JP3818237B2 - Control device for synchronous motor - Google Patents

Control device for synchronous motor Download PDF

Info

Publication number
JP3818237B2
JP3818237B2 JP2002230881A JP2002230881A JP3818237B2 JP 3818237 B2 JP3818237 B2 JP 3818237B2 JP 2002230881 A JP2002230881 A JP 2002230881A JP 2002230881 A JP2002230881 A JP 2002230881A JP 3818237 B2 JP3818237 B2 JP 3818237B2
Authority
JP
Japan
Prior art keywords
command value
axis
voltage command
current
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230881A
Other languages
Japanese (ja)
Other versions
JP2004072931A (en
Inventor
満博 正治
卓明 苅込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002230881A priority Critical patent/JP3818237B2/en
Publication of JP2004072931A publication Critical patent/JP2004072931A/en
Application granted granted Critical
Publication of JP3818237B2 publication Critical patent/JP3818237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は同期電動機の制御装置に関し、例えば回転子に永久磁石を備えた三相同期電動機における制御技術に関する。
【0002】
【従来の技術】
従来の電動機制御装置としては、例えば特開2000−224883号公報に記載されているものがある。この従来例ではトルク指令値を満足するd軸電流およびq軸電流を発生するためのd軸電圧指令値およびq軸電圧指令値を算出し、d軸およびq軸の実電流とd軸およびq軸の電流指令値との差から上記電圧指令値をPI(比例積分)制御で補正する構成が記載されている。
【0003】
【発明が解決しようとする課題】
上記従来技術のように制御した場合には、d軸電流およびq軸電流に振動が発生する。これを防止するためにd軸電圧指令値を入力し、入力したd軸電圧指令値からd軸電流の振動成分を除去して出力するフィルタ(例えばローパスフィルタ)およびq軸電圧指令値を入力し、入力したq軸電圧指令値からq軸電流の振動成分を除去して出力するフィルタをそれぞれ設けることが考えられる。しかしながら、d軸電圧指令値が変化した場合には、d軸電流だけでなく、q軸電流にも逆起電力(又は速度起電力とも言う)による変化が発生し、また、q軸電圧指令値が変化した場合q軸電流だけでなく、d軸電流にも逆起電力によって変化が発生する。従って、d軸電圧指令値およびq軸電圧指令値の電流振動成分をそれぞれ独立して除去しても、電流振動が発生するという問題が有った。
【0004】
本発明は上記のごとき従来技術の問題を解決するためになされたものであり、電流応答における振動成分を抑制して電流応答性を向上させた同期電動機の制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明においては、電圧指令値算出手段によって算出されたd軸電圧指令値およびq軸電圧指令値を入力し、入力されたd軸電圧指令値およびq軸電圧指令値の変化に起因してd軸電流およびq軸電流に発生する振動成分を除去するための電圧指令値補正フィルタとして、
d軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、d軸電圧指令値を補正する第一の振動除去手段(C11)と、
d軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、d軸電圧指令値に基づいてq軸電圧指令値を補正する第二の振動除去手段(C21)と、
q軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、q軸電圧指令値を補正する第三の振動除去手段(C22)と、
q軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、q軸電圧指令値に基づいてd軸電圧指令値を補正する第四の振動除去手段(C12)と、
を備えるように構成している。
【0006】
【発明の効果】
本発明においては、d軸電圧指令値の変化に起因してd軸電流に発生する振動成分とq軸電流に発生する振動成分、およびq軸電圧指令値の変化に起因してq軸電流に発生する振動成分とd軸電流に発生する振動成分の全てを除去するようにそれぞれの補正電圧指令値を設定しているので、d軸電圧指令値およびq軸電圧指令値から電流振動成分を除去して、電流応答性を確実に向上させることができる。
【0007】
【発明の実施の形態】
図1は、本発明の第1の実施例を示すブロック図である。
図1において、クロスフィルタ1(電圧指令値補正フィルタ)の各フィルタ(C11)、(C12)、(C21)、(C22)の特性は、下記(数1)式〜(数4)式で示される。
【0008】
【数1】

Figure 0003818237
【0009】
【数2】
Figure 0003818237
【0010】
【数3】
Figure 0003818237
【0011】
【数4】
Figure 0003818237
ただし、g(s):電流応答特性
s:ラプラス演算子
R:電動機の電機子巻線抵抗
dc、Lqc:電動機のインダクタンス推定値
ω:電気角速度
また、クロスフィルタ1の電流応答特性g(s)とフィルタ部2のローパスフィルタの特性gflt(s)との関係は、下記(数5)式に示すようになる。
【0012】
【数5】
Figure 0003818237
指令値決定部3では、まず、外部から入力されたトルク指令値Tおよび現在の回転速度ωを指標として、電流マップ301(電流指令値算出手段)を用いてマップ引きによりd軸電流指令値i およびq軸電流指令値i を求める。そして電圧指令値演算部302(電圧指令値算出手段)では入力されたd軸電流指令値i およびq軸電流i から、下記(数6)式によってd軸電圧指令値v’およびq軸電圧指令値v’を演算して出力する。
【0013】
【数6】
Figure 0003818237
ただし、φ:磁石による巻線鎖交磁束数
フィルタ部2(補正値算出手段)は、例えば1次遅れのローパスフィルタで構成し、d軸電流指令値i およびq軸電流指令値i の変化速度を緩和し、緩和後のd軸電流指令値i’およびq軸電流指令値i’として出力する。
フィルタ部2のローパスフィルタの特性gflt(s)は下記(数7)式で示される。
【0014】
【数7】
Figure 0003818237
ただし、α:g(s)を一次遅れとした場合のカットオフ周波数
クロスフィルタ1では、指令値決定部3からのd軸電圧指令値v’およびq軸電圧指令値v’を入力し、前記(数1)式〜(数4)式の特性を有するクロスフィルタを通すことにより、下記(数8)式、(数9)式に示す補正電圧指令値(vd1、vq1)を出力する。
【0015】
【数8】
Figure 0003818237
【0016】
【数9】
Figure 0003818237
一方、座標変換器11は、電流検出器8で検出した二相の電流i、iから求めた三相の検出電流(実電流)i、i、iと、位置検出器10で検出した検出位置(回転子の回転位相)とに基づいて、d軸電流(磁束電流)iとq軸電流(トルク電流)iを求める。なお、電流検出器8、位置検出器10および座標変換器11の部分が実電流検出手段に相当する。
【0017】
PI制御部4(補正値算出手段)では、フィルタ部2から送られた緩和後のd軸電流指令値i’およびq軸電流指令値i’と座標変換器11から送られたd軸電流iとq軸電流iとの差分を増幅し、下記(数10)式、(数11)式に示す電圧補正値(vd2、vq2)を生成する。ただしパラメータ誤差がなく、電流応答特性はgflt(s)が得られている場合、電流の差分は0なので(vd2、vq2)は0である。
【0018】
【数10】
Figure 0003818237
【0019】
【数11】
Figure 0003818237
ただし、gpid、gpiq:PI制御部4におけるPIゲイン
上記のようにして求められたクロスフィルタ処理後の補正電圧指令値(vd1、vq1)は電圧補正値(vd2、vq2)との和を求めることによってさらに補正を行い、補正後の補正電圧指令値(v、v)として電圧座標変換器5へ送られる。そして電圧座標変換器5で三相交流v、v、vに変換され、PWM変換器6でPWM信号に変換される。そのPWM信号でインバータ7を制御することにより、三相の交流電力を作り、それによって電動機9を駆動する。なお、電圧座標変換器5、PWM変換器6およびインバータ7の部分が電圧制御手段に相当する。
上記補正後の補正電圧指令値(v、v)は下記(数12)式、(数13)式で示される。
【0020】
【数12】
Figure 0003818237
【0021】
【数13】
Figure 0003818237
次に、作用を説明する。
定常状態ではクロスフィルタ1の特性は下記(数14)式のように表すことができる。
【0022】
【数14】
Figure 0003818237
(数14)式において、c12とc21は、d軸電圧指令値v’およびq軸電圧指令値v’が変化する過渡的な状態にのみ適用されるフィルタとなっているため、この場合は0となる。
過渡状態では、d軸電圧指令値v’のみが変化した場合、クロスフィルタ1の特性は下記(数15)式のように表すことができる。
【0023】
【数15】
Figure 0003818237
ただし、Ldc、Lqc:制御に用いる電動機のインダクタンス値(測定値又は推定値)
補正電圧指令値vのみを操作すると、電流応答には必ず振動が起こるため、補正電圧指令値vを操作する場合には必ず補正電圧指令値vも操作する必要がある。そのためc11によって生成されるd軸の補正電圧指令値vのほかにc21によるq軸の補正電圧指令値vも変化させ、d軸電圧指令値v’の変化およびこれに起因するdq軸間の干渉成分によりd軸電流およびq軸電流に発生する電動機に固有の電気的振動を抑制している。
また、q軸電圧指令値v’が変化した場合、クロスフィルタ1の特性は下記(数16)式のように表すことができ、上記のd軸と同様にして振動を抑制している。
【0024】
【数16】
Figure 0003818237
以上の作用をまとめて数式で表すと、以下のようになる。
パラメータ誤差が無い場合、電圧座標変換器5に入力する補正電圧指令値(v、v)は、下記(数17)式、(数18)式に示すようになる。
【0025】
【数17】
Figure 0003818237
【0026】
【数18】
Figure 0003818237
また、過渡応答を含んだ電動機の電圧方程式は下記(数19)式に示すようになる。
【0027】
【数19】
Figure 0003818237
ただし、Ldm、Lqm:電動機の実際のインダクタンス値
ここで、(数6)式、(数19)式を下記(数20)式、(数21)式のように次元を拡張し、クロスフィルタ1の入出力の関係を下記(数22)式のように整理する。
【0028】
【数20】
Figure 0003818237
【0029】
【数21】
Figure 0003818237
【0030】
【数22】
Figure 0003818237
(数22)式において、両辺に左からBの逆行列B−1をかけると下記(数23)式、(数24)式となる。
【0031】
【数23】
Figure 0003818237
【0032】
【数24】
Figure 0003818237
入力する補正電圧指令値(v、v)にかかるB−1の要素は分母に二次遅れ成分1/G(s)が含まれており、クロスフィルタ1がない場合にはd軸電圧指令値v’およびq軸電圧指令値v’に対する電波応答は振動的になる。
これに対して、クロスフィルタ1を用いた場合、d軸電圧指令値v’およびq軸電圧指令値v’とd軸電流およびq軸電流の応答の関係は、下記(数25)式、(数26)式に示すようになり、二次遅れ成分1/G(s)は除去されるので振動的にはならない。
【0033】
【数25】
Figure 0003818237
【0034】
【数26】
Figure 0003818237
また、d軸電流指令値i およびq軸電流指令値i 応答の関係は、下記(数27)式、(数28)式、(数29)式に示すようになる。
【0035】
【数27】
Figure 0003818237
【0036】
【数28】
Figure 0003818237
【0037】
【数29】
Figure 0003818237
以上説明したように、(数1)式〜(数4)式によるクロスフィルタ1を用いることによって、d軸電圧指令値v’およびq軸電圧指令値v’に対する電流応答の振動成分は除去され、かつ、電流応答特性はg(s)となり、g(s)を(数7)式のように設計した場合は応答周波数α[rad/s]の滑らかな一次遅れの電流応答が得られる。
【0038】
図2は、本発明の第2の実施例を示すブロック図である。
図1と異なる点は、図1の電圧指令値演算部302の代わりに、電圧マップ303を備え、トルク指令値Tと回転速度ωからマップ引きにより電圧指令値(v’、v’)を求める点である。
図2において、電圧マップ303は、電動機の評価試験の際に、トルク指令値Tと回転速度ωを指標とした、定常運転時のd軸電圧vおよびq軸電圧vによって作成する。このマップを用いてd軸電圧指令値v’およびq軸電圧指令値v’を求める。
次に、作用を説明する。
電圧マップ303には、電流によるインダクタンス値の変動分が含まれるので、電流応答はパラメータ誤差の影響を受けにくくなる。
【0039】
以下、第1および第2の実施例における制御の実例について説明する。
図3〜図8は、それぞれステップ入力時の電流応答の一例を示す図であり、図3〜図6は本発明における特性、図7、図8は比較のために示した従来例の特性である。
従来例においては、図7に示すように、d軸電流指令値i およびq軸電流i が実線で示すようにステップ状に変化した場合、実際のd軸電流iとq軸電流iは破線で示すように大きく振動する。また、d軸電圧vおよびq軸電圧vは図示のようにステップ状に変化し、かつ振動する。
また、図8は、従来例において、PIフィードバックループのゲインを出来るだけ大きくした場合の特性である。この場合には図7よりは少ないが、やはり振動が残っている。従来例において、電動機に固有の電気的振動成分のような、周波数が大きい電流誤差を補正するためには、PIフィードバックループのゲインを充分に大きくしなくてはならないが、PIゲインを大きくするに従って、ノイズまで増幅してしまう。実際の制御は離散系なので、電流応答速度には制御周期による限界があり、図7、図8からも判るように、充分に振動を抑制できない。
【0040】
これに対して、本発明においては、図3に示すように、d軸電流指令値i およびq軸電流i が実線で示すようにステップ状に変化した場合、実際のd軸電流iとq軸電流iは破線で示すように時間遅れをもって滑らかに変化し、振動することはない。また、d軸電圧vおよびq軸電圧vも滑らかに変化し、振動することはない。つまり、電流応答から振動成分が完全に除去され、滑らかな1次遅れの応答となる。
また、図4は、本発明において、カットオフ周波数αを図7の3倍の値に設定した場合の特性である。この場合には、実際のd軸電流iとq軸電流iの変化が、かなりd軸電流指令値i およびq軸電流i の変化に近づいているが、やはり振動は生じていない。
上記のように、電流の応答周波数はα[rad/s]となり、制御周期による電流応答速度の限界の範囲内あるいはノイズの増幅による悪影響が出ない範囲内で自由に決めることができる。
【0041】
また、図5、図6は、本発明において、制御に用いる推定インダクタンス値(Ldc、Lqc)が、実際のインダクタンス値(Ldm、Lqm)に対して誤差を含んでいる場合の特性例であり、図5は「Ldm=Ldc×1.1、Lqm=Lqc×0.9」の誤差を含んでいる場合、図6は「Ldm=Ldc×1.1、Lqm=Lqc×1.1」の誤差を含んでいる場合の特性を示す。
図5、図6から判るように、制御に用いる推定インダクタンス値(Ldc、Lqc)が、実際のインダクタンス値(Ldm、Lqm)に対して誤差を含んでいる場合でも、電流応答が振動的になったり、発振することはない。
【0042】
以上説明したように、本発明においては、クロスフィルタ1(電圧指令値補正フィルタ)として、d軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、d軸電圧指令値を補正する第一の振動除去手段(C11)と、d軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、d軸電圧指令値に基づいてq軸電圧指令値を補正する第二の振動除去手段(C21)と、q軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、q軸電圧指令値を補正する第三の振動除去手段(C22)と、q軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、q軸電圧指令値に基づいてd軸電圧指令値を補正する第四の振動除去手段(C12)と、を備え、そしてクロスフィルタ1の特性はモータ定数を用いて(数1)式〜(数4)式のように設計している。そのため電流応答から電動機に固有の電気的な振動成分が除去される。
また、g(s)を(数7)式に示した一次遅れ成分とすることにより、電流応答から振動成分が除去されると共に、電流応答は応答周波数α[rad/s]の滑らかな一次遅れとなり、制御周期による電流応答速度の限界の範囲内で自由に決めることができる。
また、制御に用いる推定インダクタンス値(Ldc、Lqc)が、実際のインダクタンス値(Ldm、Lqm)に対して誤差を含んでいた場合でも、電流応答が不安定になったり、発振することはない。
また、電動機の評価試験の際、出力トルクと回転速度を指標とした、定常運転時のd軸電圧およびq軸電圧より作成した電圧マップを用いて電圧指令値を求めることにより、パラメータ誤差による電流応答への影響をより少なくすることができる。
また、フィルタ部2のローパスフィルタから出力されたd軸指令値およびq軸電流指令値と、d軸およびq軸の実電流値とに基づいて、クロスフィルタ1から出力されたd軸補正電圧指令値およびq軸補正電圧指令値をさらに補正することにより、実電流と電流指令値の差を補正して、更に確実に電流応答性を向上させることができる。
また、フィルタ部2のローパスフィルタの特性gflt(s)を(数7)式とし、クロスフィルタ1の電流応答特性g(s)をg(s)=gflt(s)とすることによって、電流応答周波数をαとして、所望の応答特性を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例のブロック図。
【図2】本発明の第2の実施例のブロック図。
【図3】本発明におけるステップ入力時の電流応答その1。
【図4】本発明におけるステップ入力時の電流応答その2。
【図5】本発明におけるステップ入力時の電流応答その3。
【図6】本発明におけるステップ入力時の電流応答その4。
【図7】従来技術におけるステップ入力時の電流応答。
【図8】従来技術におけるPIゲインを大きくした場合のステップ入力時の電流応答。
【符号の説明】
1…クロスフィルタ 2…フィルタ部
3…指令値決定部 4…PI制御部
5…電圧座標変換器 6…PWM変換器
7…インバータ 8…電流検出器
9…電動機 10…位置検出器
11…座標変換器 12…速度演算器
301…電流マップ 302…電圧指令値演算部
303…電圧マップ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a synchronous motor, for example, a control technique in a three-phase synchronous motor having a permanent magnet in a rotor.
[0002]
[Prior art]
As a conventional electric motor control device, for example, there is one described in Japanese Patent Application Laid-Open No. 2000-224883. In this conventional example, the d-axis voltage command value and the q-axis voltage command value for generating the d-axis current and the q-axis current satisfying the torque command value are calculated, and the actual currents of the d-axis and the q-axis are calculated from A configuration is described in which the voltage command value is corrected by PI (proportional integration) control from the difference from the shaft current command value.
[0003]
[Problems to be solved by the invention]
When controlled as in the above prior art, vibrations occur in the d-axis current and the q-axis current. In order to prevent this, a d-axis voltage command value is input, a filter (for example, a low-pass filter) that removes a vibration component of the d-axis current from the input d-axis voltage command value, and a q-axis voltage command value are input. It is conceivable to provide a filter for removing the vibration component of the q-axis current from the input q-axis voltage command value and outputting it. However, when the d-axis voltage command value changes, not only the d-axis current but also the q-axis current changes due to the back electromotive force (also referred to as speed electromotive force), and the q-axis voltage command value Changes in the q-axis current as well as the d-axis current due to the back electromotive force. Therefore, there has been a problem that even if the current vibration components of the d-axis voltage command value and the q-axis voltage command value are independently removed, current vibration occurs.
[0004]
The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a synchronous motor control device that improves the current response by suppressing the vibration component in the current response. .
[0005]
[Means for Solving the Problems]
In the present invention, the d-axis voltage command value and the q-axis voltage command value calculated by the voltage command value calculation means are input, and d is caused by changes in the input d-axis voltage command value and q-axis voltage command value. As a voltage command value correction filter for removing vibration components generated in the shaft current and the q-axis current,
first vibration removing means (C 11 ) for correcting the d-axis voltage command value so as to remove the vibration component generated in the d-axis current due to the change in the d-axis voltage command value;
Second vibration removing means (C 21 ) for correcting the q-axis voltage command value based on the d-axis voltage command value so as to remove the vibration component generated in the q-axis current due to the change in the d-axis voltage command value. )When,
third vibration removing means (C 22 ) for correcting the q-axis voltage command value so as to remove the vibration component generated in the q-axis current due to the change in the q-axis voltage command value;
Fourth vibration removing means (C 12 ) for correcting the d-axis voltage command value based on the q-axis voltage command value so as to remove the vibration component generated in the d-axis current due to the change in the q-axis voltage command value. )When,
It comprises so that it may be equipped with.
[0006]
【The invention's effect】
In the present invention, the vibration component generated in the d-axis current due to the change in the d-axis voltage command value, the vibration component generated in the q-axis current, and the q-axis current due to the change in the q-axis voltage command value. Since each correction voltage command value is set so as to remove all of the vibration component generated and the vibration component generated in the d-axis current, the current vibration component is removed from the d-axis voltage command value and the q-axis voltage command value. Thus, the current response can be improved with certainty.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention.
In FIG. 1, the characteristics of the respective filters (C 11 ), (C 12 ), (C 21 ), and (C 22 ) of the cross filter 1 (voltage command value correction filter) are expressed by the following equations (1) to (4). ).
[0008]
[Expression 1]
Figure 0003818237
[0009]
[Expression 2]
Figure 0003818237
[0010]
[Equation 3]
Figure 0003818237
[0011]
[Expression 4]
Figure 0003818237
Where g (s): current response characteristic s: Laplace operator R: motor armature winding resistance L dc , L qc : estimated motor inductance ω: electrical angular velocity and current response characteristic g ( The relationship between s) and the characteristic g flt (s) of the low-pass filter of the filter unit 2 is as shown in the following equation (5).
[0012]
[Equation 5]
Figure 0003818237
In the command value determination unit 3, first, the d-axis current command value is obtained by map drawing using the current map 301 (current command value calculation means) using the torque command value T * input from the outside and the current rotational speed ω as indices. Find i d * and q-axis current command value i q * . Then, the voltage command value calculation unit 302 (voltage command value calculation means) calculates the d-axis voltage command value v d ′ from the input d-axis current command value i d * and q-axis current i q * by the following equation (6). And q-axis voltage command value v q 'is calculated and output.
[0013]
[Formula 6]
Figure 0003818237
However, φ: winding interlinkage magnetic flux number filter unit 2 (correction value calculation means) is constituted by, for example, a first-order lag low-pass filter, and includes a d-axis current command value i d * and a q-axis current command value i q. The rate of change of * is relaxed and output as a d-axis current command value i d ′ and q-axis current command value i q ′ after relaxation.
The characteristic g flt (s) of the low-pass filter of the filter unit 2 is expressed by the following equation (7).
[0014]
[Expression 7]
Figure 0003818237
However, in the cut-off frequency cross filter 1 when α: g (s) is a first order lag, the d-axis voltage command value v d ′ and the q-axis voltage command value v q ′ from the command value determination unit 3 are input. The corrected voltage command values (v d1 , v q1 ) shown in the following (Equation 8) and (Equation 9) are obtained by passing through a cross filter having the characteristics of the above (Equation 1) to (Equation 4). Output.
[0015]
[Equation 8]
Figure 0003818237
[0016]
[Equation 9]
Figure 0003818237
On the other hand, the coordinate converter 11 includes three-phase detection currents (actual currents) i u , i v , i w obtained from the two-phase currents i u , i v detected by the current detector 8, and the position detector 10. The d-axis current (magnetic flux current) id and the q-axis current (torque current) i q are obtained based on the detection position (rotation phase of the rotor) detected in (1). The current detector 8, the position detector 10, and the coordinate converter 11 correspond to the actual current detecting means.
[0017]
In the PI control unit 4 (correction value calculating means), the relaxed d-axis current command value i d ′ and q-axis current command value i q ′ sent from the filter unit 2 and the d-axis sent from the coordinate converter 11 The difference between the current i d and the q-axis current i q is amplified to generate voltage correction values (v d2 , v q2 ) represented by the following formulas (10) and (11). However, when there is no parameter error and the current response characteristic g flt (s) is obtained, the difference in current is 0, so (v d2 , v q2 ) is 0.
[0018]
[Expression 10]
Figure 0003818237
[0019]
[Expression 11]
Figure 0003818237
However, g pid , g piq : PI gain in the PI control unit 4 The corrected voltage command values (v d1 , v q1 ) obtained as described above are the voltage correction values (v d2 , v q2 ). Further correction is performed by obtaining the sum of and the corrected voltage command values (v d , v q ) after correction are sent to the voltage coordinate converter 5. The voltage coordinate converter 5 converts the signals into three-phase alternating currents v u , v v , and v w , and the PWM converter 6 converts them into PWM signals. By controlling the inverter 7 with the PWM signal, three-phase AC power is generated, and thereby the electric motor 9 is driven. The voltage coordinate converter 5, the PWM converter 6, and the inverter 7 correspond to voltage control means.
The corrected voltage command values (v d , v q ) after the correction are expressed by the following formulas (12) and (13).
[0020]
[Expression 12]
Figure 0003818237
[0021]
[Formula 13]
Figure 0003818237
Next, the operation will be described.
In the steady state, the characteristic of the cross filter 1 can be expressed as the following (Equation 14).
[0022]
[Expression 14]
Figure 0003818237
In the equation (14), c 12 and c 21 are filters that are applied only to a transient state in which the d-axis voltage command value v d ′ and the q-axis voltage command value v q ′ change. In this case, it is 0.
In the transient state, when only the d-axis voltage command value v d ′ changes, the characteristics of the cross filter 1 can be expressed by the following equation (Equation 15).
[0023]
[Expression 15]
Figure 0003818237
However, L dc , L qc : Inductance value (measured value or estimated value) of motor used for control
When only the correction voltage command value v d is operated, vibration always occurs in the current response. Therefore, when the correction voltage command value v d is operated, the correction voltage command value v q must also be operated. Therefore, in addition to the d-axis correction voltage command value v d generated by c 11 , the q-axis correction voltage command value v q by c 21 is also changed, resulting in a change in the d-axis voltage command value v d ′ and this. The electric vibration inherent to the motor generated in the d-axis current and the q-axis current is suppressed by the interference component between the dq axes.
Further, when the q-axis voltage command value v q ′ changes, the characteristics of the cross filter 1 can be expressed by the following (Equation 16), and vibration is suppressed in the same manner as the d-axis.
[0024]
[Expression 16]
Figure 0003818237
The above operations can be expressed by mathematical expressions as follows.
When there is no parameter error, the corrected voltage command values (v d , v q ) input to the voltage coordinate converter 5 are as shown in the following formulas (17) and (18).
[0025]
[Expression 17]
Figure 0003818237
[0026]
[Formula 18]
Figure 0003818237
Further, the voltage equation of the motor including the transient response is as shown in the following (Equation 19).
[0027]
[Equation 19]
Figure 0003818237
However, L dm , L qm : Actual inductance value of the motor Here, the equation (6) and the equation (19) are expanded to the following equations (20) and (21), and the cross The input / output relationship of the filter 1 is arranged as shown in the following equation (22).
[0028]
[Expression 20]
Figure 0003818237
[0029]
[Expression 21]
Figure 0003818237
[0030]
[Expression 22]
Figure 0003818237
In the formula (22), when both sides are multiplied by the inverse matrix B- 1 of B from the left, the following formula (23) and formula (24) are obtained.
[0031]
[Expression 23]
Figure 0003818237
[0032]
[Expression 24]
Figure 0003818237
The element of B −1 relating to the input correction voltage command value (v d , v q ) includes the second-order lag component 1 / G (s) in the denominator. The radio wave response to the command value v d ′ and the q-axis voltage command value v q ′ becomes oscillatory.
On the other hand, when the cross filter 1 is used, the relationship between the d-axis voltage command value v d ′ and the q-axis voltage command value v q ′ and the response of the d-axis current and the q-axis current is expressed by the following equation (25). Since the second-order lag component 1 / G (s) is removed, it should not vibrate.
[0033]
[Expression 25]
Figure 0003818237
[0034]
[Equation 26]
Figure 0003818237
Further, the relationship between the d-axis current command value i d * and the q-axis current command value i q * response is as shown in the following formulas (27), (28), and (29).
[0035]
[Expression 27]
Figure 0003818237
[0036]
[Expression 28]
Figure 0003818237
[0037]
[Expression 29]
Figure 0003818237
As described above, the vibration component of the current response with respect to the d-axis voltage command value v d ′ and the q-axis voltage command value v q ′ is obtained by using the cross filter 1 according to the equations (1) to (4). In addition, the current response characteristic is g (s), and when g (s) is designed as shown in equation (7), a smooth first-order lag current response with a response frequency α [rad / s] is obtained. It is done.
[0038]
FIG. 2 is a block diagram showing a second embodiment of the present invention.
A difference from FIG. 1 is that a voltage map 303 is provided instead of the voltage command value calculation unit 302 of FIG. 1, and voltage command values (v d ′, v q ′) are obtained by subtracting the map from the torque command value T * and the rotational speed ω. ).
In FIG. 2, a voltage map 303 is created based on the d-axis voltage v d and the q-axis voltage v q during steady operation, using the torque command value T * and the rotational speed ω as indices during the motor evaluation test. Using this map, the d-axis voltage command value v d ′ and the q-axis voltage command value v q ′ are obtained.
Next, the operation will be described.
Since the voltage map 303 includes the variation of the inductance value due to the current, the current response is less affected by the parameter error.
[0039]
Hereinafter, actual examples of control in the first and second embodiments will be described.
3 to 8 are diagrams showing examples of current responses at the time of step input. FIGS. 3 to 6 are characteristics of the present invention, and FIGS. 7 and 8 are characteristics of a conventional example shown for comparison. is there.
In the conventional example, as shown in FIG. 7, when the d-axis current command value i d * and the q-axis current i q * change stepwise as indicated by the solid line, the actual d-axis current id and the q-axis The current iq oscillates greatly as shown by the broken line. Further, the d-axis voltage v d and the q-axis voltage v q change stepwise as shown and vibrate.
FIG. 8 shows characteristics when the gain of the PI feedback loop is increased as much as possible in the conventional example. In this case, the vibration still remains, although it is less than in FIG. In the conventional example, in order to correct a current error with a large frequency, such as an electric vibration component inherent to the motor, the gain of the PI feedback loop must be sufficiently increased, but as the PI gain is increased, Amplify up to noise. Since the actual control is a discrete system, the current response speed is limited by the control cycle, and as can be seen from FIGS. 7 and 8, the vibration cannot be sufficiently suppressed.
[0040]
On the other hand, in the present invention, as shown in FIG. 3, when the d-axis current command value i d * and the q-axis current i q * change stepwise as shown by the solid line, the actual d-axis current The id and the q-axis current i q change smoothly with a time delay as shown by the broken line, and do not vibrate. Also, the d-axis voltage v d and the q-axis voltage v q change smoothly and do not vibrate. That is, the vibration component is completely removed from the current response, resulting in a smooth first-order lag response.
FIG. 4 shows characteristics when the cutoff frequency α is set to a value three times that of FIG. 7 in the present invention. In this case, the actual change in the d-axis current id and the q-axis current iq is very close to the change in the d-axis current command value id * and the q-axis current iq * , but vibration still occurs. Not.
As described above, the current response frequency is α [rad / s], and can be freely determined within the range of the limit of the current response speed due to the control cycle or within the range where no adverse effects are caused by noise amplification.
[0041]
5 and 6 show characteristics when the estimated inductance values (L dc , L qc ) used for control in the present invention include errors with respect to the actual inductance values (L dm , L qm ). For example, FIG. 5 includes an error of “L dm = L dc × 1.1, L qm = L qc × 0.9”, and FIG. 6 shows “L dm = L dc × 1.1, The characteristic when an error of “L qm = L qc × 1.1” is included is shown.
As can be seen from FIGS. 5 and 6, even when the estimated inductance values (L dc , L qc ) used for the control include an error with respect to the actual inductance values (L dm , L qm ), the current response is It will not vibrate or oscillate.
[0042]
As described above, in the present invention, as the cross filter 1 (voltage command value correction filter), the d-axis so as to remove the vibration component generated in the d-axis current due to the change in the d-axis voltage command value. Based on the first vibration removing means (C 11 ) for correcting the voltage command value and the d-axis voltage command value so as to remove the vibration component generated in the q-axis current due to the change in the d-axis voltage command value. A second vibration removing means (C 21 ) for correcting the q-axis voltage command value, and a q-axis voltage command so as to remove a vibration component generated in the q-axis current due to a change in the q-axis voltage command value. Third vibration removing means (C 22 ) for correcting the value and d based on the q-axis voltage command value so as to remove the vibration component generated in the d-axis current due to the change in the q-axis voltage command value. fourth Bei vibration removing means and (C 12), of correcting the axis voltage value And the characteristics of cross filter 1 is designed as with motor constant (number 1) through (4) below. Therefore, the electric vibration component specific to the motor is removed from the current response.
Further, by using g (s) as the first-order lag component shown in Equation (7), the vibration component is removed from the current response, and the current response is a smooth first-order lag of the response frequency α [rad / s]. Thus, it can be freely determined within the limit of the current response speed due to the control cycle.
Further, even when the estimated inductance values (L dc , L qc ) used for the control include errors with respect to the actual inductance values (L dm , L qm ), the current response becomes unstable or oscillates. There is nothing.
In addition, during an electric motor evaluation test, a voltage command value is obtained using a voltage map created from the d-axis voltage and the q-axis voltage during steady operation using the output torque and the rotational speed as indices, thereby obtaining a current due to parameter error. The influence on the response can be reduced.
Further, the d-axis correction voltage command output from the cross filter 1 based on the d-axis command value and the q-axis current command value output from the low-pass filter of the filter unit 2 and the actual current values of the d-axis and the q-axis. By further correcting the value and the q-axis correction voltage command value, the difference between the actual current and the current command value can be corrected, and the current response can be improved more reliably.
Further, by setting the characteristic g flt (s) of the low-pass filter of the filter unit 2 to Equation (7) and the current response characteristic g (s) of the cross filter 1 to g (s) = g flt (s), A desired response characteristic can be obtained by setting the current response frequency to α.
[Brief description of the drawings]
FIG. 1 is a block diagram of a first embodiment of the present invention.
FIG. 2 is a block diagram of a second embodiment of the present invention.
FIG. 3 shows current response at the time of step input according to the present invention.
FIG. 4 shows a current response at the time of step input according to the present invention.
FIG. 5 shows a current response at the time of step input according to the present invention, part 3;
FIG. 6 shows a current response at the time of step input according to the present invention, part 4;
FIG. 7 is a current response at the time of step input in the prior art.
FIG. 8 shows a current response at the time of step input when the PI gain is increased in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cross filter 2 ... Filter part 3 ... Command value determination part 4 ... PI control part 5 ... Voltage coordinate converter 6 ... PWM converter 7 ... Inverter 8 ... Current detector 9 ... Electric motor 10 ... Position detector 11 ... Coordinate conversion 12: Speed calculator 301 ... Current map 302 ... Voltage command value calculator 303 ... Voltage map

Claims (6)

トルク指令値に基づいてd軸電圧指令値およびq軸電圧指令値を算出する電圧指令値算出手段と、
該電圧指令値算出手段によって算出されたd軸電圧指令値およびq軸電圧指令値を入力し、入力されたd軸電圧指令値およびq軸電圧指令値の変化に起因してd軸電流およびq軸電流に発生する振動成分を除去するように、前記d軸電圧指令値およびq軸電圧指令値を補正してd軸補正電圧指令値およびq軸補正電圧指令値として出力する電圧指令値補正フィルタと、
該電圧指令値補正フィルタから出力されたd軸補正電圧指令値およびq軸補正電圧指令値に基づいて、電動機の各相毎の電圧を制御する電圧制御手段と、
を備え、
前記電圧指令値補正フィルタは、
d軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、d軸電圧指令値を補正する第一の振動除去手段(C11)と、
d軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、d軸電圧指令値に基づいてq軸電圧指令値を補正する第二の振動除去手段(C21)と、
q軸電圧指令値の変化に起因してq軸電流に発生する振動成分を除去するように、q軸電圧指令値を補正する第三の振動除去手段(C22)と、
q軸電圧指令値の変化に起因してd軸電流に発生する振動成分を除去するように、q軸電圧指令値に基づいてd軸電圧指令値を補正する第四の振動除去手段(C12)と、
を備えたことを特徴とする同期電動機の制御装置。
Voltage command value calculating means for calculating a d-axis voltage command value and a q-axis voltage command value based on the torque command value;
The d-axis voltage command value and the q-axis voltage command value calculated by the voltage command value calculation means are input, and the d-axis current and q are caused by changes in the input d-axis voltage command value and q-axis voltage command value. Voltage command value correction filter that corrects the d-axis voltage command value and the q-axis voltage command value and outputs them as a d-axis correction voltage command value and a q-axis correction voltage command value so as to remove vibration components generated in the shaft current When,
Voltage control means for controlling the voltage for each phase of the motor based on the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter;
With
The voltage command value correction filter is:
first vibration removing means (C 11 ) for correcting the d-axis voltage command value so as to remove the vibration component generated in the d-axis current due to the change in the d-axis voltage command value;
Second vibration removing means (C 21 ) for correcting the q-axis voltage command value based on the d-axis voltage command value so as to remove the vibration component generated in the q-axis current due to the change in the d-axis voltage command value. )When,
third vibration removing means (C 22 ) for correcting the q-axis voltage command value so as to remove the vibration component generated in the q-axis current due to the change in the q-axis voltage command value;
Fourth vibration removing means (C 12 ) for correcting the d-axis voltage command value based on the q-axis voltage command value so as to remove the vibration component generated in the d-axis current due to the change in the q-axis voltage command value. )When,
A control apparatus for a synchronous motor, comprising:
前記第一の振動除去手段(C11)、第二の振動除去手段(C21)、第三の振動除去手段(C22)、第四の振動除去手段(C12)はそれぞれ下記(数1)式〜(数4)式に示す特性を有することを特徴とする請求項1に記載の同期電動機の制御装置。
Figure 0003818237
Figure 0003818237
Figure 0003818237
Figure 0003818237
ただし、g(s):電流応答特性
s:ラプラス演算子
R:電動機の電機子巻線抵抗
dc、Lqc:電動機のインダクタンス推定値
ω:電気角速度
The first vibration removing means (C 11 ), the second vibration removing means (C 21 ), the third vibration removing means (C 22 ), and the fourth vibration removing means (C 12 ) are each represented by the following (Equation 1): 2. The control apparatus for a synchronous motor according to claim 1, wherein the control apparatus has characteristics shown in equations (1) to (4).
Figure 0003818237
Figure 0003818237
Figure 0003818237
Figure 0003818237
However, g (s): current response characteristic s: Laplace operator R: armature winding resistance L dc motor, L qc: inductance estimate of the motor omega: electrical angular speed
トルク指令値に基づいてd軸電流指令値およびq軸電流指令値を算出する電流指令値算出手段と、
該電流指令値算出手段によって算出されたd軸電流指令値およびq軸電流指令値を入力し、入力されたd軸電流指令値およびq軸電流指令値の変化速度をそれぞれ緩和して出力するローパスフィルタと、
電動機の各相に流れる電流を検出して、d軸およびq軸の実電流値を検出する実電流検出手段と、
前記電流指令値算出手段によって算出されたd軸電流指令値およびq軸電流指令値と、前記実電流検出手段によって検出されたd軸およびq軸の実電流値とに基づいて、前記電圧指令値補正フィルタから出力されるd軸補正電圧指令値およびq軸補正電圧指令値をさらに補正するための補正値を算出する補正値算出手段と、
該補正値算出手段によって算出された補正値に基づいて前記電圧指令値補正フィルタから出力されたd軸補正電圧指令値およびq軸補正電圧指令値を補正する補正手段と、
を備えたことを特徴とする請求項1または請求項2に記載の同期電動機の制御装置。
Current command value calculating means for calculating a d-axis current command value and a q-axis current command value based on the torque command value;
A low-pass that inputs the d-axis current command value and the q-axis current command value calculated by the current command value calculation means and relaxes and outputs the change speeds of the input d-axis current command value and q-axis current command value, respectively. Filters,
Real current detection means for detecting current flowing in each phase of the motor and detecting actual current values of the d-axis and the q-axis;
Based on the d-axis current command value and the q-axis current command value calculated by the current command value calculation means, and the d-axis and q-axis actual current values detected by the actual current detection means, the voltage command value Correction value calculation means for calculating a correction value for further correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the correction filter;
Correction means for correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter based on the correction value calculated by the correction value calculation means;
The control apparatus for a synchronous motor according to claim 1 or 2, further comprising:
トルク指令値と電動機の回転速度とに基づいてd軸電流指令値およびq軸電流指令値を求める電流マップと、
前記電流マップからのd軸電流指令値およびq軸電流指令値に基づいてd軸電圧指令値およびq軸電圧指令値を算出する電圧指令値算出手段と、
該電圧指令値算出手段によって算出されたd軸電圧指令値およびq軸電圧指令値を入力し、入力されたd軸電圧指令値およびq軸電圧指令値の変化に起因してd軸電流およびq軸電流に発生する振動成分を除去するように、前記d軸電圧指令値およびq軸電圧指令値を補正してd軸補正電圧指令値およびq軸補正電圧指令値として出力する電圧指令値補正フィルタと、
前記電流マップで求めたd軸電流指令値およびq軸電流指令値を入力し、入力されたd軸電流指令値およびq軸電流指令値の変化速度をそれぞれ緩和して出力するローパスフィルタと、
電動機の各相に流れる電流を検出して、d軸およびq軸の実電流値を検出する実電流検出手段と、
前記ローパスフィルタから出力されるd軸電流指令値およびq軸電流指令値と、前記実電流検出手段によって検出されたd軸およびq軸の実電流値とに基づいて、比例積分制御を用いて前記電圧指令値補正フィルタから出力されるd軸補正電圧指令値およびq軸補正電圧指令値をさらに補正するための補正値を算出する補正値算出手段と、
前記補正値算出手段によって算出された補正値に基づいて前記電圧指令値補正フィルタから出力されたd軸補正電圧指令値およびq軸補正電圧指令値を補正する補正手段と、
前記補正後のd軸補正電圧指令値およびq軸補正電圧指令値に基づいて、電動機の各相毎の電圧を制御する電圧制御手段と、
を備えたことを特徴とする同期電動機の制御装置。
A current map for obtaining a d-axis current command value and a q-axis current command value based on the torque command value and the rotation speed of the motor;
Voltage command value calculating means for calculating a d-axis voltage command value and a q-axis voltage command value based on the d-axis current command value and the q-axis current command value from the current map;
The d-axis voltage command value and the q-axis voltage command value calculated by the voltage command value calculation means are input, and the d-axis current and q are caused by changes in the input d-axis voltage command value and q-axis voltage command value. Voltage command value correction filter that corrects the d-axis voltage command value and the q-axis voltage command value and outputs them as a d-axis correction voltage command value and a q-axis correction voltage command value so as to remove vibration components generated in the shaft current When,
A low-pass filter that inputs the d-axis current command value and the q-axis current command value obtained from the current map, and that relaxes and outputs the input d-axis current command value and the q-axis current command value, respectively;
Real current detection means for detecting current flowing in each phase of the motor and detecting actual current values of the d-axis and the q-axis;
Based on the d-axis current command value and the q-axis current command value output from the low-pass filter, and the actual current values of the d-axis and the q-axis detected by the actual current detecting means, the proportional integral control is used. Correction value calculation means for calculating a correction value for further correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter;
Correction means for correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter based on the correction value calculated by the correction value calculation means;
Voltage control means for controlling the voltage of each phase of the motor based on the corrected d-axis correction voltage command value and q-axis correction voltage command value;
A control apparatus for a synchronous motor, comprising:
トルク指令値と電動機の回転速度とに基づいてd軸電流指令値およびq軸電流指令値を求める電流マップと、
前記トルク指令値と前記電動機の回転速度とに基づいてd軸電圧指令値およびq軸電圧指令値を求める電圧マップと、
該電圧マップで求めたd軸電圧指令値およびq軸電圧指令値を入力し、入力されたd軸電圧指令値およびq軸電圧指令値の変化に起因してd軸電流およびq軸電流に発生する振動成分を除去するように、前記d軸電圧指令値およびq軸電圧指令値を補正してd軸補正電圧指令値およびq軸補正電圧指令値として出力する電圧指令値補正フィルタと、
前記電流マップで求めたd軸電流指令値およびq軸電流指令値を入力し、入力されたd軸電流指令値およびq軸電流指令値の変化速度をそれぞれ緩和して出力するローパスフィルタと、
電動機の各相に流れる電流を検出して、d軸およびq軸の実電流値を検出する実電流検出手段と、
前記ローパスフィルタから出力されるd軸電流指令値およびq軸電流指令値と、前記実電流検出手段によって検出されたd軸およびq軸の実電流値とに基づいて、比例積分制御を用いて前記電圧指令値補正フィルタから出力されるd軸補正電圧指令値およびq軸補正電圧指令値をさらに補正するための補正値を算出する補正値算出手段と、
前記補正値算出手段によって算出された補正値に基づいて前記電圧指令値補正フィルタから出力されたd軸補正電圧指令値およびq軸補正電圧指令値を補正する補正手段と、
前記補正後のd軸補正電圧指令値およびq軸補正電圧指令値に基づいて、電動機の各相毎の電圧を制御する電圧制御手段と、
を備えたことを特徴とする同期電動機の制御装置。
A current map for obtaining a d-axis current command value and a q-axis current command value based on the torque command value and the rotation speed of the motor;
A voltage map for obtaining a d-axis voltage command value and a q-axis voltage command value based on the torque command value and the rotation speed of the motor;
The d-axis voltage command value and the q-axis voltage command value obtained from the voltage map are input, and generated in the d-axis current and the q-axis current due to changes in the input d-axis voltage command value and q-axis voltage command value. A voltage command value correction filter that corrects the d-axis voltage command value and the q-axis voltage command value and outputs them as a d-axis correction voltage command value and a q-axis correction voltage command value so as to remove the vibration component
A low-pass filter that inputs the d-axis current command value and the q-axis current command value obtained from the current map, and that relaxes and outputs the input d-axis current command value and the q-axis current command value, respectively;
Real current detection means for detecting current flowing in each phase of the motor and detecting actual current values of the d-axis and the q-axis;
Based on the d-axis current command value and the q-axis current command value output from the low-pass filter, and the actual current values of the d-axis and the q-axis detected by the actual current detecting means, the proportional integral control is used. Correction value calculation means for calculating a correction value for further correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter;
Correction means for correcting the d-axis correction voltage command value and the q-axis correction voltage command value output from the voltage command value correction filter based on the correction value calculated by the correction value calculation means;
Voltage control means for controlling the voltage of each phase of the motor based on the corrected d-axis correction voltage command value and q-axis correction voltage command value;
A control apparatus for a synchronous motor, comprising:
前記ローパスフィルタは、その特性gflt(s)が
flt(s)=α/(s+α)
で表され、
前記電圧指令値補正フィルタの電流応答特性g(s)は
g(s)=gflt(s)
であることを特徴とする請求項3乃至請求項5の何れかに記載の同期電動機の制御装置。
ただし、
s:ラプラス演算子
α:ローパスフィルタのカットオフ周波数
The low-pass filter has a characteristic g flt (s) of g flt (s) = α / (s + α).
Represented by
The current response characteristic g (s) of the voltage command value correction filter is g (s) = g flt (s).
6. The control apparatus for a synchronous motor according to claim 3, wherein the control apparatus is a synchronous motor.
However,
s: Laplace operator α: Cut-off frequency of low-pass filter
JP2002230881A 2002-08-08 2002-08-08 Control device for synchronous motor Expired - Fee Related JP3818237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230881A JP3818237B2 (en) 2002-08-08 2002-08-08 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230881A JP3818237B2 (en) 2002-08-08 2002-08-08 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2004072931A JP2004072931A (en) 2004-03-04
JP3818237B2 true JP3818237B2 (en) 2006-09-06

Family

ID=32016808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230881A Expired - Fee Related JP3818237B2 (en) 2002-08-08 2002-08-08 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP3818237B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716855B1 (en) * 2005-12-15 2007-05-09 현대모비스 주식회사 Side air-bag cushion for vehicle
EP2472716B1 (en) 2009-08-28 2019-07-10 Nissan Motor Co., Ltd. Anomaly detection device for a permanent magnet synchronous electric motor
JP5982901B2 (en) * 2012-03-14 2016-08-31 日産自動車株式会社 Electric motor control device and electric motor control method
JP5565432B2 (en) 2012-04-20 2014-08-06 株式会社デンソー Rotating machine control device
KR101303952B1 (en) 2012-06-28 2013-09-05 현대중공업 주식회사 Induction motor control apparatus
JP5660085B2 (en) * 2012-08-06 2015-01-28 株式会社デンソー Rotating machine control device
DE102013211020A1 (en) * 2013-06-13 2014-12-18 Robert Bosch Gmbh Method and device for operating an electronically commutated servomotor and position encoder system with a servomotor
CN113098346B (en) * 2021-04-09 2022-05-17 广东美的暖通设备有限公司 Permanent magnet synchronous motor driving method and device, frequency converter and storage medium
CN118375599B (en) * 2024-06-21 2024-09-10 四川莱斯特真空科技有限公司 Vibration control system for dual-motor synchronous driving oil-free vacuum pump

Also Published As

Publication number Publication date
JP2004072931A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4685509B2 (en) AC motor drive control device and drive control method
KR100724667B1 (en) Control device of synchronous electromotor, electrical equipment, and module
JP4502734B2 (en) Origin offset amount calculation method for motor rotational position detection device and motor control device using this calculation method
JP4475528B2 (en) Synchronous motor control device and adjustment method thereof
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JPWO2015019495A1 (en) Motor drive system and motor control device
JP6344151B2 (en) POSITION ESTIMATION DEVICE, MOTOR DRIVE CONTROL DEVICE, POSITION ESTIMATION METHOD, AND PROGRAM
JP5322534B2 (en) Control device and motor control device
JP3818237B2 (en) Control device for synchronous motor
JP2017055637A (en) Motor control apparatus for controlling motor on the basis of counter-electromotive voltage generated in winding of motor
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP4657892B2 (en) Rotor angle estimation device and rotor angle estimation method for DC brushless motor
JP2004072856A (en) Controller for synchronous motor
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP2006197718A (en) Controller for motor
JP5828441B2 (en) Rotor phase estimator for synchronous motor
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP5106295B2 (en) Rotor position estimation device for synchronous motor
KR102621423B1 (en) Motor drive device and outdoor unit of air conditioner using it
JP7163641B2 (en) Synchronous motor controller
JP5228435B2 (en) Inverter control device and control method thereof
JP4038412B2 (en) Vector control inverter device
JP2008306801A (en) Controller of permanent magnet motor
JP4051601B2 (en) Variable speed control device for electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3818237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees