JP3864283B2 - Position control device - Google Patents

Position control device Download PDF

Info

Publication number
JP3864283B2
JP3864283B2 JP2001306659A JP2001306659A JP3864283B2 JP 3864283 B2 JP3864283 B2 JP 3864283B2 JP 2001306659 A JP2001306659 A JP 2001306659A JP 2001306659 A JP2001306659 A JP 2001306659A JP 3864283 B2 JP3864283 B2 JP 3864283B2
Authority
JP
Japan
Prior art keywords
speed
observer
loop
output
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001306659A
Other languages
Japanese (ja)
Other versions
JP2003111463A (en
Inventor
文農 張
靖彦 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001306659A priority Critical patent/JP3864283B2/en
Publication of JP2003111463A publication Critical patent/JP2003111463A/en
Application granted granted Critical
Publication of JP3864283B2 publication Critical patent/JP3864283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、速度信号に基づき速度制御を行うとともに、位置信号に基づき位置制御を行う位置制御装置に関する。
【0002】
【従来の技術】
周知のように、通常の位置制御系は位置メインループ(以下では位置ループと称す)と速度マイナーループ(以下では速度ループと称す)で構成されている。図3はこのような通常の位置制御系のブロック線図である。
図3において、2は位置制御器、3は速度ループ、4は速度制御器、5は制御対象、6は積分要素である。このような制御系では、制御系を安定とするため、速度ループの遮断周波数が位置ループの遮断周波数の数倍以上であるように制御器を構成する必要がある。
近年、産業用機械においては、高精度化および高速化の要求が高くなり、そのためには位置ループの周波数特性を向上させ、すなわち位置制御器および速度制御器のゲインを上げることが不可欠である。
しかし、速度ループには遅れ要素やアンプの非線形性などが存在するため速度制御器のゲインが十分に上げられない。また、位置ループでは速度ループの遅れの影響で位置ループの遮断周波数が速度ループの遮断周波数の1/4〜1/2位までしか位置制御器のゲインを上げられない。
また、速度指令とモータ側の位置信号を入力して構成したオブザーバを用いて、負荷側の位置を含む状態量を推定する方法が提案された(特開平6−292381)。この制御方法のオブザーバを用いて推定した位置信号をのみフィードバックするように構成した制御系は図4のようなものとなる。図4において、2は位置制御器、3は速度ループ、4は速度制御器、5は制御対象、6,9は積分要素、7はオブザーバ、10は速度ループのモデル、12はオブザーバの補償器である。オブザーバループが安定となるようにオブザーバの補償器Co(s)を構成すれば、位置推定信号yoは位置信号yと一致するので、図4の制御系の安定性は図3の制御系の安定性と同じである。
【0003】
【発明が解決しようとする課題】
上記のように、前記従来技術では、速度ループの遅れの影響で位置制御器のゲインを大きく上げられないので、高精度かつ高速な位置制御ができない。
そこで、本発明は、前記従来技術の有する問題点を解消するため、速度ループの位相遅れを補償し、位置制御器のゲインを十分に上げられ、位置信号を位置指令に精度良く追従できる制御装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記の目的を達成するために、本発明は、速度マイナーループを備え、位置のフィードバック制御を行う位置制御装置において、制御出力である位置信号とオブザーバ7による位置推定信号の差をオブザーバ7の補償器12に入力し、前記補償器12の出力と位置制御器2の出力を加算して積分要素9に入力し、前記積分要素9の出力を速度ループのモデル10に通した信号を前記位置推定信号とするように前記オブザーバ7を構成し、位置指令と前記積分要素9の出力との差を位置制御器2に入力し、前記位置制御器2の出力を速度指令とし、制御対象を制御することを特徴とする位置制御装置である。
【0005】
【発明の実施の形態】
本発明の実施形態を図において説明する。図1は本発明の制御系の構成原理を示すブロック線図である。図1において、2は位置制御器、3は速度ループ、4は速度制御器、5は制御対象、6,9は積分要素、7はオブザーバ、10は速度ループのモデル、12はオブザーバの補償器である。図1に示すように、本発明の制御系は、図4に示した従来の制御系において、積分要素9と速度ループのモデル10を置き換え、そして位置推定信号yoの代わりに位置先行信号ypreを位置フィードバック信号yfとするものである。具体的に、制御出力である位置信号yとオブザーバ7による位置推定信号yoの差をオブザーバの補償器12に入力し、オブザーバの補償器12の出力と位置制御器2の出力vrを加算して積分要素9に入力する。積分要素9の出力ypreは、一方では、速度ループのモデル10に入力し、速度ループのモデル10の出力yoを位置推定信号とするようにオブザーバ7を構成し、他方では、位置フィードバック信号yfとし、位置指令yrから位置フィードバック信号yfを減じて位置制御器2に入力し、位置制御器2の出力vrを速度指令とし、制御対象を制御する。
図1より、位置開ループにおいて、位置制御器2の出力である速度指令vrから位置信号yおよび位置フィードバック信号yfまでの伝達関数は
【0006】
【数1】

Figure 0003864283
【0007】
となる。よって、オブザーバループが安定であれば、図1の制御系を等価的に図2のように書き直すことができる。図2により、位置閉ループには速度ループのモデルがないので、遅れ要素が積分要素だけで、位置制御器2のゲインを大きく上げることができる。また、位置指令yrから位置信号yまでの伝達関数は
【0008】
【数2】
Figure 0003864283
【0009】
となる。すなわち、位置ループの周波数特性が速度ループの周波数特性に近づき、位置ループの遮断周波数は従来と比べてかなり高くなる。従って、位置信号を位置指令に精度よく追従することができる。
なお、オブザーバのループには速度ループのモデルがあるが、式3により、入出力特性はオブザーバの補償器12と関係しないため、オブザーバの補償器12のゲインを低く設定しても構わない。従って、安定なオブザーバを容易に構成できる。
次に、この実施の形態における発明の効果について、シミュレーションしたので説明する。
イナーシャがJである剛体系制御対象に対して、速度制御器を下記のようなPI制御器
【0010】
【数3】
Figure 0003864283
【0011】
とし、位置制御器をゲインがKpである比例制御器とする。そして、Kv=2π×200rad/s,Ti=3.183ms,Kp=2π×70Hzとすると、本発明の実施形態および従来技術の一巡伝達関数の周波数特性は図5に示すものとなる。図5より、本発明の実施形態の一巡伝達関数の位相は全周波域にわたって−90°であるが、従来技術の一巡伝達関数の位相は周波数が大きくなると共に遅れが大きくなる。60°以上の位相余裕を保つために、従来技術ではKpを2π×70Hzまでしか上げられないが、本発明ではKpをいくらでも大きく上げられる。Kp=2π×1000Hzとする本発明の実施形態の入出力特性およびKp=2π×70Hzとする従来技術の入出力特性を図6に示す。図6より、本発明の実施形態の入出力特性は速度ループの入出力特性に近いが、従来技術の入出力特性の遮断周波数は速度ループの遮断周波数の約1/3である。また、速度パターンが三角形である位置指令に対して、本発明の実施形態および従来技術の位置偏差の時間カーブを図7に示す。図7より、従来技術と比べて、本発明の位置偏差の最大値は約1/9となった。
【0012】
【発明の効果】
以上のように本発明は、速度指令と位置信号に基づき、速度ループのモデルと積分要素に対しオブザーバを構成し、速度ループのモデルを通る前の位置先行信号を位置フィードバック信号とすることにより、位置制御系がフィードバック制御部分とオブザーバ部分に分離できる。位置フィードバックループには速度ループの遅れが入ってこないので、位置制御器のゲインを大きく上げられるため、制御系の応答性能をアップすることができる。一方、オブザーバのループには速度ループのモデルがあるが、オブザーバの補償器が入出力特性に影響しないため、オブザーバの補償器のゲインを低く設定しても構わないので、安定なオブザーバを容易に構成できる。
【図面の簡単な説明】
【図1】本発明の制御系の構成原理を示すブロック線図
【図2】図1の等価ブロック線図
【図3】通常の位置制御系のブロック線図
【図4】従来技術の位置制御系のブロック線図
【図5】本発明実施例の一巡伝達関数の周波数特性と従来技術の一巡伝達関数の周波数特性との比較
【図6】本発明実施例の入出力特性と従来技術の入出力特性との比較
【図7】本発明実施例の位置偏差と従来技術の位置偏差との比較
【符号の説明】
1、11 減算器
2 位置制御器
3 速度ループ
4 速度制御器
5 制御対象
6、9 積分要素
7 オブザーバ
8 加算器
10 速度ループのモデル
12 オブザーバの補償器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a position control device that performs speed control based on a speed signal and performs position control based on a position signal.
[0002]
[Prior art]
As is well known, a normal position control system is composed of a position main loop (hereinafter referred to as a position loop) and a speed minor loop (hereinafter referred to as a speed loop). FIG. 3 is a block diagram of such a normal position control system.
In FIG. 3, 2 is a position controller, 3 is a speed loop, 4 is a speed controller, 5 is an object to be controlled, and 6 is an integral element. In such a control system, in order to stabilize the control system, it is necessary to configure the controller so that the cutoff frequency of the speed loop is several times the cutoff frequency of the position loop.
In recent years, demands for high precision and high speed have increased in industrial machines, and for this purpose, it is essential to improve the frequency characteristics of the position loop, that is, increase the gains of the position controller and the speed controller.
However, since the speed loop includes delay elements and amplifier nonlinearity, the gain of the speed controller cannot be increased sufficiently. Further, in the position loop, the gain of the position controller can be increased only up to 1/4 to 1/2 of the cut-off frequency of the speed loop due to the delay of the speed loop.
Further, there has been proposed a method for estimating a state quantity including a load-side position using an observer configured by inputting a speed command and a motor-side position signal (Japanese Patent Laid-Open No. Hei 6-29281). A control system configured to feed back only a position signal estimated using an observer of this control method is as shown in FIG. In FIG. 4, 2 is a position controller, 3 is a speed loop, 4 is a speed controller, 5 is an object to be controlled, 6 and 9 are integral elements, 7 is an observer, 10 is a model of a speed loop, and 12 is an observer compensator. It is. By configuring the observer of the compensator C o (s) so that the observer loop becomes stable, since the position estimation signal y o coincides with the position signal y, stability of the control system of Figure 4 the control system of FIG. 3 It is the same as the stability.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional technique, the gain of the position controller cannot be greatly increased due to the influence of the delay of the speed loop, and therefore high-precision and high-speed position control cannot be performed.
Therefore, the present invention eliminates the problems of the prior art and compensates for the phase delay of the speed loop, sufficiently increases the gain of the position controller, and can accurately follow the position signal to the position command. The purpose is to provide.
[0004]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a position control device that includes a velocity minor loop and performs position feedback control, and compensates for the difference between the position signal as a control output and the position estimation signal from the observer 7 by the observer 7. The output of the compensator 12 and the output of the position controller 2 are added to the integration element 9 and input to the integration element 9, and the signal obtained by passing the output of the integration element 9 through the model 10 of the speed loop is estimated. The observer 7 is configured to be a signal, the difference between the position command and the output of the integration element 9 is input to the position controller 2, and the output of the position controller 2 is used as the speed command to control the controlled object. This is a position control device.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration principle of the control system of the present invention. In FIG. 1, 2 is a position controller, 3 is a speed loop, 4 is a speed controller, 5 is an object to be controlled, 6 and 9 are integration elements, 7 is an observer, 10 is a model of a speed loop, and 12 is an observer compensator. It is. As shown in FIG. 1, the control system of the present invention, in the conventional control system shown in FIG. 4, replacing the model 10 of the integral element 9 and the speed loop, and the position preceding signal y instead of the position estimation signal y o pre and is for the position feedback signal y f. Specifically, enter the difference between the position estimation signal y o by the position signal y and the observer 7 is a control output to the compensator 12 of the observer, adds the output v r of the compensator 12 outputs the position controller 2 of the observer And input to the integration element 9. The output y pre integral element 9, on the one hand, the input to the model 10 of the speed loop, constitutes the observer 7 to the output y o model 10 of the speed loop and the position estimation signal, on the other hand, the position feedback signal and y f, by subtracting the position feedback signal y f from the position command y r is input to the position controller 2, the output v r of the position controller 2 to the speed command, controls the controlled object.
From FIG. 1, in the position open loop, the transfer function from the speed command v r which is the output of the position controller 2 to the position signal y and the position feedback signal y f is
[Expression 1]
Figure 0003864283
[0007]
It becomes. Therefore, if the observer loop is stable, the control system of FIG. 1 can be equivalently rewritten as shown in FIG. According to FIG. 2, since there is no velocity loop model in the position closed loop, the gain of the position controller 2 can be greatly increased by using only an integral element as a delay element. The transfer function from the position command yr to the position signal y is
[Expression 2]
Figure 0003864283
[0009]
It becomes. That is, the frequency characteristic of the position loop approaches the frequency characteristic of the speed loop, and the cutoff frequency of the position loop is considerably higher than that of the conventional case. Therefore, the position signal can follow the position command with high accuracy.
Although the observer loop has a speed loop model, the gain of the observer compensator 12 may be set low because the input / output characteristics are not related to the observer compensator 12 according to Equation 3. Therefore, a stable observer can be easily configured.
Next, the effect of the invention in this embodiment is simulated and described.
For a rigid system control object whose inertia is J, the speed controller is a PI controller as follows:
[Equation 3]
Figure 0003864283
[0011]
And the position controller is a proportional controller with a gain of Kp. Then, assuming that Kv = 2π × 200 rad / s, T i = 3.183 ms, and Kp = 2π × 70 Hz, the frequency characteristics of the circular transfer function of the embodiment of the present invention and the prior art are as shown in FIG. From FIG. 5, the phase of the round transfer function of the embodiment of the present invention is −90 ° over the entire frequency range, but the phase of the round trip transfer function of the prior art increases as the frequency increases. In order to maintain a phase margin of 60 ° or more, the conventional technique can only increase Kp to 2π × 70 Hz, but the present invention can increase Kp as much as possible. FIG. 6 shows the input / output characteristics of the embodiment of the present invention in which Kp = 2π × 1000 Hz and the conventional input / output characteristics in which Kp = 2π × 70 Hz. From FIG. 6, the input / output characteristics of the embodiment of the present invention are close to the input / output characteristics of the speed loop, but the cutoff frequency of the input / output characteristics of the prior art is about 1/3 of the cutoff frequency of the speed loop. FIG. 7 shows a time curve of the position deviation of the embodiment of the present invention and the prior art with respect to the position command whose speed pattern is a triangle. From FIG. 7, the maximum value of the positional deviation of the present invention is about 1/9 compared with the prior art.
[0012]
【The invention's effect】
As described above, the present invention configures an observer for the speed loop model and the integral element based on the speed command and the position signal, and uses the position preceding signal before passing through the speed loop model as a position feedback signal. The position control system can be separated into a feedback control part and an observer part. Since there is no speed loop delay in the position feedback loop, the gain of the position controller can be greatly increased, so that the response performance of the control system can be improved. On the other hand, there is a speed loop model in the observer loop, but since the observer compensator does not affect the input / output characteristics, the observer compensator gain may be set low, making it easy to make a stable observer. Can be configured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration principle of a control system of the present invention. FIG. 2 is an equivalent block diagram of FIG. 1. FIG. 3 is a block diagram of a normal position control system. FIG. 5 is a block diagram of the system. FIG. 5 is a comparison of the frequency characteristics of the circuit transfer function of the embodiment of the present invention and the frequency characteristics of the circuit transfer function of the prior art. Comparison with output characteristics [FIG. 7] Comparison between positional deviation of the embodiment of the present invention and positional deviation of the prior art [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Subtractor 2 Position controller 3 Speed loop 4 Speed controller 5 Control object 6, 9 Integration element 7 Observer 8 Adder 10 Model of speed loop 12 Compensator of observer

Claims (1)

速度マイナーループを備え、位置のフィードバック制御を行う位置制御装置において、制御出力である位置信号とオブザーバ7による位置推定信号の差を入力するオブザーバ7の補償器12と、前記補償器12の出力と位置制御器2の出力を加算して入力する積分要素9を備え、前記積分要素9の出力を速度ループのモデル10に通した信号を前記位置推定信号とするように前記オブザーバ7を構成し、位置指令と前記積分要素9の出力との差を入力する位置制御器2の出力を速度指令として制御対象を制御することを特徴とする位置制御装置。In a position control device that includes a speed minor loop and performs position feedback control, a compensator 12 of the observer 7 that inputs a difference between a position signal that is a control output and a position estimation signal from the observer 7, and an output of the compensator 12 An integrating element 9 for adding and inputting the output of the position controller 2, and configuring the observer 7 so that a signal obtained by passing the output of the integrating element 9 through a model 10 of a speed loop is used as the position estimation signal; A position control device that controls a control object using an output of a position controller 2 that inputs a difference between a position command and an output of the integration element 9 as a speed command.
JP2001306659A 2001-10-02 2001-10-02 Position control device Expired - Fee Related JP3864283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306659A JP3864283B2 (en) 2001-10-02 2001-10-02 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306659A JP3864283B2 (en) 2001-10-02 2001-10-02 Position control device

Publications (2)

Publication Number Publication Date
JP2003111463A JP2003111463A (en) 2003-04-11
JP3864283B2 true JP3864283B2 (en) 2006-12-27

Family

ID=19126259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306659A Expired - Fee Related JP3864283B2 (en) 2001-10-02 2001-10-02 Position control device

Country Status (1)

Country Link
JP (1) JP3864283B2 (en)

Also Published As

Publication number Publication date
JP2003111463A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
Maiti et al. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power
CN104052363B (en) Automate motor control
JP6485644B2 (en) Method and motor drive for controlling the angular speed of an induction motor
US7030581B1 (en) Motor controller
JP3835528B2 (en) Speed control device
JPH0199485A (en) Controlling device for servo motor
JP6671500B2 (en) Method and system for controlling an electric motor
Choi Adaptive control of a chaotic permanent magnet synchronous motor
Cheng et al. An observer-based mode switching control scheme for improved position regulation in servomotors
JP4294344B2 (en) Electric motor control method and control apparatus
JP2861277B2 (en) Positioning control device and positioning control method
JP2016035677A (en) Motor system
JP2008299573A (en) Digital control device
Kim et al. Robust speed control of brushless DC motor using adaptive input–output linearisation technique
JP5943875B2 (en) Motor control device
JP3864283B2 (en) Position control device
CN112334845A (en) Feedback control method and feedback control device
Patel et al. Development of a nonlinear loss minimization control of an IPMSM drive with flux estimation
JP2019082791A (en) Feedback control method and motor control device
KR100299457B1 (en) Method for controlling speed of induction motor
Mirkin et al. Continuous model reference adaptive control with sliding mode for a class of nonlinear plants with unknown state delay
JP2001325006A (en) Positioning device for reducing noise at positioning time
JP2003271246A (en) Speed control device
JP3570469B2 (en) Motor speed control device
JP4420158B2 (en) Motor speed control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees