JP2003064437A - HIGH PURITY Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING EXHIBITING HIGH PLATING YIELD - Google Patents

HIGH PURITY Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING EXHIBITING HIGH PLATING YIELD

Info

Publication number
JP2003064437A
JP2003064437A JP2001251151A JP2001251151A JP2003064437A JP 2003064437 A JP2003064437 A JP 2003064437A JP 2001251151 A JP2001251151 A JP 2001251151A JP 2001251151 A JP2001251151 A JP 2001251151A JP 2003064437 A JP2003064437 A JP 2003064437A
Authority
JP
Japan
Prior art keywords
plating
purity
anode material
electrolytic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001251151A
Other languages
Japanese (ja)
Other versions
JP3985130B2 (en
Inventor
Katsuo Sugawara
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001251151A priority Critical patent/JP3985130B2/en
Priority to TW92103699A priority patent/TWI255869B/en
Publication of JP2003064437A publication Critical patent/JP2003064437A/en
Application granted granted Critical
Publication of JP3985130B2 publication Critical patent/JP3985130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high purity Ni alloy anode material which exhibits a high plating yield. SOLUTION: The high purity Ni alloy anode material consists of a high purity Ni alloy obtained by incorporating, as alloy components, 40 to 300 ppm Si and 40 to 300 ppm Al into high purity Ni having purity of >=99.99 mass%.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、電解Niめっき
処理に際して、高いめっき歩留、すなわち使用寿命の延
命化を可能とし、この結果陽極材の交換回数の減少をも
たらすことから、電解めっき装置のFA化に寄与するほ
か、低コスト化を可能とする高純度Ni合金陽極材に関
するものである。 【0002】 【従来の技術】例えば近年の半導体装置などの製造に
は、高純度Ni薄膜の形成が不可欠であり、またこの高
純度Ni薄膜の形成は、陽極材として99.99質量%
以上の高純度を有するNiを用い、電解めっき法により
行なわれている。 【0003】 【発明が解決しようとする課題】一方、近年の電解めっ
き装置のFA化および高純度Ni薄膜形成の低コスト化
の面から、高純度Ni陽極材にはめっき歩留の向上、す
なわち使用寿命の一段の延命化、さらに述べれば高純度
Ni陽極材1個当たりの高純度Ni薄膜の形成割合の向
上が常に求められているのが現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の電解Niめっき用高純度
Ni陽極材に着目し、これのめっき歩留の向上を図るべ
く研究を行った結果、 (a)一般に電解Niめっき処理においては、電解液中
での高純度Ni陽極材からのNiの溶出を一定にするた
めに、前記陽極材には常に一定の電流、例えば2A/d
2が流れるように負荷電圧を制御しており、したがっ
て前記負荷電圧は前記電極材からのNi溶出によって変
化する表面性状に対応して上昇するものであり、例えば
1.3Vの初期負荷電圧(めっき開始5分後の電圧)が
約2.5Vに上昇した時点で電極材の使用寿命としてい
ること。 (b)一方、上記陽極材からのNiの溶出は、樹枝状に
進行し、最終的に前記陽極材は海綿状になり、例えば約
2.5Vの負荷電圧は電極材の海綿状態様を示すもので
あり、この時点で使用寿命としているが、それは、ここ
でさらにめっきを続行すると負荷電圧が急激に上昇し、
陰極であるめっき面で加水分解が起り、この加水分解で
発生した水素と酸素のうち特に水素がNiめっき薄膜内
に巻き込まれ、ピンホールとして存在して薄膜特性を著
しく害うようになるという理由によるものであること。 (c)99.99質量%以上の純度を有する高純度Ni
に、合金成分として、SiおよびAlを、それぞれ、 Si:40〜300ppm、 Al:40〜300ppm、 の割合で含有させてなる高純度Ni合金を電解Niめっ
きの陽極材として用いると、電解Niめっき処理中の前
記陽極材からのNiの溶出形態が微細化、すなわち電解
Niめっき初期の樹枝状溶出形態および同最終期の海綿
状溶出形態が微細化し、これによって陽極材における負
荷電圧の上昇が著しく抑制され、相対的に長時間に亘っ
てのめっき処理が可能となることから、めっき歩留が向
上し、相対的に電極材当たりのめっき処理量が増大する
ようになること。 以上(a)〜(c)に示される研究結果を得たのであ
る。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、99.99質量%以上の純度を有
する高純度Niに、合金成分として、SiおよびAl
を、それぞれ、 Si:40〜300ppm、 Al:40〜300ppm、 の割合で共存含有させてなる高純度Ni合金で構成し
た、高いめっき歩留を示す電解Niめっき用高純度Ni
合金陽極材に特徴を有するものである。 【0006】なお、この発明の高純度Ni合金陽極材を
構成する高純度Ni合金において、SiおよびAlには
上記の通り共存含有した状態で電解めっき処理中の電極
材の溶出態様を著しく微細化し、もってめっき電圧の上
昇を抑制して、使用寿命の長期化に寄与する作用があ
り、したがってSiおよびAlのいずれかしか含有しな
い場合や、前記両成分を含有してもそのいずれかの含有
量が40ppm未満であったりする場合には前記作用に
所望の効果が得られず、一方その含有量がSiおよびA
lのいずれかでも300ppmを越えると、陽極材表面
からのNiの電解液中への溶出が抑制されるようにな
り、これがめっき電圧上昇の原因となり、相対的に使用
寿命の短命化、すなわちめっき歩留の低下をもたらすよ
うになることから、その含有量を、それぞれSi:40
〜300ppm、Al:40〜300ppmと定めた。
また、高純度Niの純度は上記の通り99.99質量%
以上の高純度とすることは不可欠の要件であって、9
9.99質量%未満の純度ではNiめっき薄膜の特性が
低下し、例えば半導体装置に適用することができなくな
るからである。 【0007】 【発明の実施の形態】つぎに、この発明の高純度Ni合
金陽極材を実施例により具体的に説明する。電熱式溶解
るつぼで、それぞれ表1に示される純度の高純度Niを
真空溶解し、これにNi―Si合金およびNi−Al合
金の形で、それぞれ40〜300ppmの範囲内の所定
の量のSiおよびAlを添加含有させて高純度Ni合金
を溶製し、直径:100mm×長さ:120mmのイン
ゴットに鋳造し、これに1100℃の温度で熱間鍛造を
施して幅:125mm×厚さ:23mmの板材とした
後、さらに冷間圧延を施して幅:125mm×厚さ:1
0mmの冷延板とし、さらにこれに450〜750℃の
範囲内の温度に1時間保持の条件で再結晶化熱処理を施
して、それぞれ表1に示される平均結晶粒径とし、つい
でこれより長さ:100mm×幅:50mm×厚さ:1
0mmの寸法に切り出し、最終的に面削加工にて厚さ:
7.5mmとすることにより、それぞれ表1に示される
SiおよびAl含有量の本発明高純度Ni合金陽極材
(以下、本発明陽極材という)1〜12をそれぞれ製造
した。 【0008】また、比較の目的で、同じく表1に示され
る通りSiおよびAlのうちの少なくともいずれかの含
有量がこの発明の範囲から外れた以外は同一の条件で比
較高純度Ni合金陽極材(以下、比較陽極材という)1
〜6をそれぞれ製造した。 【0009】ついで、この結果得られた本発明陽極材1
〜12および比較陽極材1〜6について、脱脂および酸
洗処理した状態で、撹拌羽根付き電解めっき槽に装入
し、 陰極材:無酸素銅、 電解液:塩化ニッケル:5g/l、スルファミン酸ニッ
ケル:350g/l、ほう酸:40g/l、界面活性剤
0.06g/l、を含有し、pH:4.0のスルファミ
ン酸溶液、 電解液の温度:55℃、 電流密度:2A/dm2、 の条件で上記陰極材の表面にNiめっきを施すめっき試
験を行ない、めっき中の表示電圧が2.5V(2.5V
の表示電圧は陰極材表面で加水分解が起る電圧である)
に上昇するまでのめっき時間を測定した。 【0010】 【表1】 【0011】 【発明の効果】表1に示される結果から、SiおよびA
l含有量がいずれも40〜300ppmである本発明陽
極材1〜12は、いずれも長いめっき時間を示し、これ
は電解Niめっき処理に際して、陽極材が高いめっき歩
留を示すことを意味するのに対して、比較陽極材1〜6
に見られるようにSiおよびAlのうちの少なくともい
ずれかの含有量がこの発明の範囲から外れると、相対的
にめっき時間は短いものとなり、陽極材のめっき歩留の
向上は困難であることが明らかである。上述のように、
この発明の高純度Ni合金陽極材は、電解Niめっき処
理に際して、高いめっき歩留、すなわち使用寿命の延命
化を可能とし、この結果陽極材の交換回数の減少をもた
らすことから、電解めっき装置のFA化に寄与するほ
か、低コスト化も可能とするなど工業上有用な効果をも
たらすものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention enables a high plating yield, that is, a prolonged service life in electrolytic Ni plating, and as a result, the number of replacements of the anode material is reduced. The present invention relates to a high-purity Ni alloy anode material that contributes to FA of an electroplating apparatus because of its reduction, and also enables cost reduction. 2. Description of the Related Art For example, in recent years, the production of semiconductor devices and the like requires the formation of a high-purity Ni thin film, and the formation of this high-purity Ni thin film requires 99.99% by mass as an anode material.
It is performed by electrolytic plating using Ni having the above high purity. [0003] On the other hand, in view of the recent trend toward the use of FA in an electrolytic plating apparatus and the reduction in cost of forming a high-purity Ni thin film, a high-purity Ni anode material has an improved plating yield, At present, it is always required to further extend the service life, and more specifically, to improve the formation ratio of a high-purity Ni thin film per high-purity Ni anode material. [0004] Accordingly, the present inventors have proposed:
From the above-mentioned viewpoints, focusing on the above-mentioned high-purity Ni anode material for electrolytic Ni plating and conducting research to improve the plating yield thereof, (a) In general, in electrolytic Ni plating, In order to keep the elution of Ni from the high-purity Ni anode material in the liquid constant, the anode material always has a constant current, for example, 2 A / d.
The load voltage is controlled so that m 2 flows. Therefore, the load voltage rises in accordance with the surface texture that changes due to the elution of Ni from the electrode material. For example, an initial load voltage of 1.3 V ( (5 minutes after the start of plating) rises to about 2.5 V, which indicates that the service life of the electrode material is reached. (B) On the other hand, the elution of Ni from the anode material proceeds in a dendritic manner, and finally the anode material becomes spongy. For example, a load voltage of about 2.5 V indicates the sponge state of the electrode material. At this point, the service life is reached, but if the plating is continued further here, the load voltage rises sharply,
Hydrolysis occurs on the plating surface, which is the cathode, and the hydrogen and oxygen generated by the hydrolysis are particularly caught in the Ni plating thin film, which is present as pinholes and significantly impairs the thin film characteristics. It is due to. (C) High-purity Ni having a purity of 99.99% by mass or more
When a high-purity Ni alloy containing Si and Al as alloy components at a ratio of Si: 40 to 300 ppm and Al: 40 to 300 ppm is used as an anode material for electrolytic Ni plating, electrolytic Ni plating The dissolution form of Ni from the anode material during the treatment is finer, that is, the dendritic dissolution form at the initial stage of electrolytic Ni plating and the spongy dissolution form at the final stage are finer, whereby the load voltage on the anode material is significantly increased. Since the plating process is suppressed for a relatively long time, the plating yield is improved, and the plating process amount per electrode material is relatively increased. The research results shown in (a) to (c) above were obtained. The present invention has been made on the basis of the above-mentioned research results, and it has been proposed that high purity Ni having a purity of 99.99 mass% or more is added to Si and Al as alloy components.
Of high purity Ni for electrolytic Ni plating exhibiting a high plating yield, which is composed of a high purity Ni alloy coexisting at a ratio of Si: 40 to 300 ppm and Al: 40 to 300 ppm, respectively.
It has characteristics in the alloy anode material. In the high-purity Ni alloy constituting the high-purity Ni alloy anode material of the present invention, the elution mode of the electrode material during the electroplating process is remarkably reduced while Si and Al coexist as described above. Therefore, it has the effect of suppressing the increase in plating voltage and contributing to prolonging the service life. Therefore, when only one of Si and Al is contained, and even when both of the above components are contained, the content of either of them is contained. If the content is less than 40 ppm, the desired effect cannot be obtained in the above-mentioned action, while the content of Si and A
If any one exceeds 300 ppm, the elution of Ni from the anode material surface into the electrolytic solution is suppressed, which causes an increase in plating voltage and relatively shortens the service life, that is, plating. Since the yield is lowered, the content is set to Si: 40, respectively.
300300 ppm, Al: 40-300 ppm.
The purity of high-purity Ni is 99.99% by mass as described above.
High purity is an essential requirement,
If the purity is less than 9.99% by mass, the characteristics of the Ni-plated thin film are deteriorated and, for example, it cannot be applied to a semiconductor device. Next, the high-purity Ni alloy anode material of the present invention will be specifically described with reference to examples. In an electrothermal melting crucible, high-purity Ni having the purity shown in Table 1 was vacuum-melted, and a predetermined amount of Si in the range of 40 to 300 ppm was obtained in the form of a Ni-Si alloy and a Ni-Al alloy. And Al are added and melted to produce a high-purity Ni alloy, cast into an ingot having a diameter of 100 mm and a length of 120 mm, and subjected to hot forging at a temperature of 1100 ° C. to have a width of 125 mm and a thickness of: After making a plate material of 23 mm, it is further subjected to cold rolling to obtain a width: 125 mm × thickness: 1
0 mm cold-rolled sheet, and further subjected to recrystallization heat treatment at a temperature in the range of 450 to 750 ° C. for 1 hour to obtain an average grain size shown in Table 1, and then to a longer length. Length: 100mm x width: 50mm x thickness: 1
Cut out to a size of 0mm and finally thickness by facing:
By adjusting the thickness to 7.5 mm, high purity Ni alloy anode materials of the present invention (hereinafter, referred to as the present invention anode materials) 1 to 12 having the Si and Al contents shown in Table 1 were respectively manufactured. [0008] For comparison purposes, as shown in Table 1, comparative high-purity Ni alloy anode material under the same conditions except that the content of at least one of Si and Al is out of the range of the present invention. (Hereinafter referred to as comparative anode material) 1
To 6 were each manufactured. Next, the resulting anode material 1 of the present invention was obtained.
-12 and the comparative anode materials 1-6 were degreased and pickled, placed in an electrolytic plating tank with stirring blades, cathode material: oxygen-free copper, electrolyte solution: nickel chloride: 5 g / l, sulfamic acid Nickel: 350 g / l, boric acid: 40 g / l, surfactant: 0.06 g / l, pH: 4.0, sulfamic acid solution, temperature of electrolyte: 55 ° C., current density: 2 A / dm 2 A plating test was performed in which Ni plating was performed on the surface of the cathode material under the conditions of (1) and (2), and the display voltage during plating was 2.5 V (2.5 V).
Is the voltage at which hydrolysis occurs on the cathode material surface)
The plating time until the temperature rose was measured. [Table 1] According to the results shown in Table 1, Si and A
Each of the anode materials 1 to 12 of the present invention having a l content of 40 to 300 ppm shows a long plating time, which means that the anode material shows a high plating yield in electrolytic Ni plating treatment. In contrast, the comparison anode materials 1-6
As seen from the above, if the content of at least one of Si and Al is out of the range of the present invention, the plating time becomes relatively short, and it is difficult to improve the plating yield of the anode material. it is obvious. As mentioned above,
The high-purity Ni alloy anode material of the present invention enables a high plating yield, that is, a prolonged service life in electrolytic Ni plating treatment, and as a result, reduces the number of replacements of the anode material. Besides contributing to FA, it also has industrially useful effects such as enabling cost reduction.

Claims (1)

【特許請求の範囲】 【請求項1】 99.99質量%以上の純度を有する高
純度Niに、合金成分として、SiおよびAlを、それ
ぞれ、 Si:40〜300ppm、 Al:40〜300ppm、 の割合で含有させてなる高純度Ni合金で構成したこと
を特徴とする高いめっき歩留を示す電解Niめっき用高
純度Ni合金陽極材。
Claims 1. A high-purity Ni having a purity of 99.99% by mass or more, in which Si and Al are added as alloy components to Si: 40 to 300 ppm and Al: 40 to 300 ppm, respectively. A high-purity Ni alloy anode material for electrolytic Ni plating exhibiting a high plating yield, characterized in that the anode material is constituted by a high-purity Ni alloy contained in a proportion.
JP2001251151A 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield Expired - Fee Related JP3985130B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001251151A JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield
TW92103699A TWI255869B (en) 2001-08-22 2003-02-21 Ni alloy as an anode for Ni electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251151A JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield

Publications (2)

Publication Number Publication Date
JP2003064437A true JP2003064437A (en) 2003-03-05
JP3985130B2 JP3985130B2 (en) 2007-10-03

Family

ID=19079842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251151A Expired - Fee Related JP3985130B2 (en) 2001-08-22 2001-08-22 High purity Ni alloy anode material for electrolytic Ni plating showing high plating yield

Country Status (2)

Country Link
JP (1) JP3985130B2 (en)
TW (1) TWI255869B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074555A1 (en) * 2003-02-21 2004-09-02 Mitsubishi Materials Corporation Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING
JP2008184637A (en) * 2007-01-29 2008-08-14 Nec Electronics Corp ELECTROLYTIC Ni PLATING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
CN105200267A (en) * 2014-06-11 2015-12-30 丹阳市凯鑫合金材料有限公司 Pure nickel N6 for lithium battery rivets and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074555A1 (en) * 2003-02-21 2004-09-02 Mitsubishi Materials Corporation Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING
US7393499B2 (en) 2003-02-21 2008-07-01 Mitsubishi Materials Corporation Ni alloy anode material for Ni electroplating
JP2008184637A (en) * 2007-01-29 2008-08-14 Nec Electronics Corp ELECTROLYTIC Ni PLATING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
CN105200267A (en) * 2014-06-11 2015-12-30 丹阳市凯鑫合金材料有限公司 Pure nickel N6 for lithium battery rivets and production method thereof

Also Published As

Publication number Publication date
TWI255869B (en) 2006-06-01
TW200416308A (en) 2004-09-01
JP3985130B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US6783611B2 (en) Phosphorized copper anode for electroplating
JP5275446B2 (en) Aluminum alloy foil for current collector and method for producing the same
KR101443481B1 (en) Cu-si-co alloy for electronic materials, and method for producing same
JP6501889B2 (en) Method of manufacturing Fe-Ni alloy metal foil excellent in heat recovery
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP2666912B2 (en) Aluminum alloy for electrolytic capacitor electrode foil
JP2005179719A (en) Aluminum foil for electrolytic capacitor, and its production method
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP2003064437A (en) HIGH PURITY Ni ALLOY ANODE MATERIAL FOR ELECTROLYTIC Ni PLATING EXHIBITING HIGH PLATING YIELD
JP2011252216A (en) Cu-Co-Si-BASED ALLOY PLATE AND METHOD FOR PRODUCING THE SAME
JP2008144190A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method thereof
US7393499B2 (en) Ni alloy anode material for Ni electroplating
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
US20020148539A1 (en) Aluminum anodes and method of manufacture thereof
JP2007131922A (en) Aluminum foil for electrolytic capacitor
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JPH09302424A (en) Manufacture of zinc-titanium base alloy, and manganese dry battery
JP2009299131A (en) Aluminum foil for electrolytic capacitor and method for producing the same
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2007138234A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3985130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees