陽極酸化皮膜を形成することを特徴
とする、硬質陽極酸化皮膜の形成方法。
1. An aluminum alloy which is insoluble or sparingly soluble in sulfuric acid, and in which intermetallic compound precipitates having a particle size of 0.01 to 3 μm are dispersed at a density of 1 × 10 4 / mm 2 or more. As a base material, and the surface of the base material has a temperature of 12 ° C to 30 ° C.
Anodizing with a sulfuric acid electrolytic bath with a bath temperature of ℃,
A method of forming a hard anodic oxide film, which comprises forming a hard anodic oxide film having a Hv of 350 or more.
【請求項2】 前記基材のアルミニウム合金が、Mn
0.3〜4.3wt%を含有し、残部がAlおよび不可避
的不純物よりなり、かつ前記金属間化合物析出物がAl
−Mn系金属間化合物である、請求項1に記載の硬質陽
極酸化皮膜の形成方法。
2. The aluminum alloy of the base material is Mn
0.3 to 4.3 wt%, with the balance being Al and inevitable impurities, and the intermetallic compound precipitate being Al
The method for forming a hard anodized film according to claim 1, which is a -Mn-based intermetallic compound.
【請求項3】 前記基材のアルミニウム合金が、Mn
0.3〜4.3wt%、Mg0.05〜6.0wt%を含有
し、残部がAlおよび不可避的不純物よりなり、かつ前
記金属間化合物析出物がAl−Mn系金属間化合物であ
る、請求項1に記載の硬質陽極酸化皮膜の形成方法。
3. The aluminum alloy of the base material is Mn
0.3-4.3 wt%, Mg0.05-6.0 wt% are contained, the balance consists of Al and unavoidable impurities, and said intermetallic compound precipitate is an Al-Mn-based intermetallic compound. Item 2. A method for forming a hard anodized film according to Item 1.
【請求項4】 Mn0.3〜4.3wt%を含有し、残部
がAlおよび不可避的不純物よりなり、粒径が0.01
〜3μmの範囲内の金属間化合物析出物が1×104
/mm2 以上の密度で分散していることを特徴とする、硬
質陽極酸化皮膜形成用アルミニウム合金。
4. Mn of 0.3 to 4.3 wt% is contained, the balance is Al and inevitable impurities, and the grain size is 0.01.
An aluminum alloy for forming a hard anodic oxide film, characterized in that intermetallic compound precipitates within a range of ˜3 μm are dispersed at a density of 1 × 10 4 pieces / mm 2 or more.
【請求項5】 Mn0.3〜4.3wt%、Mg0.05
〜6.0wt%を含有し、残部がAlおよび不可避的不純
物よりなり、粒径が0.01〜3μmの範囲内の金属間
化合物析出物が1×104 個/mm2 以上の密度で分散し
ていることを特徴とする、硬質陽極酸化皮膜形成用アル
ミニウム合金。
5. Mn 0.3 to 4.3 wt%, Mg 0.05
-6.0 wt%, the balance consisting of Al and unavoidable impurities, and intermetallic compound precipitates with a particle size in the range of 0.01 to 3 μm dispersed at a density of 1 × 10 4 pieces / mm 2 or more. An aluminum alloy for forming a hard anodized film, which is characterized in that
JP14157593A 1993-05-20 1993-05-20 Formation of hard anodic oxide film and aluminum alloy for forming the film Pending JPH06330386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14157593A JPH06330386A (en) 1993-05-20 1993-05-20 Formation of hard anodic oxide film and aluminum alloy for forming the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14157593A JPH06330386A (en) 1993-05-20 1993-05-20 Formation of hard anodic oxide film and aluminum alloy for forming the film

Publications (1)

Publication Number Publication Date
JPH06330386A true JPH06330386A (en) 1994-11-29

Family

ID=15295172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14157593A Pending JPH06330386A (en) 1993-05-20 1993-05-20 Formation of hard anodic oxide film and aluminum alloy for forming the film

Country Status (1)

Country Link
JP (1) JPH06330386A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285742A (en) * 2007-05-21 2008-11-27 Kobe Steel Ltd Al OR Al-ALLOY
JP2009046747A (en) * 2007-08-22 2009-03-05 Kobe Steel Ltd Anode oxidation-treated aluminum alloy combining durability and low stain
JPWO2014112218A1 (en) * 2013-01-18 2017-01-19 株式会社フジミインコーポレーテッド Articles with metal oxide-containing films
CN111690841A (en) * 2020-06-10 2020-09-22 北京猎鹰科技有限公司 Hard aluminum alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285742A (en) * 2007-05-21 2008-11-27 Kobe Steel Ltd Al OR Al-ALLOY
JP2009046747A (en) * 2007-08-22 2009-03-05 Kobe Steel Ltd Anode oxidation-treated aluminum alloy combining durability and low stain
JPWO2014112218A1 (en) * 2013-01-18 2017-01-19 株式会社フジミインコーポレーテッド Articles with metal oxide-containing films
US10450651B2 (en) 2013-01-18 2019-10-22 Fujimi Incorporated Article comprising metal oxide-containing coating
CN111690841A (en) * 2020-06-10 2020-09-22 北京猎鹰科技有限公司 Hard aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
Hsiao et al. Characterization of anodic films formed on AZ91D magnesium alloy
JP4255330B2 (en) Cu-Ni-Si alloy member with excellent fatigue characteristics
KR20090020496A (en) Anodized aluminum alloy material having both durability and low polluting property
JPWO2003064722A1 (en) Copper alloy sputtering target and method of manufacturing the same
TWI752208B (en) Cu-co-si copper alloy plate material and manufacturing method, and parts using the plate material
US20090176125A1 (en) Sn-Plated Cu-Ni-Si Alloy Strip
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
KR20160120324A (en) Copper alloy sheet strip with surface coating layer having superior heat resistance
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP4386236B2 (en) Cu-Ni-Si alloy
TWI422693B (en) Cu-Co-Si alloy sheet and method for producing the same
WO2018012297A1 (en) Rolled copper alloy material, production method therefor and electrical/electronic part
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JPH06330386A (en) Formation of hard anodic oxide film and aluminum alloy for forming the film
JP2018076588A (en) Copper alloy sheet material and manufacturing method therefor
JPH07224338A (en) Formation of hard anodically oxidized film and aluminum alloy for forming hard anodically oxidized film
JPH1143734A (en) Aluminum alloy for semiconductor producing device excellent in formability of alumite coating excellent in gas corrosion resistance and plasma corrosion resistance and heat resistance and material for semiconductor producing device
JP2004256902A (en) Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
TW201843311A (en) Aluminum alloy sheet and anodized aluminum alloy sheet capable of suppressing a decrease in glossiness after performing an anodizing treatment, and exerting an excellent workability
JPH10226894A (en) Production of aluminum alloy sheet excellent in formability, baking finish hardenability, chemical convertibility and corrosion resistance
JP6254806B2 (en) Aluminum alloy rolled sheet for electrolytic treatment, electrolytic treated aluminum alloy rolled sheet and method for producing the same
JP7138229B2 (en) Magnesium alloy plate and manufacturing method thereof
JP2013067848A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
Hino et al. Effect of Surface Treatment on Glossiness of Al–Mg–Zn Alloy Casting
WO2023033120A1 (en) Aluminum member for semiconductor manufacturing devices and method for producing said aluminum member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001