JP3570469B2 - Motor speed control device - Google Patents

Motor speed control device Download PDF

Info

Publication number
JP3570469B2
JP3570469B2 JP14502597A JP14502597A JP3570469B2 JP 3570469 B2 JP3570469 B2 JP 3570469B2 JP 14502597 A JP14502597 A JP 14502597A JP 14502597 A JP14502597 A JP 14502597A JP 3570469 B2 JP3570469 B2 JP 3570469B2
Authority
JP
Japan
Prior art keywords
torque
value
motor
speed
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14502597A
Other languages
Japanese (ja)
Other versions
JPH10337070A (en
Inventor
英幸 西田
昌彦 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP14502597A priority Critical patent/JP3570469B2/en
Publication of JPH10337070A publication Critical patent/JPH10337070A/en
Application granted granted Critical
Publication of JP3570469B2 publication Critical patent/JP3570469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械系が連結された電動機の回転速度を速度指令値に対して閉ループ制御する電動機の速度制御装置に関する。
【0002】
【従来の技術】
図4はこの種の速度制御装置のブロック図を示している。
図示する速度制御系は、電動機の速度指令値と速度検出値との偏差を入力としてこれが零になるように調節動作するPI(比例・積分)調節器の出力をトルク指令値とするものであり、1は伝達関数がK(1+1/Ts)で示されるPI調節器、2は1/Jsで示される電動機・機械系、3は電動機の速度指令値と速度検出値との偏差を求める加算器である。なお、KはPI調節器1の比例ゲイン、Tは積分時間、Jは電動機・機械系2の慣性モーメントの和、sはラプラス演算子である。
【0003】
【発明が解決しようとする課題】
上述した従来技術において、所望の速度制御応答を得るためには、PI調節器1の比例ゲインKや積分時間Tを現地調整する必要がある。
例えば、速度制御系のオープンループ伝達関数のカットオフ周波数ωを、交流電動機に対し20〔rad/sec〕程度にするためには、慣性モーメントJの値に対して、比例ゲインK=Jω=20Jとする必要がある。
【0004】
しかるに、実際の電動機・機械系2の慣性モーメントJは設計値と異なることが多いため、現実には現地調整時に電動機と機械系とを連結して慣性モーメントJを測定し、それに基いて比例ゲインKを決定し、調整するという煩雑な手順を踏まざるを得ず、調整の手間や調整員によるばらつきも問題となっていた。
【0005】
そこで本発明は、電動機・機械系の慣性モーメントJが速度制御系の応答とは無関係になるようにすることにより、現地において電動機と機械系とを連結した状態での煩雑な調整作業を不要にした電動機の速度制御装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、機械系が連結された電動機の速度検出値を速度指令値に一致させるように閉ループ制御する電動機の速度制御装置において、
前記速度指令値と速度検出値との偏差を零にするように動作する調節手段と、電動機のトルク相当値と前記速度検出値とに基づいて電動機のトルクを推定するトルク推定手段と、前記調節手段の出力と前記トルク推定手段から出力されるトルク推定値とを加算してトルク指令値を得る加算手段とを備え、
前記トルク推定手段は、電動機・機械系に対応するモデルと、前記速度検出値と前記モデルから出力される速度推定値との偏差入力されてトルク推定値を出力すると共に、パラメータがトルク推定手段の時定数、ゲイン及びサンプリング時間によって表されるコントローラと、前記トルク相当値と前記コントローラから出力されるトルク推定値との偏差を求めて前記モデルに入力する手段と、を有し、
前記トルク推定手段の時定数を固定した状態で前記コントローラのパラメータを大きくすることにより、広い周波数領域で電動機・機械系の見かけ上の慣性モーメントを前記トルク推定手段の時定数と一致させてモデルマッチングを行うものである。
【0008】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。なお、以下の実施形態は交流電動機を駆動する場合のものであるが、本発明は直流電動機にも同様に適用可能である。
まず、図1は本実施形態を示す速度制御系のブロック図である。
【0009】
図1において、電動機の速度指令値と速度検出値との偏差が加算器3により求められる。この偏差は、比例ゲインKのP(比例)調節器4に入力され、その出力と後述するトルク推定器6の出力であるトルク推定値とが加算器5により加算されてトルク指令値が求められる。このトルク指令値は、電動機・機械系2に与えられる。
トルク推定器6は、電動機のトルク指令値と速度検出値とを入力としてトルク推定値を出力するものであり、上記構成によって、P調節器4の出力とトルク推定器6の出力との和をトルク指令値とする速度制御系が閉ループで構成される。
【0010】
トルク推定器6は、電動機・機械系2に対応するトルク推定器モデル10の伝達関数1/Jsを経た速度推定値と速度検出値との偏差を加算器7により求め、その結果をコントローラ9に入力する。コントローラ9は、パラメータLを介して出力されるトルク推定値を前記加算器5に入力する。また、加算器5から出力されるトルク指令値と前記トルク推定値との偏差が加算器8により求められ、この偏差がトルク推定器モデル10に入力される。
ここで、Jはトルク推定器時定数、LはL=−J・G/Δtで表されるパラメータであって、Gは0〜2の範囲のトルク推定器ゲイン、Δtはサンプリング時間である。
【0011】
この速度制御系において、P調節器4の出力から速度検出値を見た場合の等価的なブロック図は図2のようになる。図2における等価伝達関数G(s)は、数式1によって表すことができる。
【0012】
【数1】
G(s)={(1+σs)/(1+σs)}(1/Js)
【0013】
なお、σ,σは時間要素であり、ω<1/σ,ω<1/σの周波数領域では、電動機・機械系2の見かけ上の慣性モーメントJがトルク推定器時定数Jとなる。つまり、電動機・機械系2はトルク推定器モデル10に相当することになる。
ここで、σ,σは数式2、数式3によって表され、パラメータLで表されるコントローラ9が、電動機の速度検出値とトルク推定器モデル10の出力との偏差をゼロにするように動作するコントローラとなる。このパラメータLをできるだけ大きくすることにより、一層広い周波数領域でモデルマッチングを達成することができる。
【0014】
【数2】
σ=J/L
【0015】
【数3】
σ=J/L
【0016】
この実施形態では、トルク推定器時定数Jを固定とし、コントローラ9のパラメータL(=−J・G/Δt)をできるだけ大きくすることによって時間要素σ,σを小さくし、広い周波数領域で電動機・機械系2の見かけ上の慣性モーメントJをトルク推定器時定数Jとするモデルマッチングを行う。
【0017】
例えば、速度制御系のサンプリング時間Δtが5〔msec〕で電動機・機械系2の慣性モーメントJが2〔sec〕のとき、J=500〔msec〕,G=1でσ=5〔msec〕,σ=20〔msec〕となり、およそω<50〔rad/sec〕の周波数領域で電動機・機械系2の見かけ上の慣性モーメントをJ=500〔msec〕と見なすことができる。
本実施形態では、この負荷の慣性モーメントに応じてP調節器4の比例ゲインKを設定することで速度制御系の調整が可能であるため、実際の電動機・機械系2の慣性モーメントJが明確でなくても、所望の速度制御系の応答を得ることができる。
【0018】
トルク推定器時定数Jに対しては、以下のようにしてP調節器4の比例ゲインKを設定する。
前述の例において、P調節器4の出力から電動機の速度検出値までのゲイン特性を描くと、図3のように1/σの周波数でゲイン曲線が折れ曲がっている。この周波数の1/2以下の周波数を速度制御系のオープンループ伝達関数のカットオフ周波数ωとする。
つまり、速度制御系の応答周波数は数式4で示され、P調節器4の比例ゲインKは数式5となる。
【0019】
【数4】
ω≦1/2σ
【0020】
【数5】
≦J/2σ
【0021】
前述の数値例では、上記数式4、数式5から、ω≦25〔rad/sec〕、K≦12.5となる。
【0022】
なお、図1において、電動機の速度指令値と速度検出値との偏差を入力とする調節器は、図4に示したようなPI調節器でも良い。
【0023】
【発明の効果】
以上のように本発明によれば、速度制御系の調整を電動機・機械系の慣性モーメントとは無関係に行えるため、実際に電動機と機械系とを連結した状態で調整することが不要になり、現地での調整作業の手間や時間を削減し、調整員によるばらつき等も解消することができる。
現に本発明では、J=0.5〜3〔sec〕に対してトルク推定器、P調節器の設定値を同一にしたままオープンループ伝達関数のカットオフ周波数ωを20〔rad/sec〕とすることが可能であり、J=2〔sec〕の電動機・機械系に対してω=20〔rad/sec〕とした実績がある。
【図面の簡単な説明】
【図1】本発明の実施形態における速度制御系のブロック図である。
【図2】図1におけるP調節器の出力から速度検出値を見た場合の等価的なブロック図である。
【図3】図1の実施形態のゲイン特性図である。
【図4】従来技術を示す速度制御系のブロック図である。
【符号の説明】
2 電動機・機械系
3,5,7,8 加算器
4 P調節器
6 トルク推定器
9 コントローラ
10 トルク推定器モデル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor speed control device that performs closed-loop control of the rotation speed of a motor connected to a mechanical system with respect to a speed command value.
[0002]
[Prior art]
FIG. 4 shows a block diagram of this type of speed control device.
The speed control system shown in FIG. 1 uses the output of a PI (proportional / integral) adjuster that operates by inputting a deviation between a speed command value of a motor and a detected speed value so that the difference becomes zero, and uses the output as a torque command value. , 1 PI regulator transfer function represented by K P (1 + 1 / T i s), 2 is a motor-mechanical system represented by 1 / Js, 3 is the difference between the speed command value and the speed detection value of the motor This is the adder to be sought. Incidentally, K P is a proportional gain of the PI regulator 1, T i is the integral time, J is the sum of the inertia moment of the motor-mechanical system 2, s is a Laplace operator.
[0003]
[Problems to be solved by the invention]
In the prior art described above, in order to obtain the desired speed control response, the proportional gain K P and integral time T i of the PI regulator 1 has to be local adjustment.
For example, in order to make the cutoff frequency ω c of the open loop transfer function of the speed control system about 20 [rad / sec] for the AC motor, the proportional gain K P = Jω with respect to the value of the inertia moment J It is necessary to set c = 20J.
[0004]
However, since the actual moment of inertia J of the motor / mechanical system 2 often differs from the design value, the moment of inertia J is actually measured by connecting the motor and the mechanical system at the time of on-site adjustment, and the proportional gain determining the K P, inevitably going through complicated steps of adjusting, variations due to labor and coordinators of adjustment has been a problem.
[0005]
Therefore, the present invention eliminates the need for complicated adjustment work in a state where the motor and the mechanical system are connected on site by making the moment of inertia J of the motor and the mechanical system independent of the response of the speed control system. It is an object of the present invention to provide an electric motor speed control device.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, an invention according to claim 1 is a motor speed control device that performs closed loop control so that a detected speed value of a motor to which a mechanical system is connected matches a speed command value.
Adjusting means operable to reduce the deviation between the speed command value and the detected speed value to zero; torque estimating means for estimating the torque of the electric motor based on the torque equivalent value of the electric motor and the detected speed value; Adding means for obtaining a torque command value by adding the output of the means and the torque estimated value output from the torque estimating means,
Said torque estimating means, and the model corresponding to the motor and mechanical system, the deviation of the speed detection value and the speed estimated value output from the model is input and outputs the torque estimated value, parameter torque estimating means time constant, possess a controller, represented by the gain and sampling time, and means for input to said model a deviation between the torque estimated value output from the said torque equivalent value controller,
By increasing the parameters of the controller with the time constant of the torque estimating means fixed, model matching is performed by matching the apparent moment of inertia of the motor / mechanical system with the time constant of the torque estimating means in a wide frequency range. Is what you do .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although the following embodiment is for driving an AC motor, the present invention is similarly applicable to a DC motor.
First, FIG. 1 is a block diagram of a speed control system according to the present embodiment.
[0009]
In FIG. 1, a deviation between a speed command value and a detected speed value of the motor is obtained by an adder 3. This deviation is input to the P of the proportional gain K P (proportional) controller 4, a torque estimated value which is the output of torque estimator 6 described later and its output is added by the adder 5 obtains the torque command value Can be This torque command value is given to the electric motor / mechanical system 2.
The torque estimator 6 outputs a torque estimated value by inputting the torque command value and the speed detection value of the electric motor. With the above configuration, the torque estimator 6 calculates the sum of the output of the P adjuster 4 and the output of the torque estimator 6. The speed control system that uses the torque command value is configured by a closed loop.
[0010]
Torque estimator 6 obtains the torque estimator transfer function 1 / J deviation adder 7 and P s the speed estimation value and the speed detection value after the model 10 corresponding to the motor-mechanical system 2, the controller and the results Enter 9 The controller 9 inputs the estimated torque value output via the parameter L to the adder 5. Further, a deviation between the torque command value output from the adder 5 and the estimated torque value is obtained by the adder 8, and this deviation is input to the torque estimator model 10.
Here, J P is time constant torque estimator, L is a parameter represented by L = -J P · G T / Δt, torque estimator gains ranging G T is 0 to 2, Delta] t is the sampling Time.
[0011]
In this speed control system, an equivalent block diagram when the speed detection value is viewed from the output of the P adjuster 4 is as shown in FIG. The equivalent transfer function G (s) in FIG.
[0012]
(Equation 1)
G (s) = {(1 + σ a s) / (1 + σ b s)} (1 / J P s)
[0013]
Σ a and σ b are time elements, and in the frequency range of ω <1 / σ a , ω <1 / σ b , the apparent moment of inertia J of the electric motor / mechanical system 2 becomes the torque estimator time constant J It becomes P. That is, the electric motor / mechanical system 2 corresponds to the torque estimator model 10.
Here, σ a and σ b are represented by Expressions 2 and 3, and the controller 9 represented by the parameter L sets the deviation between the detected speed value of the electric motor and the output of the torque estimator model 10 to zero. It is a working controller. By making this parameter L as large as possible, model matching can be achieved in a wider frequency range.
[0014]
(Equation 2)
σ a = JP / L
[0015]
[Equation 3]
σ b = J / L
[0016]
In this embodiment, fixing the time constant J P torque estimator, controller parameters 9 L - reduce the time element sigma a, sigma b by as large as possible (= J P · G T / Δt), wide performing model matching to the moment of inertia J of the torque estimator time constant J P apparent motor-mechanical system 2 in the frequency domain.
[0017]
For example, when the sampling time Δt of the speed control system is 5 [msec] moment of inertia J of the motor-mechanical system 2 is 2 [sec], J P = 500 [msec], sigma a = 5 in G T = 1 [ msec], sigma b = 20 [msec], and the can be regarded as approximately omega <50 [J P = 500 in the frequency domain the moment of inertia of the apparent electric motor and mechanical system 2 rad / sec] [msec].
In the present embodiment, since it is possible to adjust the speed control system in setting the proportional gain K P of the P controller 4 in accordance with the moment of inertia of the load, the actual motor-mechanical system 2 moment of inertia J is Even if it is not clear, a desired speed control system response can be obtained.
[0018]
For time constant J P torque estimator, as described below to set the proportional gain K P of the P controller 4.
In the above example, when the gain characteristic from the output of the P adjuster 4 to the detected speed value of the motor is drawn, the gain curve is bent at a frequency of 1 / σ b as shown in FIG. Less than half of the frequency of this frequency and the cutoff frequency omega c of the open loop transfer function of the speed control system.
That is, the response frequency of the speed control system is expressed by Expression 4, and the proportional gain K P of the P adjuster 4 is expressed by Expression 5.
[0019]
(Equation 4)
ω c ≦ 1 / 2σ b
[0020]
(Equation 5)
K P ≦ J P / 2σ b
[0021]
In the above numerical examples, from Expressions 4 and 5, ω c ≦ 25 [rad / sec] and K P ≦ 12.5.
[0022]
In FIG. 1, the controller that receives the deviation between the speed command value and the detected speed value of the motor as an input may be a PI controller as shown in FIG.
[0023]
【The invention's effect】
As described above, according to the present invention, since the adjustment of the speed control system can be performed independently of the moment of inertia of the electric motor / mechanical system, it is not necessary to actually adjust the electric motor and the mechanical system in a connected state, The labor and time required for on-site adjustment work can be reduced, and variations caused by coordinators can be eliminated.
Actually, in the present invention, the cut-off frequency ω c of the open-loop transfer function is set to 20 [rad / sec] while the set values of the torque estimator and the P regulator are the same for J = 0.5 to 3 [sec]. It has been proven that ω c = 20 [rad / sec] for an electric motor / mechanical system with J = 2 [sec].
[Brief description of the drawings]
FIG. 1 is a block diagram of a speed control system according to an embodiment of the present invention.
FIG. 2 is an equivalent block diagram when a speed detection value is viewed from an output of a P adjuster in FIG. 1;
FIG. 3 is a gain characteristic diagram of the embodiment of FIG.
FIG. 4 is a block diagram of a speed control system showing a conventional technique.
[Explanation of symbols]
2 Electric motor / mechanical system 3, 5, 7, 8 Adder 4 P adjuster 6 Torque estimator 9 Controller 10 Torque estimator model

Claims (1)

機械系が連結された電動機の速度検出値を速度指令値に一致させるように閉ループ制御する電動機の速度制御装置において、
前記速度指令値と速度検出値との偏差を零にするように動作する調節手段と、
電動機のトルク相当値と前記速度検出値とに基づいて電動機のトルクを推定するトルク推定手段と、
前記調節手段の出力と前記トルク推定手段から出力されるトルク推定値とを加算してトルク指令値を得る加算手段とを備え、
前記トルク推定手段は、
電動機・機械系に対応するモデルと、
前記速度検出値と前記モデルから出力される速度推定値との偏差入力されてトルク推定値を出力すると共に、パラメータがトルク推定手段の時定数、ゲイン及びサンプリング時間によって表されるコントローラと、
前記トルク相当値と前記コントローラから出力されるトルク推定値との偏差を求めて前記モデルに入力する手段と、
を有し、
前記トルク推定手段の時定数を固定した状態で前記コントローラのパラメータを大きくすることにより、広い周波数領域で電動機・機械系の見かけ上の慣性モーメントを前記トルク推定手段の時定数と一致させてモデルマッチングを行うことを特徴とする電動機の速度検出装置。
In a motor speed control device that performs closed-loop control so that a speed detection value of a motor connected to a mechanical system matches a speed command value,
Adjusting means operating to reduce the deviation between the speed command value and the speed detection value to zero,
Torque estimation means for estimating the torque of the motor based on the torque equivalent value of the motor and the speed detection value,
Adding means for adding a torque command value by adding an output of the adjusting means and a torque estimated value output from the torque estimating means,
The torque estimating means includes:
Models corresponding to electric motors and mechanical systems,
Outputs the deviation is input torque estimation value estimated speed value output from the model and the speed detection value, and the controller parameters represented by the time constant, gain and sampling time of the torque estimation means,
Means for obtaining a deviation between the torque equivalent value and the estimated torque value output from the controller and inputting the deviation to the model,
Have a,
By increasing the parameters of the controller with the time constant of the torque estimating means fixed, model matching is performed by matching the apparent moment of inertia of the motor / mechanical system with the time constant of the torque estimating means in a wide frequency range. speed detecting device of a motor and performing.
JP14502597A 1997-06-03 1997-06-03 Motor speed control device Expired - Lifetime JP3570469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14502597A JP3570469B2 (en) 1997-06-03 1997-06-03 Motor speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14502597A JP3570469B2 (en) 1997-06-03 1997-06-03 Motor speed control device

Publications (2)

Publication Number Publication Date
JPH10337070A JPH10337070A (en) 1998-12-18
JP3570469B2 true JP3570469B2 (en) 2004-09-29

Family

ID=15375691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14502597A Expired - Lifetime JP3570469B2 (en) 1997-06-03 1997-06-03 Motor speed control device

Country Status (1)

Country Link
JP (1) JP3570469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654493B2 (en) 2000-08-08 2011-03-23 株式会社安川電機 Electric motor control device
JP2008097390A (en) * 2006-10-13 2008-04-24 Fuji Electric Systems Co Ltd Model following control device applied to control object including dead time

Also Published As

Publication number Publication date
JPH10337070A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP5169836B2 (en) Position control device
JPH10243699A (en) Synchronous motor controller
JP4045747B2 (en) Motor control device
JP3183516B2 (en) A method for determining stator flux estimates for asynchronous machines.
JP3235242B2 (en) Inertia Estimation Method for Speed Control of Two-Inertia Torsional Vibration System
US6411052B1 (en) Method and apparatus to compensate for resistance variations in electric motors
JP3570469B2 (en) Motor speed control device
JP4601900B2 (en) Induction motor control device
JP3230571B2 (en) Motor speed control device
Shieh et al. Adaptive estimation of rotor time constant for indirect field-oriented induction motor drive
JPH0410319B2 (en)
JP2937007B2 (en) Auto tuning controller
CN110798113B (en) Phase compensator of permanent magnet synchronous motor
JPH08331879A (en) Mechanical constant estimation circuit
JP2838578B2 (en) Motor control device, disturbance load torque estimation device
JP2958600B2 (en) Motor control device
JPH11313495A (en) Controller for motor servo system
JPH06309008A (en) Servo controller
JPH1165608A (en) Auto-tuning servo device
JPH06165550A (en) Method and system for controlling motor
JPH1198891A (en) Torque controller for induction motor
JPH04304181A (en) Suppressor/controller for torsional vibration of shaft
JP4005510B2 (en) Synchronous motor drive system
Kim et al. Robust speed estimation for speed sensorless vector control of induction motors

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term