JP3981970B2 - Position control device - Google Patents

Position control device Download PDF

Info

Publication number
JP3981970B2
JP3981970B2 JP2002037663A JP2002037663A JP3981970B2 JP 3981970 B2 JP3981970 B2 JP 3981970B2 JP 2002037663 A JP2002037663 A JP 2002037663A JP 2002037663 A JP2002037663 A JP 2002037663A JP 3981970 B2 JP3981970 B2 JP 3981970B2
Authority
JP
Japan
Prior art keywords
speed
transfer function
output
command
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002037663A
Other languages
Japanese (ja)
Other versions
JP2003241839A (en
Inventor
文農 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002037663A priority Critical patent/JP3981970B2/en
Publication of JP2003241839A publication Critical patent/JP2003241839A/en
Application granted granted Critical
Publication of JP3981970B2 publication Critical patent/JP3981970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、位置指令に基づき位置制御を行うための位置制御装置に関する。
【0002】
【従来の技術】
周知のように、通常の位置制御系は位置メインループ(以下では位置ループと称す)と速度マイナーループ(以下では速度ループと称す)で構成されている。 このような制御系では、十分な制御特性を得るため、制御ゲインを大きく上げる必要がある。
しかし、速度ループには遅れ要素やアンプの非線形性などが存在するため速度制御器のゲインが十分に上げられない。また、位置ループでは速度ループの遅れの影響で位置ループの遮断周波数が速度ループの遮断周波数の1/4〜1/2位までしか位置制御器のゲインKpを上げられない。
従来例として図5に示す特開平05−285786では、速度ループの位相遅れを補償するため、通常の位置制御系に直列位相進み補償器を取り入れている。
図5において、2は位置制御器、13は直列位相進み補償器、3は速度ループ、4は速度制御器、5は制御対象、6は積分要素である。このような制御系では、速度ループ3の位相遅れが直列位相進み補償器13により補償されている。
【0003】
【発明が解決しようとする課題】
ところが、前記従来技術では、直列位相進み補償器13の高周波数領域でのゲインが大きいので、高周波数の振動を起こしやすく、結局位置制御ゲインKpを上げられなくて、制御性能を向上することができないという課題があった。
そこで、本発明は、高周波数の振動を起こすことなく速度ループの位相遅れを補償し、位置制御器のゲインを十分に高くでき、十分な応答特性と外乱抑圧特性が得られる位置制御装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記の目的を達成するために、本発明は図1に示すように、速度指令に基づき速度制御を行うとともに位置指令に基づき位置制御を行う位置制御装置において、速度ループ3と同等の伝達関数特性を有する伝達関数モデル10に速度指令Vrを入力し、伝達関数モデル10から速度推定信号Voを出力し、速度指令Vrから速度推定信号Voを差し引いた速度偏差推定信号Veを積分器9に入力し、積分器9から位置補償信号Yhを出力するフィードバック位相進み補償部7を備え、位置検出器12からの位置信号Yに位置補償信号Yhを加えて位置フィードバック信号Yfとすることを特徴とするものである。
【0005】
【発明の実施形態】
本発明の実施形態を図にもとづいて説明する。
図1は本発明の制御系の構成原理を示すブロック線図である。
図1において、1は第1の減算器、2は位置制御器、3は速度ループ、4は速度制御器、5は制御対象、6は積分器、7はフィードバック位相進み補償部、8は加算器、9は積分器、10は速度ループ3と同等の伝達関数特性を有する伝達関数モデル、11は第2の減算器、12は位置検出器、Vrは速度指令、Vは制御対象の速度を示す速度信号(速度検出器の出力)、Yは制御対象の位置を示す位置信号(位置検出器12の出力)、Yfは位置フィードバック信号、Yrは位置指令、Yhは位置補償信号、Veは速度偏差推定信号、Voは速度推定信号である。
図1に示すように、本発明の制御系は、図5に示した従来の制御系において、直列位相進み補償器13をなくし、代わりに速度指令Vrを入力とし、位置補償信号Yhを出力するフィードバック位相進み補償部7を組み込んだものである。
以下、制御系の安定性、入出力特性および外乱抑圧特性について説明する。
【0006】
図1において、速度ループ3の入出力伝達関数をGv(s)とし、フィードバック位相進み補償部7の伝達関数Fb(s)を求めると、
Fb(s)=Yh(s)/Vr(s)=[1−Gv(s)]/s …式1
となる。
制御対象5に含まれる外乱を速度指令側に換算し、これを等価外乱dとし、図1を等価的に図2のように書き直すことができる。
まず、安定性について説明する。
図2において、速度指令Vrから位置信号Yまで、および、速度指令Vrから位置フィードバック信号Yfまでの伝達関数を求めると、
Y(s)/Vr(s)=Gv(s)/s …式2
および
Yf(s)/Vr(s)=1/s …式3
となる。
入出力特性を考察するための図2の等価ブロック線図を図3(等価外乱dを0とする)のように置き換える。図3により、位置指令Yrから位置信号Yまでの伝達関数Gr(s)は

Figure 0003981970
となる。
【0007】
また、図2において、位置信号Yから速度指令Vrまでの伝達関数を求めると、Vr(s)/Y(s)=−Kp・s/[s+Kp・[1−Gv(s)]] …式 5
となる。
外乱抑圧特性を説明するため、図2の等価ブロック線図を図4(位置指令Yrを0とする)のように置き換える。
図4により、等価外乱dから位置信号までの伝達関数Gd(s)は、
Figure 0003981970
となる。
一般に、速度ループは安定かつ定常偏差がないように構成される。この場合では、速度ループの入出力伝達関数Gv(s)は、
Gv(s)=(bnn+bn-1n-1+…+b1s+a0)/(amm+am-1m-1+…+a1s+a0) …式7
となる。ただし、
Dv(s)=amm+am-1m-1+…+a1s+a0 …式 8
はHurwitz安定多項式である。式1より、フィードバック位相進み補償部は、
Figure 0003981970
となる。上式より、Fb(s)は分母がHurwitz安定多項式であるため安定である。
それで、Kp を正数とすれば、式4および式6より、Gr(s)およびGd(s)には不安定な極が存在せず安定である。すなわち、Kpをいくら大きく上げても、制御系は安定である。
【0008】
次に入出力特性について説明する。
速度ループの入出力伝達関数Gv(s)の遮断周波数をωvとし、Kpを
Kp≫ωv …式10
とすれば、式4より、ω<ωvの低周波数領域では、
Gr(jω)≒Gv(jω) (ω<ωv) …式 11
が成り立つ。
すなわち、位置ループの周波数特性を速度ループの周波数特性に近づけることができる。
【0009】
次に外乱抑圧特性について説明する。
一般に、外乱抑圧特性を考察することは低周波数領域で行う。
ω≪Kp,かつ、ω≪ωvの低周波数領域においては、
式7より、Gv(jω)≒1 …式 12
となり、
式9より、Fb(jω)≒(a1−b1)/a0 …式13
となり、
また、式6より、外乱抑圧特性は、
Figure 0003981970
となる。
従って、Kpを上げることによって、外乱の悪影響が小さくなる。
特に、制御対象が剛体系で、速度制御器がPI制御である場合では、a1=b1となるので、
Y(jω)/d(jω)≒1/Kp …式 15
となり、Kpを大きく上げると、低周波外乱の悪影響をほぼ抑えることができる。
【0010】
【発明の効果】
この発明に係る位置制御装置は、速度指令を入力として位置補償信号を出力するフィードバック位相進み補償部を備えるため、位置制御器のゲインKpを大きくしても振動を生じることなく制御系を安定に保つことができ、位置ループの周波数特性を速度ループの周波数特性と同等レベルまで高めることができ、また、目標指令に対する追従特性と低周波の外乱抑圧特性とを大きく向上させることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の制御系の構成原理を示すブロック線図
【図2】 外乱を考慮した図1の等価ブロック線図
【図3】 入出力特性を示すために用いた図2の等価ブロック線図
【図4】 外乱抑圧特性を示すために用いた図2の等価ブロック線図
【図5】 従来技術の制御系の構成を示すブロック線図
【符号の説明】
1、11 減算器
2 位置制御器
3 速度ループ
4 速度制御器
5 制御対象
6、9 積分器
7 フィードバック位相進み補償部
8 加算器
10 速度ループ3の伝達関数モデル
12 位置検出器
13 直列位相進み補償器
14 図2における位置信号Yから速度指令Vrまでの伝達関数
Vr 速度指令
V 制御対象5の速度を示す速度信号(速度検出器の出力)
Y 制御対象5の位置を示す位置信号(位置検出器12の出力)
Yf 位置フィードバック信号
Yr 位置指令
Yh 位置補償信号
Ve 速度偏差推定信号
Vo 速度推定信号[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a position control device for performing position control based on a position command.
[0002]
[Prior art]
As is well known, a normal position control system is composed of a position main loop (hereinafter referred to as a position loop) and a speed minor loop (hereinafter referred to as a speed loop). In such a control system, it is necessary to greatly increase the control gain in order to obtain sufficient control characteristics.
However, since the speed loop includes delay elements and amplifier nonlinearity, the gain of the speed controller cannot be increased sufficiently. Further, in the position loop, the gain Kp of the position controller can be increased only to about ¼ to ½ of the cut-off frequency of the speed loop due to the delay of the speed loop.
In Japanese Patent Laid-Open No. 05-285786 shown in FIG. 5 as a conventional example, a serial phase lead compensator is incorporated in a normal position control system in order to compensate for the phase delay of the speed loop.
In FIG. 5, 2 is a position controller, 13 is a serial phase lead compensator, 3 is a speed loop, 4 is a speed controller, 5 is a control object, and 6 is an integral element. In such a control system, the phase delay of the speed loop 3 is compensated by the series phase advance compensator 13.
[0003]
[Problems to be solved by the invention]
However, in the prior art, since the gain in the high frequency region of the series phase advance compensator 13 is large, the high frequency vibration is likely to occur, and the position control gain Kp cannot be increased after all, thereby improving the control performance. There was a problem that it was not possible.
Therefore, the present invention provides a position control device that compensates for the phase delay of the speed loop without causing high-frequency vibration, can sufficiently increase the gain of the position controller, and can obtain sufficient response characteristics and disturbance suppression characteristics. The purpose is to do.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, as shown in FIG. 1, the present invention provides a transfer function characteristic equivalent to that of the speed loop 3 in a position control device that performs speed control based on a speed command and performs position control based on a position command. The speed command Vr is input to the transfer function model 10 having, the speed estimation signal Vo is output from the transfer function model 10, and the speed deviation estimation signal Ve obtained by subtracting the speed estimation signal Vo from the speed command Vr is input to the integrator 9. A feedback phase lead compensation unit 7 for outputting a position compensation signal Yh from the integrator 9 and adding the position compensation signal Yh to the position signal Y from the position detector 12 to obtain a position feedback signal Yf. It is.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration principle of the control system of the present invention.
In FIG. 1, 1 is a first subtractor, 2 is a position controller, 3 is a speed loop, 4 is a speed controller, 5 is an object to be controlled, 6 is an integrator, 7 is a feedback phase advance compensator, and 8 is an adder. , 9 is an integrator, 10 is a transfer function model having transfer function characteristics equivalent to those of the speed loop 3, 11 is a second subtractor, 12 is a position detector, Vr is a speed command, and V is a speed to be controlled. Speed signal (output of the speed detector), Y is a position signal (output of the position detector 12) indicating the position of the object to be controlled, Yf is a position feedback signal, Yr is a position command, Yh is a position compensation signal, and Ve is speed. Deviation estimation signal Vo is a speed estimation signal.
As shown in FIG. 1, the control system of the present invention eliminates the serial phase lead compensator 13 in the conventional control system shown in FIG. 5, and instead receives the speed command Vr and outputs the position compensation signal Yh. The feedback phase lead compensation unit 7 is incorporated.
The control system stability, input / output characteristics, and disturbance suppression characteristics will be described below.
[0006]
In FIG. 1, when the input / output transfer function of the speed loop 3 is Gv (s) and the transfer function Fb (s) of the feedback phase lead compensation unit 7 is obtained,
Fb (s) = Yh (s) / Vr (s) = [1-Gv (s)] / s Equation 1
It becomes.
The disturbance included in the controlled object 5 is converted to the speed command side, and this is set as the equivalent disturbance d, and FIG. 1 can be equivalently rewritten as shown in FIG.
First, stability will be described.
In FIG. 2, when the transfer functions from the speed command Vr to the position signal Y and from the speed command Vr to the position feedback signal Yf are obtained,
Y (s) / Vr (s) = Gv (s) / s Equation 2
And Yf (s) / Vr (s) = 1 / s Equation 3
It becomes.
The equivalent block diagram of FIG. 2 for considering the input / output characteristics is replaced with FIG. 3 (equivalent disturbance d is set to 0). According to FIG. 3, the transfer function Gr (s) from the position command Yr to the position signal Y is
Figure 0003981970
It becomes.
[0007]
Further, in FIG. 2, when a transfer function from the position signal Y to the speed command Vr is obtained, Vr (s) / Y (s) = − Kp · s / [s + Kp · [1−Gv (s)]] 5
It becomes.
In order to explain the disturbance suppression characteristics, the equivalent block diagram in FIG. 2 is replaced with that in FIG. 4 (position command Yr is set to 0).
According to FIG. 4, the transfer function Gd (s) from the equivalent disturbance d to the position signal is
Figure 0003981970
It becomes.
In general, the velocity loop is configured to be stable and free of steady state deviation. In this case, the input / output transfer function Gv (s) of the speed loop is
Gv (s) = (b n s n + b n-1 s n-1 + ... + b 1 s + a 0) / (a m s m + a m-1 s m-1 + ... + a 1 s + a 0) ... Equation 7
It becomes. However,
Dv (s) = a m s m + a m-1 s m-1 + ... + a 1 s + a 0 ... Equation 8
Is a Hurwitz stable polynomial. From Equation 1, the feedback phase lead compensation unit is
Figure 0003981970
It becomes. From the above equation, Fb (s) is stable because the denominator is a Hurwitz stable polynomial.
Therefore, if Kp is a positive number, from Equations 4 and 6, Gr (s) and Gd (s) are stable without unstable poles. That is, the control system is stable no matter how much Kp is increased.
[0008]
Next, input / output characteristics will be described.
The cutoff frequency of the input / output transfer function Gv (s) of the speed loop is ωv, and Kp is Kp >> ωv (Equation 10)
Then, from Equation 4, in the low frequency region where ω <ωv,
Gr (jω) ≈Gv (jω) (ω <ωv) Equation 11
Holds.
That is, the frequency characteristic of the position loop can be brought close to the frequency characteristic of the velocity loop.
[0009]
Next, the disturbance suppression characteristic will be described.
In general, the disturbance suppression characteristics are considered in the low frequency region.
In the low frequency region of ω << Kp and ω << ωv,
From Equation 7, Gv (jω) ≈1 Equation 12
And
From Equation 9, Fb (jω) ≈ (a 1 −b 1 ) / a 0 ... Equation 13
And
From Equation 6, the disturbance suppression characteristic is
Figure 0003981970
It becomes.
Therefore, by increasing Kp, the adverse effects of disturbance are reduced.
In particular, when the control target is a rigid system and the speed controller is PI control, a 1 = b 1 .
Y (jω) / d (jω) ≈1 / Kp Equation 15
Thus, if Kp is greatly increased, the adverse effects of low frequency disturbance can be substantially suppressed.
[0010]
【The invention's effect】
Since the position control device according to the present invention includes the feedback phase lead compensation unit that outputs the position compensation signal with the speed command as an input, even if the gain Kp of the position controller is increased, the control system can be stabilized without causing vibration. The frequency characteristics of the position loop can be increased to the same level as the frequency characteristics of the speed loop, and the tracking characteristics with respect to the target command and the low frequency disturbance suppression characteristics can be greatly improved. is there.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration principle of a control system of the present invention. FIG. 2 is an equivalent block diagram of FIG. 1 considering disturbance. FIG. 3 is an equivalent block of FIG. 2 used to show input / output characteristics. Diagram [FIG. 4] Equivalent block diagram of FIG. 2 used to show disturbance suppression characteristics [FIG. 5] Block diagram showing the configuration of the control system of the prior art [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Subtractor 2 Position controller 3 Speed loop 4 Speed controller 5 Control object 6, 9 Integrator 7 Feedback phase advance compensation part 8 Adder 10 Transfer function model 12 of speed loop 3 Position detector 13 Serial phase advance compensation 14 Transfer function Vr from position signal Y to speed command Vr in FIG. 2 Speed command V Speed signal indicating speed of control object 5 (output of speed detector)
Y Position signal indicating the position of the controlled object 5 (output of the position detector 12)
Yf Position feedback signal Yr Position command Yh Position compensation signal Ve Speed deviation estimation signal Vo Speed estimation signal

Claims (1)

置指令から位置フィードバック信号を減ずる第1の減算器と、前記第1の減算器の出力を入力として速度指令を出力する位置制御器と、前記速度指令及び制御対象の速度を入力として速度制御を行う速度制御器とを備えた位置制御装置において、
前記速度指令から前記制御対象の速度までの伝達関数と同等の伝達関数特性を有し、かつ前記速度指令を入力とする伝達関数モデル装置と、
記速度指令から前記伝達関数モデル装置の出力を減ずる第2の減算器と、
前記第2の減算器の出力を積分する積分器と、
前記積分器の出力と前記制御対象の位置を示す位置信号を加算して前記位置フィードバック信号を出力する加算器とを備えたことを特徴とする位置制御装置。
A first subtractor for subtracting the position feedback signal from the position command, the position controller to output a speed command as a first input the output of the subtractor, the speed control the speed of the speed command and the control object as input In a position control device comprising a speed controller for performing
A transfer function model device having a transfer function characteristic equivalent to the transfer function from the speed command to the speed of the controlled object, and receiving the speed command;
A second subtractor that before Symbol speed command reducing the output of the transfer function model device,
An integrator for integrating the output of the second subtractor;
A position control device comprising: an adder that adds the output of the integrator and a position signal indicating the position of the control target and outputs the position feedback signal .
JP2002037663A 2002-02-15 2002-02-15 Position control device Expired - Fee Related JP3981970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037663A JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037663A JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Publications (2)

Publication Number Publication Date
JP2003241839A JP2003241839A (en) 2003-08-29
JP3981970B2 true JP3981970B2 (en) 2007-09-26

Family

ID=27779183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037663A Expired - Fee Related JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Country Status (1)

Country Link
JP (1) JP3981970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809447A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Method for designing composite frequency controller for multi-loop model cluster of aircraft
CN103809453A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Design method of longitudinal flight model cluster man-machine closed-loop composite root-locus compensation robust controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605247B1 (en) * 2017-03-29 2023-06-07 Fuji Corporation Disturbance non-interference-enabling compensation system for positioning control device, and component mounting apparatus
CN109541945B (en) * 2019-01-10 2021-11-02 中国科学院光电技术研究所 Disturbance suppression method based on composite disturbance observer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809447A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Method for designing composite frequency controller for multi-loop model cluster of aircraft
CN103809453A (en) * 2014-02-28 2014-05-21 西安费斯达自动化工程有限公司 Design method of longitudinal flight model cluster man-machine closed-loop composite root-locus compensation robust controller

Also Published As

Publication number Publication date
JP2003241839A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
JP3835528B2 (en) Speed control device
KR101402873B1 (en) position control device for electric motor
US9966891B2 (en) System and method for controlling speed of electric motor
JP5322534B2 (en) Control device and motor control device
JP5178250B2 (en) Image blur correction apparatus, optical apparatus including the same, image pickup apparatus, and image blur correction apparatus control method
JP3981970B2 (en) Position control device
JP2002182705A (en) Feedback controller
JPH1131014A (en) Position control system and speed control system
JP3804061B2 (en) Feedback control device
JP3188603B2 (en) Inverter control device
TWI546801B (en) Sample rate converter and rate estimator thereof and rate estimation method thereof
JPH10155292A (en) Two-inertial system control circuit
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP3818237B2 (en) Control device for synchronous motor
JP2001190093A (en) Control device of print magnet type synchronous motor
JP4760175B2 (en) Image blur correction device
JP2833187B2 (en) Power converter current control circuit
JP3201457B2 (en) Induction motor flux estimator Input voltage error correction method and induction motor flux estimator
TWI716175B (en) Current response compensating system and method thereof
JPH0782383B2 (en) Data input device
JP6711170B2 (en) Motor controller
JP3864283B2 (en) Position control device
JP2817131B2 (en) Inverter device
JPH05127701A (en) Controller
JP2001290504A (en) Controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees