JP2003241839A - Position control apparatus - Google Patents

Position control apparatus

Info

Publication number
JP2003241839A
JP2003241839A JP2002037663A JP2002037663A JP2003241839A JP 2003241839 A JP2003241839 A JP 2003241839A JP 2002037663 A JP2002037663 A JP 2002037663A JP 2002037663 A JP2002037663 A JP 2002037663A JP 2003241839 A JP2003241839 A JP 2003241839A
Authority
JP
Japan
Prior art keywords
speed
output
signal
command
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037663A
Other languages
Japanese (ja)
Other versions
JP3981970B2 (en
Inventor
Bunno Cho
文農 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002037663A priority Critical patent/JP3981970B2/en
Publication of JP2003241839A publication Critical patent/JP2003241839A/en
Application granted granted Critical
Publication of JP3981970B2 publication Critical patent/JP3981970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a position control apparatus can not raise a cutoff frequency of a speed loop due to delay elements depending upon the speed loop or nonlinearity of an amplifier and the like, so that a setting value for a cutoff frequency of a position loop is restricted and a gain Kp of a position controller can not be raised. <P>SOLUTION: A position control apparatus performs speed control based on a speed command Vr and performs position control based on a position command Yr. The apparatus comprises a feedback phase leading compensation part 7 for inputting the speed command Vr to a transfer function model 10 having transfer function characteristics equal to a speed loop 3 to output a speed predictive signal Vo and for inputting a speed predictive signal Ve which subtracts the predictive signal Vo from the speed command Vr into an integrator 9 to output a position compensation signal Yh from the integrator 9. The apparatus adds the compensation signal Yh to the position signal Y from a position detector 12 to be as a position feedback signal Yf. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、位置指令に基づき
位置制御を行うための位置制御装置に関する。 【0002】 【従来の技術】周知のように、通常の位置制御系は位置
メインループ(以下では位置ループと称す)と速度マイ
ナーループ(以下では速度ループと称す)で構成されて
いる。このような制御系では、十分な制御特性を得るた
め、制御ゲインを大きく上げる必要がある。しかし、速
度ループには遅れ要素やアンプの非線形性などが存在す
るため速度制御器のゲインが十分に上げられない。ま
た、位置ループでは速度ループの遅れの影響で位置ルー
プの遮断周波数が速度ループの遮断周波数の1/4〜1
/2位までしか位置制御器のゲインKpを上げられな
い。従来例として図5に示す特開平05−285786
では、速度ループの位相遅れを補償するため、通常の位
置制御系に直列位相進み補償器を取り入れている。図5
において、2は位置制御器、13は直列位相進み補償
器、3は速度ループ、4は速度制御器、5は制御対象、
6は積分要素である。このような制御系では、速度ルー
プ3の位相遅れが直列位相進み補償器13により補償さ
れている。 【0003】 【発明が解決しようとする課題】ところが、前記従来技
術では、直列位相進み補償器13の高周波数領域でのゲ
インが大きいので、高周波数の振動を起こしやすく、結
局位置制御ゲインKpを上げられなくて、制御性能を向
上することができないという課題があった。そこで、本
発明は、高周波数の振動を起こすことなく速度ループの
位相遅れを補償し、位置制御器のゲインを十分に高くで
き、十分な応答特性と外乱抑圧特性が得られる位置制御
装置を提供することを目的とする。 【0004】 【課題を解決するための手段】前記の目的を達成するた
めに、本発明は図1に示すように、速度指令に基づき速
度制御を行うとともに位置指令に基づき位置制御を行う
位置制御装置において、速度ループ3と同等の伝達関数
特性を有する伝達関数モデル10に速度指令Vrを入力
し、伝達関数モデル10から速度推定信号Voを出力
し、速度指令Vrから速度推定信号Voを差し引いた速
度偏差推定信号Veを積分器9に入力し、積分器9から
位置補償信号Yhを出力するフィードバック位相進み補
償部7を備え、位置検出器12からの位置信号Yに位置
補償信号Yhを加えて位置フィードバック信号Yfとす
ることを特徴とするものである。 【0005】 【発明の実施形態】本発明の実施形態を図にもとづいて
説明する。図1は本発明の制御系の構成原理を示すブロ
ック線図である。図1において、1は第1の減算器、2
は位置制御器、3は速度ループ、4は速度制御器、5は
制御対象、6は積分器、7はフィードバック位相進み補
償部、8は加算器、9は積分器、10は速度ループ3と
同等の伝達関数特性を有する伝達関数モデル、11は第
2の減算器、12は位置検出器、Vrは速度指令、Vは
制御対象の速度を示す速度信号(速度検出器の出力)、Y
は制御対象の位置を示す位置信号(位置検出器12の出
力)、Yfは位置フィードバック信号、Yrは位置指
令、Yhは位置補償信号、Veは速度偏差推定信号、V
oは速度推定信号である。図1に示すように、本発明の
制御系は、図5に示した従来の制御系において、直列位
相進み補償器13をなくし、代わりに速度指令Vrを入
力とし、位置補償信号Yhを出力するフィードバック位
相進み補償部7を組み込んだものである。以下、制御系
の安定性、入出力特性および外乱抑圧特性について説明
する。 【0006】図1において、速度ループ3の入出力伝達
関数をGv(s)とし、フィードバック位相進み補償部
7の伝達関数Fb(s)を求めると、 Fb(s)=Yh(s)/Vr(s)=[1−Gv(s)]/s …式1 となる。制御対象5に含まれる外乱を速度指令側に換算
し、これを等価外乱dとし、図1を等価的に図2のよう
に書き直すことができる。まず、安定性について説明す
る。図2において、速度指令Vrから位置信号Yまで、
および、速度指令Vrから位置フィードバック信号Yf
までの伝達関数を求めると、 Y(s)/Vr(s)=Gv(s)/s …式2 および Yf(s)/Vr(s)=1/s …式3 となる。入出力特性を考察するための図2の等価ブロッ
ク線図を図3(等価外乱dを0とする)のように置き換
える。図3により、位置指令Yrから位置信号Yまでの
伝達関数Gr(s)は Gr(s)=Y(s)/Yr(s) =Kp・Gv(s)/(s+Kp) …式4 となる。 【0007】また、図2において、位置信号Yから速度
指令Vrまでの伝達関数を求めると、 Vr(s)/Y(s)=−Kp・s/[s+Kp・[1−Gv(s)]] …式 5 となる。外乱抑圧特性を説明するため、図2の等価ブロ
ック線図を図4(位置指令Yrを0とする)のように置
き換える。図4により、等価外乱dから位置信号までの
伝達関数Gd(s)は、 Gd(s)=Y(s)/d(s) =Gv(s)・[1+Kp・Fb(s)]/(s+Kp) …式 6 となる。一般に、速度ループは安定かつ定常偏差がない
ように構成される。この場合では、速度ループの入出力
伝達関数Gv(s)は、 Gv(s)=(bnn+bn-1n-1+…+b1s+a0)/(amm+ am-1m-1+…+a1s+a0) …式7 となる。ただし、 Dv(s)=amm+am-1m-1+…+a1s+a0 …式 8 はHurwitz安定多項式である。式1より、フィードバッ
ク位相進み補償部は、 Fb(s)= [1−Gv(s)]/s =[amm-1+…+(an−bn)sn-1+…+(a1―b1)]/(amm+ am-1m-1+…+a1s+a0) …式 9 となる。上式より、Fb(s)は分母がHurwitz安定多
項式であるため安定である。それで、Kp を正数とす
れば、式4および式6より、Gr(s)およびGd
(s)には不安定な極が存在せず安定である。すなわ
ち、Kpをいくら大きく上げても、制御系は安定であ
る。 【0008】次に入出力特性について説明する。速度ル
ープの入出力伝達関数Gv(s)の遮断周波数をωvと
し、Kpを Kp≫ωv …式10 とすれば、式4より、ω<ωvの低周波数領域では、 Gr(jω)≒Gv(jω) (ω<ωv) …式 11 が成り立つ。すなわち、位置ループの周波数特性を速度
ループの周波数特性に近づけることができる。 【0009】次に外乱抑圧特性について説明する。一般
に、外乱抑圧特性を考察することは低周波数領域で行
う。ω≪Kp,かつ、ω≪ωvの低周波数領域において
は、 式7より、Gv(jω)≒1 …式 12 となり、 式9より、Fb(jω)≒(a1−b1)/a0 …式13 となり、また、式6より、外乱抑圧特性は、 Gd(jω)=Y(jω)/d(jω) ≒1/Kp+(a1−b1)/a0 …式 14 となる。従って、Kpを上げることによって、外乱の悪
影響が小さくなる。特に、制御対象が剛体系で、速度制
御器がPI制御である場合では、a1=b1となるので、 Y(jω)/d(jω)≒1/Kp …式 15 となり、Kpを大きく上げると、低周波外乱の悪影響を
ほぼ抑えることができる。 【0010】 【発明の効果】この発明に係る位置制御装置は、速度指
令を入力として位置補償信号を出力するフィードバック
位相進み補償部を備えるため、位置制御器のゲインKp
を大きくしても振動を生じることなく制御系を安定に保
つことができ、位置ループの周波数特性を速度ループの
周波数特性と同等レベルまで高めることができ、また、
目標指令に対する追従特性と低周波の外乱抑圧特性とを
大きく向上させることができるという効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position control device for performing position control based on a position command. 2. Description of the Related Art As is well known, an ordinary position control system includes a position main loop (hereinafter, referred to as a position loop) and a speed minor loop (hereinafter, referred to as a speed loop). In such a control system, it is necessary to greatly increase the control gain in order to obtain sufficient control characteristics. However, the gain of the speed controller cannot be sufficiently increased due to the presence of a delay element and the non-linearity of the amplifier in the speed loop. Further, in the position loop, the cutoff frequency of the position loop is 1/4 to 1 of the cutoff frequency of the speed loop due to the delay of the speed loop.
The gain Kp of the position controller can only be increased up to the second position. JP-A-05-285786 shown in FIG. 5 as a conventional example
In order to compensate for the phase lag of the velocity loop, a normal phase control system incorporates a series phase lead compensator. FIG.
, 2 is a position controller, 13 is a series phase lead compensator, 3 is a speed loop, 4 is a speed controller, 5 is a control target,
6 is an integral element. In such a control system, the phase delay of the speed loop 3 is compensated by the series phase advance compensator 13. However, in the prior art, since the gain of the series phase lead compensator 13 in the high frequency region is large, high frequency oscillation is likely to occur, and the position control gain Kp is eventually reduced. There was a problem that the control performance could not be improved because it could not be raised. Therefore, the present invention provides a position control device that compensates for the phase lag of the velocity loop without causing high-frequency vibration, can sufficiently increase the gain of the position controller, and can obtain sufficient response characteristics and disturbance suppression characteristics. The purpose is to do. In order to achieve the above object, the present invention provides a position control for performing speed control based on a speed command and performing position control based on a position command, as shown in FIG. In the device, a speed command Vr is input to a transfer function model 10 having a transfer function characteristic equivalent to that of the speed loop 3, a speed estimation signal Vo is output from the transfer function model 10, and the speed estimation signal Vo is subtracted from the speed command Vr. A feedback phase lead compensator 7 that inputs the speed deviation estimation signal Ve to the integrator 9 and outputs a position compensation signal Yh from the integrator 9 includes a position compensation signal Yh added to the position signal Y from the position detector 12. It is characterized in that it is a position feedback signal Yf. An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration principle of the control system of the present invention. In FIG. 1, 1 is a first subtractor, 2
Is a position controller, 3 is a speed loop, 4 is a speed controller, 5 is a control target, 6 is an integrator, 7 is a feedback phase lead compensator, 8 is an adder, 9 is an integrator, and 10 is a speed loop 3. A transfer function model having equivalent transfer function characteristics, 11 is a second subtractor, 12 is a position detector, Vr is a speed command, V is a speed signal indicating the speed of the control target (output of the speed detector), Y
Is a position signal (output of the position detector 12) indicating the position of the control target, Yf is a position feedback signal, Yr is a position command, Yh is a position compensation signal, Ve is a speed deviation estimation signal, V
o is a speed estimation signal. As shown in FIG. 1, the control system of the present invention is different from the conventional control system shown in FIG. 5 in that the serial phase lead compensator 13 is eliminated, and instead, the speed command Vr is input and the position compensation signal Yh is output. The feedback phase advance compensator 7 is incorporated. Hereinafter, the stability, input / output characteristics, and disturbance suppression characteristics of the control system will be described. In FIG. 1, when the input / output transfer function of the speed loop 3 is Gv (s) and the transfer function Fb (s) of the feedback phase lead compensator 7 is obtained, Fb (s) = Yh (s) / Vr (S) = [1-Gv (s)] / s Expression 1 is obtained. The disturbance included in the control target 5 is converted into the speed command side, and this is set as an equivalent disturbance d, and FIG. 1 can be rewritten equivalently as shown in FIG. First, stability will be described. In FIG. 2, from the speed command Vr to the position signal Y,
And a position feedback signal Yf from the speed command Vr.
When the transfer function is obtained, Y (s) / Vr (s) = Gv (s) / s Formula 2 and Yf (s) / Vr (s) = 1 / s Formula 3 The equivalent block diagram of FIG. 2 for studying the input / output characteristics is replaced with that of FIG. 3 (equivalent disturbance d is set to 0). According to FIG. 3, the transfer function Gr (s) from the position command Yr to the position signal Y is given by: Gr (s) = Y (s) / Yr (s) = Kp · Gv (s) / (s + Kp) . In FIG. 2, when a transfer function from the position signal Y to the speed command Vr is obtained, Vr (s) / Y (s) =-Kp.s / [s + Kp. [1-Gv (s)] ] ... Equation 5 is obtained. In order to explain the disturbance suppression characteristic, the equivalent block diagram of FIG. 2 is replaced with FIG. 4 (the position command Yr is set to 0). According to FIG. 4, the transfer function Gd (s) from the equivalent disturbance d to the position signal is as follows: Gd (s) = Y (s) / d (s) = Gv (s) · [1 + Kp · Fb (s)] / ( s + Kp) Expression 6 is obtained. Generally, the speed loop is configured to be stable and free of steady-state deviation. In this case, input and output transfer function Gv of the velocity loop (s) is, Gv (s) = (b n s n + b n-1 s n-1 + ... + b 1 s + a 0) / (a m s m + a m-1 s m-1 +... + a 1 s + a 0 ). However, Dv (s) = a m s m + a m-1 s m-1 + ... + a 1 s + a 0 ... Equation 8 is Hurwitz stable polynomial. From Equation 1, the feedback phase advance compensator, Fb (s) = [1 -Gv (s)] / s = [a m s m-1 + ... + (a n -b n) s n-1 + ... + a (a 1 -b 1)] / (a m s m + a m-1 s m-1 + ... + a 1 s + a 0) ... equation 9. From the above equation, Fb (s) is stable because the denominator is a Hurwitz stable polynomial. Therefore, if Kp is a positive number, Gr (s) and Gd
(S) is stable without unstable poles. That is, no matter how much Kp is increased, the control system is stable. Next, the input / output characteristics will be described. Assuming that the cut-off frequency of the input / output transfer function Gv (s) of the velocity loop is ωv and Kp is Kp≫ωv (Equation 10), from Expression 4, Gr (jω) ≒ Gv ( jω) (ω <ωv) Expression 11 holds. That is, the frequency characteristic of the position loop can be made closer to the frequency characteristic of the velocity loop. Next, the disturbance suppression characteristic will be described. Generally, the disturbance suppression characteristics are considered in a low frequency region. In the low frequency range of ω≪Kp and ω≪ωv, from equation 7, Gv (jω) ≒ 1... equation 12 and from equation 9, Fb (jω) ≒ (a 1 -b 1 ) / a 0 Expression 13 and, from Expression 6, the disturbance suppression characteristics are as follows: Gd (jω) = Y (jω) / d (jω) ≒ 1 / Kp + (a 1 −b 1 ) / a 0 . Therefore, by increasing Kp, the adverse effect of disturbance is reduced. In particular, when the control target is a rigid system and the speed controller is PI control, a 1 = b 1. Therefore, Y (jω) / d (jω) ≒ 1 / Kp Expression 15 is obtained, and Kp is increased. When it is increased, the adverse effect of the low frequency disturbance can be almost suppressed. The position control device according to the present invention includes a feedback phase lead compensator for outputting a position compensation signal with a speed command as an input.
Even if is increased, the control system can be kept stable without generating vibration, and the frequency characteristic of the position loop can be increased to the same level as the frequency characteristic of the velocity loop.
There is an effect that the follow-up characteristic to the target command and the low-frequency disturbance suppression characteristic can be greatly improved.

【図面の簡単な説明】 【図1】 本発明の制御系の構成原理を示すブロック線
図 【図2】 外乱を考慮した図1の等価ブロック線図 【図3】 入出力特性を示すために用いた図2の等価ブ
ロック線図 【図4】 外乱抑圧特性を示すために用いた図2の等価
ブロック線図 【図5】 従来技術の制御系の構成を示すブロック線図 【符号の説明】 1、11 減算器 2 位置制御器 3 速度ループ 4 速度制御器 5 制御対象 6、9 積分器 7 フィードバック位相進み補償部 8 加算器 10 速度ループ3の伝達関数モデル 12 位置検出器 13 直列位相進み補償器 14 図2における位置信号Yから速度指令Vrまでの
伝達関数 Vr 速度指令 V 制御対象5の速度を示す速度信号(速度検出器の出
力) Y 制御対象5の位置を示す位置信号(位置検出器12
の出力) Yf 位置フィードバック信号 Yr 位置指令 Yh 位置補償信号 Ve 速度偏差推定信号 Vo 速度推定信号
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration principle of a control system according to the present invention; FIG. 2 is an equivalent block diagram of FIG. 1 in consideration of disturbance; FIG. FIG. 4 is an equivalent block diagram of FIG. 2 used to show disturbance suppression characteristics. FIG. 5 is a block diagram showing a configuration of a conventional control system. 1, 11 Subtractor 2 Position controller 3 Speed loop 4 Speed controller 5 Control target 6, 9 Integrator 7 Feedback phase advance compensator 8 Adder 10 Transfer function model of speed loop 3 12 Position detector 13 Series phase advance compensation Unit 14 Transfer function Vr from position signal Y to speed command Vr in FIG. 2 Speed command V Speed signal indicating speed of controlled object 5 (output of speed detector) Y Position signal indicating position of controlled object 5 (position detector 12
Yf Position feedback signal Yr Position command Yh Position compensation signal Ve Speed deviation estimation signal Vo Speed estimation signal

フロントページの続き Fターム(参考) 5H004 GA07 GA08 GB15 GB16 GB18 HA07 HA08 HB07 HB08 JA03 JA08 JB02 KA01 KB02 KB04 KB06 KC34 5H303 AA01 AA04 BB01 BB06 BB11 CC03 DD01 EE03 EE07 FF03 JJ01 KK02 KK03 KK17 KK24 LL03 Continuation of front page    F term (reference) 5H004 GA07 GA08 GB15 GB16 GB18                       HA07 HA08 HB07 HB08 JA03                       JA08 JB02 KA01 KB02 KB04                       KB06 KC34                 5H303 AA01 AA04 BB01 BB06 BB11                       CC03 DD01 EE03 EE07 FF03                       JJ01 KK02 KK03 KK17 KK24                       LL03

Claims (1)

【特許請求の範囲】 【請求項1】位置検出器と、速度検出器と、位置指令と
前記位置検出器の位置出力とを入力とし、前記位置指令
から前記位置検出器の位置出力を減ずる第1の減算器
と、前記第1の減算器の出力を入力として速度指令を出
力する位置制御器と、前記速度指令と前記速度検出器の
速度出力とを入力として速度制御を行う速度制御器とを
備えた位置制御装置において、前記速度指令から前記速
度検出器の速度出力までの間の伝達関数特性を有する伝
達関数モデル装置と、前記速度指令と前記伝達関数モデ
ル装置の出力とを入力とし、前記速度指令から前記伝達
関数モデル装置の出力を減ずる第2の減算器と、前記第
2の減算器の出力を積分する積分器と、前記積分器の出
力と前記位置検出器の出力とを入力としてこれを加算
し、この加算値を前記位置検出器の位置出力に代えて前
記第1の減算器への入力とする加算器とを備えたことを
特徴とする位置制御装置。
Claims: 1. A position detector, a speed detector, a position command, and a position output of the position detector are input, and a position output of the position detector is subtracted from the position command. A subtractor, a position controller that outputs a speed command with an output of the first subtractor as an input, and a speed controller that performs speed control with the speed command and the speed output of the speed detector as inputs. In a position control device comprising: a transfer function model device having a transfer function characteristic from the speed command to the speed output of the speed detector, and input the speed command and the output of the transfer function model device, A second subtractor for subtracting the output of the transfer function model device from the speed command, an integrator for integrating the output of the second subtractor, and an output of the integrator and an output of the position detector; And add this as An adder that uses the added value as an input to the first subtractor instead of the position output of the position detector.
JP2002037663A 2002-02-15 2002-02-15 Position control device Expired - Fee Related JP3981970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037663A JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037663A JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Publications (2)

Publication Number Publication Date
JP2003241839A true JP2003241839A (en) 2003-08-29
JP3981970B2 JP3981970B2 (en) 2007-09-26

Family

ID=27779183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037663A Expired - Fee Related JP3981970B2 (en) 2002-02-15 2002-02-15 Position control device

Country Status (1)

Country Link
JP (1) JP3981970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541945A (en) * 2019-01-10 2019-03-29 中国科学院光电技术研究所 A kind of Disturbance Rejection method based on compound disturbance observer
CN110431495A (en) * 2017-03-29 2019-11-08 株式会社富士 The disturbance non-interference compensation system and component mounter of position control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809453B (en) * 2014-02-28 2016-06-29 西安费斯达自动化工程有限公司 Longitudinal Flight model cluster man-machine loop's compound root locus compensates robust Controller Design method
CN103809447B (en) * 2014-02-28 2016-03-02 西安费斯达自动化工程有限公司 Aircraft multiloop model bunch combination frequency controller design method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431495A (en) * 2017-03-29 2019-11-08 株式会社富士 The disturbance non-interference compensation system and component mounter of position control device
CN110431495B (en) * 2017-03-29 2022-12-23 株式会社富士 Disturbance non-interference compensation system for positioning control device and component mounting machine
CN109541945A (en) * 2019-01-10 2019-03-29 中国科学院光电技术研究所 A kind of Disturbance Rejection method based on compound disturbance observer

Also Published As

Publication number Publication date
JP3981970B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
KR0133354B1 (en) Motor controller
US20090251092A1 (en) Position controller
JP5648870B2 (en) Motor control device, motor control method and mechanical system
JP6671500B2 (en) Method and system for controlling an electric motor
JP3835528B2 (en) Speed control device
WO2018173654A1 (en) Method for designing filter of delay compensator, feedback control method using same, and motor control device
JP2003241839A (en) Position control apparatus
US20040054440A1 (en) Feedback control device
JP3188603B2 (en) Inverter control device
JP3804061B2 (en) Feedback control device
WO2019087554A1 (en) Feedback control method and motor control device
JP2007189600A (en) Sawtooth wave generating circuit
JP2011042240A (en) Current controller for electric power steering device
JP2005174082A (en) Positioning control device
JP2011078192A (en) Controller for motor
JP3611738B2 (en) Current control device
TWI716175B (en) Current response compensating system and method thereof
JPS63115202A (en) Feedback process controller
JP2001352764A (en) Inverter controller
JPH07264081A (en) Transmission output control circuit
JPS63136993A (en) Method for controlling motor
JP3864283B2 (en) Position control device
JP2001290504A (en) Controller
JPH05127701A (en) Controller
JP2021164328A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Effective date: 20070624

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees