JP3981610B2 - Method and apparatus for observing inner wall of coke oven carbonization chamber - Google Patents

Method and apparatus for observing inner wall of coke oven carbonization chamber Download PDF

Info

Publication number
JP3981610B2
JP3981610B2 JP2002263559A JP2002263559A JP3981610B2 JP 3981610 B2 JP3981610 B2 JP 3981610B2 JP 2002263559 A JP2002263559 A JP 2002263559A JP 2002263559 A JP2002263559 A JP 2002263559A JP 3981610 B2 JP3981610 B2 JP 3981610B2
Authority
JP
Japan
Prior art keywords
imaging device
wall
carbonization chamber
mirror surface
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002263559A
Other languages
Japanese (ja)
Other versions
JP2004099746A (en
Inventor
靖彦 阿波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002263559A priority Critical patent/JP3981610B2/en
Publication of JP2004099746A publication Critical patent/JP2004099746A/en
Application granted granted Critical
Publication of JP3981610B2 publication Critical patent/JP3981610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コークス炉の内壁を遠隔で観察するための観察方法及び観察装置に関するものである。
【0002】
【従来の技術】
コークス炉は、多数の炭化室と燃焼室が交互に連接して構成され、炭化室に石炭を装入し、炉壁を介して燃焼室より炭化室に900℃〜1100℃の高熱を約20時間連続して加え、石炭を乾溜し、コークスを製造する。この乾留が完了すると、コークスを排出し、そして石炭を装入してまた加熱を開始する。
【0003】
各炭化室は、高さが約6.5m、幅が約0.4m、長さが約16mであり、非常に幅が狭く奥行きが深い(長さが長い)炉空間を形成している。炭化室の内壁は耐火レンガで蔽われており、個々の耐火レンガは大略で高さ120mm、幅260mm、厚さが110mmである。コークス炉は、各炭化室に隣接する燃焼室を高温に加熱し、その熱によって炭化室内壁の耐火レンガを高温に熱することによって炭化室に熱を供給する。従って、この炭化室内壁(燃焼室との隔壁)に使用される耐火レンガは、長期間高温に曝され、又石炭のコークス化が完了する度にコークス押出し機によってコークスを押出して搬出するため、耐火物がコークスの圧力を受け、熱的、化学的、あるいは機械的なストレスにより損傷しやすい。すなわち、壁面の目地切れ、レンガ亀裂、剥離、カーボン付着、あるいは壁面の凹凸、湾曲、窯幅変動等を招きやすい。損傷部はコークス押出し時に局部的に過大な力が加わって更に損傷が拡大しやすく、また損傷部は熱伝播特性が正常部とは異なるので、均質なコークスを製造する上で好ましくない。比較的に小さな損傷部は耐火物を溶射して埋め、レンガ欠落部には耐火レンガをはめ込んで目地に耐火物を溶射して修復するが、損傷の発見と位置把握が難しい。このため、炭化室内が赤熱している状況において、内壁のうちの必要な部分、通常は内壁の全表面について必要な解像度で表面を観察し、損傷を発見して位置を把握することが重要である。
【0004】
操業の合間の短時間を利用してコークス炉窯口から炉内壁を観察する方法では、炉内が高温であるので窯口の外から内部を観察せざるをえず、炭化室は上述のように炉の奥行きが深いのに対して幅が狭いので、炉奥の内壁耐火物は遠方から浅い角度での観察となり、表面の観察は非常に難しい。
【0005】
特許文献1では、コークス炉炭化室の窯口よりカメラ(通常の2次元ITVカメラ)を搭載したカメラ搬送用ブームを炉内に挿入し、炉長方向に移動しながら炉内壁面を撮影する方法が開示されている。しかし、炭化室の幅は非常に狭いので、カメラを炭化室内壁に正対したのではカメラと内壁との距離が得られず、撮影範囲が狭くなって必要な範囲の画像が得られないので、カメラを壁面に対して斜めに取り付けて浅い角度で壁面を視野に入れて撮影する。このようにして撮影した内壁の画像は、図7に示すように、カメラに近い側の画像は撮影範囲が狭く(22a)、反対にカメラから遠い側の画像は撮影範囲は広いが対象が小さくしか写らず(22b)、必要な解像度が得られない。また、このような撮影方法では、全視野にわたってフォーカスを合わせることは困難である。上記公報では、得られた斜視像を画像処理してあたかも炉壁に対して正対させて撮影したような正面画像に変換する発明が開示されているが、このような画像処理を行っても、遠方を撮影した部分の解像度が十分に得られない点、全視野にわたってフォーカスを合わせることが困難である点は変らない。
【0006】
特許文献2においては、炭化室が赤熱した状態において、内壁全体にわたって良好な解像度で最適な角度からの観察画像が得ることができる内壁観察方法及び装置が記載されている。しかし、炭化室は高さが6mを超えるため、その高さ方向の全体を同時に撮像しようとすると大掛かりな設備となり、装置の設置、操作ともに困難性を増すとともに設備投資額も多額となる。
【0007】
【特許文献1】
特開平3−105195号公報
【特許文献2】
特開平11−106755号公報
【0008】
【発明が解決しようとする課題】
本発明は、炭化室内が赤熱している状況において、内壁のうちの必要な部分、即ち内壁の全表面について必要な解像度で表面を観察し、損傷を発見して損傷の位置と状態を把握できる観察方法及び装置であって、該観察装置の撮像部分をコンパクト化することのできる観察方法及び観察装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、その要旨とするところは以下の通りである。
(1)コークス炉炭化室の窯口より撮像装置1を炭化室内部に挿入し、内壁の撮像をもとに炭化室内壁状況を観察する方法において、該撮像装置1の視野を線状もしくはスリット状として、撮像装置前方に鏡面7を配置し、該鏡面7で反射した炭化室内壁の像を前記撮像装置の視野でとらえて前記炭化室内壁を撮像するように配置し、前記撮像装置1と鏡面7は一体として炭化室内部で上下に移動可能であり、撮像装置1と鏡面7の上下方向の移動は旋回アーム10の旋回によって行い、かつ該旋回アーム10の旋回位置によらず前記撮像装置の撮像方向及び鏡面の設置方向は一定方向を保ち、撮像装置1及び鏡面7を上下方向の位置を定めて炉長方向に移動し、該撮像装置が短い距離を移動する毎に撮像データを採取し、該撮像データを炉長方向の移動距離に対応して順次つなぎ合わせ、更に炭化室上下方向の位置を変更して同様の撮像を繰り返し、炭化室内壁の広い面積の画像を1枚の画像として作成することを特徴とするコークス炉炭化室の内壁観察方法。
)前記鏡面7は複数の鏡面からなり、鏡面毎に、撮像装置からの光軸が反射して鏡面から側壁に向かう光軸の角度が異なり、いずれの鏡面から得られた像を撮像するかを選択することにより、複数の角度から炭化室内壁を観察することを特徴とする上記(1)記載のコークス炉炭化室の内壁観察方法。
)炭化室内壁を撮像するための線状又はスリット状視野を有し、炉高方向に1台又は複数台配置された撮像装置1と、前記撮像装置の視野前方に配置され、炭化室内壁の反射像を前記撮像装置の視野に供給する1又は2以上の鏡面7と、前記撮像装置1及び鏡面7を支持し、炭化室上下方向に移動する上下移動装置と、前記上下移動装置を支持し、炉長方向に往復移動する移動手段と、前記炉長方向移動手段による前記撮像装置1の炉長方向への往復移動過程で、該撮像装置1が短い距離を移動する毎に得られた線状もしくはスリット状視野の撮像データを、炉長方向の移動距離に対応して順次つなぎ合わせ、炭化室内壁の広い面積の画像を1枚の画像として合成する画像合成手段とを備え、上下移動装置は旋回アーム10の旋回によって上下移動を行い、かつ該旋回アーム10の旋回位置によらず前記撮像装置の撮像方向及び鏡面の設置方向を一定方向に保つように回転する首振り装置12を有することを特徴とするコークス炉炭化室の内壁観察装置。
)前記旋回アーム10先端に配置した前記撮像装置1と鏡面7は、前記首振り装置12とともに又は首振り装置12と別に旋回アーム10先端に着脱可能であり、該旋回アーム10先端には炉壁補修装置も配置可能であり、炭化室の内壁観察終了後に炉壁補修装置を旋回アーム先端に設置して炉壁補修を行うことができることを特徴とする上記()に記載のコークス炉炭化室の内壁観察装置。
)前記鏡面7は内部を水冷構造とした管の表面を直接1又は2以上の鏡面としてなることを特徴とする上記(3)又は(4)に記載のコークス炉炭化室の内壁観察装置。
)前記撮像装置1は水冷構造の筐体内に収納してなることを特徴とする上記()〜()のいずれかに記載のコークス炉炭化室の内壁観察装置。
【0010】
図2に示すように、撮像装置1は1次元ないしはほぼ1次元の視野8を有し、視野8を含む平面は炭化室内壁にほぼ平行とする。撮像装置1前方に鏡面7を配置し、鏡面7で反射して得られた像を介して炭化室内壁部位9を撮像することができる。撮像装置1がある時刻に撮像できる範囲は鉛直方向の線状部位であり、撮像装置1と鏡面7とを炭化室炉長方向に移動しながら撮像を行うことにより、水平方向には炭化室の炉長全長について、垂直方向には撮像装置の撮像範囲9の部分についての内壁の画像を得ることができる。
【0011】
上下方向に複数の撮像装置1を配置することによって同時に炭化室の全高さ範囲をカバーして撮像することも可能であるが、本発明においては、図1に示すように、撮像装置1及び鏡面7は炭化室高さ方向の一部の高さのみを撮像範囲とする。全高さ範囲をカバーしようとすると、撮像装置及び鏡面は炭化室高さに匹敵する高さのものを用いる必要があるが、本発明のように一部の高さのみを撮像範囲とすることにより、撮像装置1を収納する筐体4及び鏡面7をコンパクトにすることができる。
【0012】
撮像装置1と鏡面7によってカバーできる高さ範囲について炉長全長の撮像を完了した後、撮像装置1と鏡面7の炉内における高さ方向位置を変更し、例えば図1において(a)位置から(b)の位置に高さを変更し、(b)の高さ範囲についての撮像を行う。このように撮像を繰り返すことにより、結局は炭化室内壁の全長・全高についての撮像データを得ることができる。
【0013】
【発明の実施の形態】
本発明で用いる撮像装置1は、その視野を線状もしくはスリット状として前記炭化室内壁を撮像するように配置することを特徴とする。視野が線状もしくはスリット状である撮像装置は、その撮像素子として、最も一般的には1次元に受光素子を配列した撮像素子が用いられる。CCD(チャージ・カプルド・デバイス)ユニットを直列に配列したCCD撮像素子等であって、ユニットの数は2048ユニット×1列、4096ユニット×1列あるいは5150ユニット×1列等の素子を選択することができる。視野がスリット状であるためには、受光素子の並びは1列である必要はなく、2列あるいは数列存在してもかまわない。また、通常の2次元撮像素子を用い、その全視野のうちのスリット状の特定の視野の画像を用いてもよい。ただし、2次元の撮像素子を用いるより1次元の撮像素子を用いた方がスリット状視野の長さ方向の解像度の高い素子を手に入れることが可能である。
【0014】
炭化室側壁観察撮像装置の場合、上記撮像装置の光軸を略炉長方向に平行に配置し、スリット状視野を炉高方向に平行に配置する。図4(a)に示すように撮像装置の前方にスリット状の視野をカバーする長細い鏡面7を配置し、その鏡面と撮像装置の光軸6との角度を略45°として反射像を得、内壁の観察箇所を鏡面を介して略垂直方向から観察する。図4(b)に示すようにその鏡面と撮像装置の光軸との角度を変更し、観察箇所を鏡面を介して斜めの方向から観察してもよい。いずれの実施の形態においても、撮像装置と観察箇所との間の光軸の延長距離は、視野が必要な撮像範囲をカバーするように定められる。本発明のような構成を採用した結果として、1回の撮像における全視野において撮影箇所と撮像装置との間の距離が略同一であるため、全視野においてフォーカスを合わせることが可能である。
【0015】
本発明の撮像装置1と鏡面7とを高さ方向に移動する上下移動手段としては、図1に示すような上下方向に旋回する旋回アーム10による方法、あるいは上下にスライドする移動手段による方法等を用いることができる。旋回アーム10による場合は、旋回アーム10の先端に撮像装置1と鏡面7とを配置する。ここで、撮像装置1の撮像方向及び鏡面7の向きは、旋回アーム10の高さ方向位置にかかわらず常に同一の方向を向いていることが好ましい。具体的には、撮像装置1の撮像方向は側壁に平行な水平方向、鏡面7の方向は鉛直方向が好ましい。そのため、旋回アーム10の先端には首振り装置12を配置し、撮像装置1と鏡面7とは首振り装置12に設置する。旋回アーム10の旋回にあわせて首振り装置12の回転角度を調整することにより、撮像装置1と鏡面の向きを常に一定方向に維持することができる。
【0016】
炉頂耐火物18あるいは炉底耐火物19を観察する撮像装置(1b、1c)については、側壁17の観察と異なり耐火物から垂直にみた撮像装置までの距離を長く取れるので、撮像装置の光軸と観察面との角度を任意に定めることが可能である。従って、側壁観察のように鏡面を用いる必要はなく、観察面に対して90°を含め任意の角度で観察することが可能である。線状あるいはスリット状の撮像装置視野は炉幅方向と平行に配置する。
【0017】
撮像装置は鏡面とともに炉長方向に移動する。このとき、撮像装置1と鏡面7の高さは一定に保つ。この移動に際して撮像装置の光軸の向きは常に一定方向を維持するため、撮像装置の移動とともに撮像装置が視野としてとらえる内壁の観察箇所9も撮像装置と同じ距離だけ移動する。移動に際し、撮像装置が短い距離を移動するごとに線状又はスリット状の視野において撮像装置がとらえている撮像データを採取する。通常は短い一定の距離を移動するごとに撮像データを採取する。この撮像データを集計し、2次元の画面上に、例えば1回のスリット状の撮像データを縦方向に表示し、横方向に撮像間隔の移動距離毎に撮像データを並べるように表示する。撮像間隔の移動距離を短く、例えば1mmと設定するため、こうして撮像データを並べることによって2次元の画像を作成することができる。炉の側壁についての画像であれば、作成された画像において、縦方向が炉高方向、横方向が炉長方向であり、炉の内壁をあたかも真正面から距離を置いて眺めたような画像を得ることができる。フォーカスはあらゆる箇所で合っており、いずれの箇所においても必要な解像度を満足しており、また画像を場所によって拡大・縮小するような画像処理も必要としない。上記のように1次元画像データを並べて2次元の画像を作成する方法としては、一般的な画像スキャナーにおいて1次元の読取装置をスキャンすることによって2次元の画像をイメージデータとして作成する場合等に用いられている汎用的な方法を用いることが可能である。
【0018】
図6において、撮像装置1は1rの位置から1sの位置まで移動し、まだ移動中である。この間、側壁17の撮像装置による観察部位は9rから9sまで移動した。画像合成手段23により、現在までに得られた撮像データに基づく画像が合成され、画像表示手段24上に画像25が得られている。
【0019】
撮像装置の台数は、側壁観察撮像装置は1台又は複数台とすることができる。本発明においては撮像装置を上下移動可能としているので、1台の撮像装置で高さ方向の一定範囲をカバーし、順次撮像装置の高さを移動することで側壁の全高さ範囲を撮像することができる。側壁17は左右2面あるが、撮像装置移動の往路で片方の側壁17aを観察し、復路で残りの側壁17bを観察する方法を採用することで同一の撮像装置で左右両方の側壁を観察することが可能である。炉底及び炉頂の耐火物観察は、炉幅が狭いので各1台の撮像装置で観察することが可能である。
【0020】
撮像装置の移動に際しては撮像装置の横ぶれを完全に防止することが困難である。撮像装置を炉長方向に移動する移動手段としての水平移動機構13においては、炉底に接地する車輪14でガイドするか、あるいは約16mの炉長に等しい長さのビームの先端に撮像装置を取り付けて接地ガイドなしで支持される。炉底に接地する車輪を用いる場合は、炉底がスムースな平坦面ではないので撮像装置の横ぶれは避け得ず、ガイドを設けない場合はビームが長いことに起因してやはり撮像装置の横ぶれを避けることは困難である。図5に示すように、従来の側壁を斜めにカメラで撮像する方法においては、横ぶれΔxの存在によって画像のゆれはΔyの大きさだけ発生していたが、本発明において、鏡面から側壁に向かう光軸を垂直に向ける実施の形態においては、撮像装置及び鏡面が横ぶれしてもそれに起因する観察位置の変動が少ない。そのため、撮像装置の移動に伴う横ぶれに起因する画像の乱れの少ない、良好な解像度の画像が得られるという長所を有する。
【0021】
鏡面から側壁に向かう光軸を傾斜させる実施の形態においては、撮像装置及び鏡面の横ぶれに起因する観察位置の変動とそれに基づく画像の乱れは、光軸を垂直とする実施の形態に比較すると若干の画像の乱れが発生する。一方、観察面に対して角度を持って観察するため、垂直方向から観察する実施の形態と比較し、観察面の凹凸の状況をより明確に把握できるという特徴を有する。炭化室の内壁の損傷の状況を把握する上では、亀裂の深さの確認が重要であるが、得られた画像の陰影に基づいてある程度の凹凸の深さが認識できるので、補修の要否、補修の程度の把握をするうえで有用である。
【0022】
以上のように、鏡面から側壁に向かう光軸の角度によってそれぞれ特有の長所を有しているため、観察目的に応じて任意の形態が選択できることが好ましい。本発明においては、図2に示すように、撮像装置1を支持し、撮像装置の光軸を複数組の鏡面(7b〜7e)の各個の鏡面に向けることを可能にする撮像装置旋回装置2を有することにより、該旋回装置の作用で撮像装置の向きを定めることで側壁に向かう光軸の角度を選択することが可能となる。
【0023】
炭化室の側壁は左右両面あるが、上記撮像装置旋回装置2の作用により撮像装置の向きを制御し、同一の撮像装置によって炉長方向の移動の往路は左側壁を観察し、復路は右側面を観察するという制御も可能となる。
【0024】
通常、観察はコークス炉の操業の合間に行うので、観察する炉壁は赤熱している。従って、撮像装置での観察に際しては自発光の光を観察することとなり、別途照明は必要としない。損傷箇所は一般に耐火物の厚さが薄くなっていて隣接する燃焼室との距離が短くなり、周辺の健全部に比較して高温となって輝度が高くなるので、得られた画像から損傷部を認識することができる。また、カーボン付着部は自ら燃焼しているためやはり輝度が高い。これらの輝度情報及び鏡面から側壁に向かう光軸を傾斜させる実施の形態における凹凸の情報を基に得られた画像から補修すべき損傷箇所及び補修の方法を決定し、補修を行う。
【0025】
撮像装置前方に配置する鏡面7は、環境の高温雰囲気に曝されるため、熱変形、熱損傷から鏡面を守る対策が必要である。平面状の鏡面を独立して設け、これを支持機構にて支持する方法では鏡面を有効にかつ均一に冷却するためには複雑な冷却機構を必要とする。それに対し、図2に示す本発明のように、内部を水冷構造とした管の表面を直接鏡面とすることにより、上記問題を解決することができる。円管であるため、表面に複数の鏡面を形成することが容易である。管の材質としては、ステンレス鋼管が最適である。管の表面の必要箇所を平面状に研磨して鏡面とするが、ステンレス鋼管であれば赤熱するコークス炉内での使用を行っても鏡面のくもり発生は問題とならないレベルである。また、全体の形状が管状であるため周囲から受ける熱影響が管の円周方向で均一であり、また、管状であるため高剛性であり、かつ安価に製作できる。炉内挿入中の鏡面のゆがみ発生は問題とならないレベルである。内部の水冷構造は、管の内部全体に冷却水を流す方法、あるいは図2(a)に示すように2重管構造として内管3bと外管3aの間3cに冷却水を流すジャケット方式のいずれをも採用することができる。鏡面7は、各撮像装置の視野をカバーする長さの管軸に平行な細長い平面鏡とし、撮像装置の光軸との角度に応じて管の外周の複数の箇所(7b〜7e)に設けられる。
【0026】
撮像装置1及び撮像装置旋回機構2は、炭化室内の高温雰囲気から守るために外周を冷却した筐体内に収納する必要がある。従来、特開平7−126636号公報に開示されているように、各撮像装置及び旋回機構毎に水冷筐体に収納する方法が知られているが、これでは製作及びメンテナンスが非常に困難である。これに対し、図2、図3に示す本発明のように、水冷ジャケットで外周全周を水冷した筒状の筐体4を準備し、側壁観察用の撮像装置1a及び撮像装置旋回装置2、更に必要であれば炉頂・炉底観察用の撮像装置1b、1cまでを該1個の筒状の筐体4に収納することができる。これによって、撮像装置の旋回摺動部が熱に曝されないので特別の水冷機構の必要がなく、冷却水漏れの心配がない。また筐体の冷却構造がシンプルであり冷却水の流れをスムースにすることができる。更に構造が単純なため、軽量化できる。観察窓には通常熱線反射のためのコーティングを施した石英ガラス等をはめ込み、熱及び外気の浸入を防止することができる。
【0027】
本発明においては、図3に示すように、撮像装置収納筐体4の中に1対の距離計(26a、26b)を収納し、当該各距離計によって左右側壁(17a、17b)までの距離を測定することができる。距離計26としてはレーザー距離計を用いることができる。1対の距離計(26a、26b)の測定結果の和に基づいて、距離測定個所における両側壁間の炉幅を測定することができる。炭化室の側壁17が損傷すると、当該損傷個所において炉幅が増大する。また、カーボン付着があると当該個所の炉幅は狭まる。従って、本発明の撮像装置によって炭化室内壁の観察を行うと同時に炉幅測定を行うことにより、炭化室内壁の損傷状況に関してより詳細な情報を得ることができ、耐火物の補修あるいはカーボン除去をより適切に行うことが可能になる。炉幅を測定する方法を採用すれば、たとえ距離計を収納した筐体が炭化室内で横揺れを起こしたとしても、該横揺れに影響されずに測定を行うことが可能である。
【0028】
本発明の内壁観察装置によって内壁耐火物の損傷箇所を特定した後、該損傷箇所を補修する。補修のためには、カーボン付着が激しい箇所はカーボン除去を行い、耐火物れんがの損傷箇所は耐火物を溶射する等の方法で補修を行う。カーボン除去治具、あるいは耐火物溶射ノズルを炉内に挿入し損傷箇所に対応して配置するための装置が必要である。補修装置を炉内に挿入・配置するための移動装置を別途備えることも可能であるが、本発明の内壁観察装置の移動装置が補修装置の移動装置を兼ねることができれば、設備費を安価にすることができ、更に設備設置場所を広く確保する必要もなくなる。
【0029】
本発明においては、旋回アーム10等の上下移動装置の先端の撮像装置及び鏡面を着脱可能とし、炉内の観察が完了した後に上下移動装置先端から撮像装置及び鏡面を取り外し、かわりに溶射ノズル等の補修治具を上下移動装置先端に取り付けることにより、1組の移動装置によって炉内観察と炉内補修の両方の作業を行うことが可能になる。上下移動装置として旋回アーム10を用いる場合、旋回アーム先端の首振り装置12と撮像装置1、鏡面7を一体として旋回アーム10から取り外し可能とすることができる。
【0030】
【実施例】
図1〜図3に基づいて本発明の実施例を示す。炭化室の高さ6.5m、幅0.4m、長さ16mのコークス炉炭化室の内壁を、図1、3に示す炭化室の内壁観察装置を使用して観察した。観察用の撮像装置1は、側壁観察に1台(1a)、炉頂・炉底観察に各1台(1b、1c)を有し、いずれも受光素子を2048ユニット×1列有する1次元のCCDカメラである。撮像装置は視野角度60°の範囲の線状の範囲を観察することができる。側壁観察撮像装置1a、炉頂観察撮像装置1b及び炉底観察撮像装置1cはいずれも1個の垂直の水冷円筒4内に収められている。
【0031】
図2に示すように、側壁用撮像装置1aの前方900mmの位置に、外周に左右対称の2組の鏡面(7b〜7e)を有する円筒(以後「ミラー管3」という)を垂直に配置する。ミラー管3は、内部が2重管となって外管3aと内管3bとの間を冷却水が通過するジャケット水冷方式となっており、外管はステンレス鋼管である。ミラー管の外周には、炉長方向との角度45°と22.5°の位置に左右対称に平面部が存在し(7b〜7e)、ミラー研磨されて平面鏡を構成している(図2(c))。平面鏡の幅は20mmであり、側壁を観察する撮像装置がこれら平面鏡を視野に入れて反射光を観察することにより、各平面鏡毎に側壁との角度90°あるいは45°で側壁を観察することができる。図2(a)に示すように、側壁用撮像装置1aは旋回装置2によって炉長方向を中心に各15°の範囲で左右に旋回可能であり、その角度を選択することにより、左右それぞれの側壁を、鏡面反射をさせて側壁90°の方向(6b、6e)ないし45°の方向(6c、6d)から観察する方法を選択することができる。図2(a)(b)においては、撮像装置1の向きは光軸を6dとし、鏡面7dを通して側壁17bを45°の角度で観察する角度を選択している。
【0032】
炉長観察撮像装置1b及び炉底観察撮像装置1cは、いずれも光軸6を垂直方向とし、観察対象との距離を400mmとしている。
【0033】
撮像装置及び鏡面の上下方向移動は旋回アーム10によって行う。旋回アーム10の根元には旋回駆動部11を有し、旋回アーム先端には首振り装置12を介して撮像装置及び鏡面が配置されている。首振り装置12は旋回アーム10の旋回に伴って上下に首を振ることにより、撮像装置と鏡面の向きを常に一定とすることができる。本実施例の首振り装置12と旋回アーム10との接続部には左右の旋回機構15も有する。首振り装置12と左右の旋回機構15とは切り離し可能であり、炉内観察終了後は首振り装置12を切り離してかわりに炉内補修装置を取り付ける。左右旋回機構15は炉内補修において必要な機能であり、炉内観察においては左右旋回機構15は旋回位置を固定して使用する。
【0034】
観察装置を炉内で水平移動させるための水平移動機構13は、炉長全長にわたって移動を行うための必要長さを有する。水平移動機構の底部には炉底に接地する車輪14が設けられ、水平移動機構を支持する。水平移動機構の先端には旋回アーム10の旋回駆動部11が設置され、水平移動機構13は電動モーターによって駆動されて炉内を移動できる。
【0035】
水平移動機構13は12.5m/minの速度で炉内を移動し、1mm移動する毎に各撮像装置の撮像データを採取する。画像はディスプレイ上画像及び印刷画像として作成される。側壁の画像については、撮像装置1台で高さ方向について2048ビットの1次元の情報が得られる。この情報を、画像合成手段によって炉長方向の移動距離に対応して順次つなぎあわせる。そして炉長方向に16m移動することにより、炉長方向では16000個の画像情報がつなぎ合わされ、結果として側壁17の炉長方向全長を表示する2次元の画像が得られる。旋回アーム10の旋回によって撮像装置の高さを変更して4回の撮像を行うことにより、側壁の全範囲の撮像を行うことができる。炉頂部18は最上部の側壁撮像時に、炉底部19については最下部の側壁撮像時に同時に撮像することにより2次元の画像が得られる。
【0036】
こうして、左右の側壁及び炉頂・炉底部について画像を作成した。画像からは、壁面の目地切れ、レンガ亀裂、剥離、カーボン付着、壁面の凹凸、湾曲の状況を克明に読み取ることができ、さらにそれら損傷箇所を正確に把握することができた。
【0037】
次に首振り装置12・撮像装置・鏡面を旋回アーム10から取り外し、旋回アーム先端に耐火物溶射ノズル等の補修装置を取り付けた。前記損傷状況・損傷箇所の情報に基づいてこの補修装置によって耐火物の補修を行うことにより、タイムリーに適切な耐火物補修を行うことができ、炭化室耐火物の寿命延長、補修時間の短縮を実現することができた。
【0038】
【発明の効果】
コークス炉の炭化室の内壁を、炭化室が赤熱した状態において、内壁全体にわたって良好な解像度で最適な角度からの観察画像を得ることができ、その結果得られる耐火物の損傷状況・損傷箇所の正確な情報に基づいてタイムリーに適切な耐火物補修を行うことができ、炭化室耐火物の寿命延長、補修時間の短縮が実現できる。
【0039】
側壁の観察装置をコンパクトな形状にすることができ、炉内観察時の取り扱いが容易になる。また、上下移動装置までを耐火物補修装置と兼用することによって、炉内観察作業と炉内補修作業を容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の側面図であり、(a)(b)(c)は撮像装置等を上下方向の異なった位置に配置した状況を示す。
【図2】本発明の撮像装置、鏡面、内壁の関係を示す拡大図であり、(a)は上から見た断面図、(b)は(a)のA−A面矢指図であり、(c)はミラー管を撮像装置方向から見た拡大図である。
【図3】本発明を正面から見た断面図である。
【図4】本発明の撮像装置、鏡面、内壁の関係を示す平面図である。
【図5】本発明の各実施の形態毎の撮像装置の横ぶれによる影響の関係を示す図である。
【図6】本発明において、撮像装置を移動しながら画像合成手段によって内壁観察画像を合成する様子を示す図である。
【図7】2次元撮像装置を用いた従来技術における内壁の撮像の状況を示す図であり、(a)は側壁において1枚の撮像データでカバーできる範囲を示し、(b)は(a)によって撮像された画像を示す。
【符号の説明】
1 撮像装置
1a 側壁観察撮像装置
1b 炉頂耐火物観察撮像装置
1c 炉底耐火物観察撮像装置
2 撮像装置旋回装置
3 ミラー管
3a ミラー管外筒
3b ミラー管内筒
3c ミラー管冷却水通路
4 撮像装置収納筐体
4a 撮像装置収納筐体外筒
4b 撮像装置収納筐体内筒
4c 撮像装置収納筐体冷却水通路
5 撮像装置窓
6 撮像装置の光軸
7 鏡面
8 撮像装置の視野範囲
9 撮像装置が撮像する内壁部位
10 旋回アーム
11 旋回駆動部
12 首振り装置
13 水平移動機構
14 車輪
15 左右旋回機構
16 側壁
17a 左側側壁
17b 右側側壁
18 炉頂耐火物
19 炉底耐火物
20 従来技術における2次元撮像装置
21 2次元撮像装置による内壁撮像範囲
22 2次元撮像装置により撮像された画像
23 画像合成手段
24 画像表示手段
25 合成された画像
26 距離計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an observation method and an observation apparatus for remotely observing an inner wall of a coke oven.
[0002]
[Prior art]
The coke oven is constructed by alternately connecting a large number of carbonization chambers and combustion chambers, charging coal into the carbonization chamber, and applying high heat of 900 ° C. to 1100 ° C. from the combustion chamber to the carbonization chamber through the furnace wall. Coke is produced by adding coal continuously over time and drying coal. When this dry distillation is complete, the coke is discharged and the coal is charged and heating is started again.
[0003]
Each carbonization chamber has a height of about 6.5 m, a width of about 0.4 m, and a length of about 16 m, and forms a furnace space that is very narrow and deep (long). The inner wall of the carbonization chamber is covered with refractory bricks, and each refractory brick is roughly 120 mm high, 260 mm wide, and 110 mm thick. The coke oven heats the combustion chamber adjacent to each carbonization chamber to a high temperature, and supplies the heat to the carbonization chamber by heating the refractory bricks on the walls of the carbonization chamber to a high temperature. Therefore, the refractory brick used for the carbonization chamber wall (partition wall with the combustion chamber) is exposed to high temperature for a long time, and every time coking of coal is completed, the coke is extruded and carried out by a coke extruder. Refractories are subject to coke pressure and are easily damaged by thermal, chemical or mechanical stress. That is, it tends to cause wall surface joint breaks, brick cracks, peeling, carbon adhesion, wall surface unevenness, curvature, kiln width fluctuation, and the like. In the damaged portion, excessive force is locally applied during coke extrusion, and the damage is likely to further expand, and the damaged portion has a heat propagation characteristic different from that of the normal portion, which is not preferable for producing homogeneous coke. Relatively small damaged parts are sprayed and filled with refractory, and bricks lacking are fitted with refractory bricks and sprayed with refractory to repair them, but it is difficult to find and locate the damage. For this reason, in a situation where the inside of the carbonization chamber is red-hot, it is important to observe the surface with the necessary resolution for the necessary part of the inner wall, usually the entire surface of the inner wall, to detect the damage and to grasp the position. is there.
[0004]
In the method of observing the inner wall of the coke oven from the coke oven kiln using a short time between operations, the inside of the kiln must be observed from outside the kiln because it is hot, and the carbonization chamber is as described above. However, since the depth of the furnace is narrow, the width is narrow, so the inner wall refractory at the back of the furnace is observed at a shallow angle from a distance, and the surface observation is very difficult.
[0005]
In Patent Document 1, a camera transport boom equipped with a camera (ordinary two-dimensional ITV camera) is inserted into the furnace from the furnace port of the coke oven carbonization chamber, and the inner wall surface of the furnace is photographed while moving in the furnace length direction. Is disclosed. However, since the width of the carbonization chamber is very narrow, if the camera is directly opposed to the wall of the carbonization chamber, the distance between the camera and the inner wall cannot be obtained, and the shooting range becomes narrow and images in the required range cannot be obtained. The camera is mounted obliquely with respect to the wall surface, and the wall surface is viewed at a shallow angle. As shown in FIG. 7, the image of the inner wall photographed in this way has a narrow photographing range for the image on the side close to the camera (22a), and conversely the image on the side far from the camera has a wide photographing range but a small target. However, the necessary resolution cannot be obtained (22b). Also, with such a photographing method, it is difficult to focus on the entire field of view. In the above publication, an invention is disclosed in which the obtained perspective image is image-processed and converted into a front image as if it was taken facing the furnace wall, but even if such image processing is performed, it is disclosed. The point that the resolution of the portion where the far field is photographed cannot be obtained sufficiently, and the point that it is difficult to focus over the entire field of view remains unchanged.
[0006]
Patent Document 2 describes an inner wall observation method and apparatus capable of obtaining an observation image from an optimum angle with a good resolution over the entire inner wall in a state where the carbonization chamber is red hot. However, since the height of the carbonization chamber exceeds 6 m, if it is attempted to image the entire height direction at the same time, it becomes a large-scale facility, which increases the difficulty of installation and operation of the apparatus and increases the capital investment.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-105195
[Patent Document 2]
JP-A-11-106755
[0008]
[Problems to be solved by the invention]
The present invention is capable of observing the surface with a necessary resolution for a necessary portion of the inner wall, that is, the entire surface of the inner wall, in a situation where the carbonization chamber is red hot, and discovering the damage and grasping the position and state of the damage. It is an observation method and apparatus, and an object is to provide an observation method and an observation apparatus capable of downsizing an imaging portion of the observation apparatus.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) In the method of inserting the imaging device 1 into the inside of the carbonization chamber from the coke oven carbonization chamber and observing the inside of the carbonization chamber based on the imaging of the inner wall, the field of view of the imaging device 1 is linear or slit The mirror surface 7 is disposed in front of the imaging device, and the image of the carbonization chamber wall reflected by the mirror surface 7 is captured in the field of view of the imaging device, and the carbonization chamber wall is captured. The mirror surface 7 can move up and down in the carbonization chamber as a unit, The imaging device 1 and the mirror surface 7 are moved in the vertical direction by turning the turning arm 10, and the imaging direction of the imaging device and the installation direction of the mirror surface are kept constant regardless of the turning position of the turning arm 10. The imaging device 1 and the mirror surface 7 are moved in the furnace length direction with the vertical position determined, and the imaging data is collected every time the imaging device moves a short distance, and the imaging data corresponds to the movement distance in the furnace length direction. The coke oven carbonization chamber is characterized in that the coke oven is sequentially connected, and the position of the carbonization chamber in the vertical direction is changed and the same imaging is repeated to create a large area image of the carbonization chamber wall as a single image. Observation method.
( 2 ) The mirror surface 7 Is more than one It consists of a mirror surface, For each mirror surface, the optical axis from the imaging device reflects and the angle of the optical axis from the mirror surface to the side wall is different, The above (1) is characterized in that the inner wall of the carbonization chamber is observed from a plurality of angles by selecting an image obtained from which mirror surface. In The inner wall observation method of the coke oven carbonization chamber of description.
( 3 ) An imaging device 1 having a linear or slit-like visual field for imaging the inner wall of the carbonization chamber and disposed in the furnace height direction, one or a plurality of the imaging devices 1, and disposed in front of the visual field of the imaging device, One or more mirror surfaces 7 that supply a reflected image to the field of view of the imaging device, a vertical movement device that supports the imaging device 1 and the mirror surface 7 and moves in the vertical direction of the carbonization chamber, and supports the vertical movement device. In the process of reciprocating in the furnace length direction of the imaging apparatus 1 by the furnace length direction moving means, a moving unit that reciprocates in the furnace length direction and a line obtained each time the imaging apparatus 1 moves a short distance Image combining means for sequentially joining image data of a rectangular or slit-like field of view according to the moving distance in the furnace length direction, and compositing a wide area image of the carbonization chamber wall as a single image The vertical movement device moves up and down by turning the turning arm 10 and swings so as to keep the imaging direction of the imaging device and the installation direction of the mirror surface constant regardless of the turning position of the turning arm 10. Have 12 An apparatus for observing the inner wall of a coke oven carbonization chamber.
( 4 The imaging device 1 and the mirror surface 7 arranged at the tip of the swing arm 10 can be attached to and detached from the tip of the swing arm 10 together with the swing device 12 or separately from the swing device 12. A repair device can also be arranged, and the furnace wall repair can be performed by installing the furnace wall repair device at the tip of the swivel arm after the observation of the inner wall of the carbonization chamber ( 3 Coke oven carbonization chamber inner wall observation device.
( 5 ) The mirror surface 7 is characterized in that the surface of the tube having a water cooling structure inside is directly formed as one or more mirror surfaces. (3) or (4) The apparatus for observing the inner wall of the coke oven carbonization chamber described in 1.
( 6 The imaging device 1 is housed in a water-cooled housing (above) 3 ) ~ ( 5 ) Is a coke oven carbonization chamber inner wall observation device.
[0010]
As shown in FIG. 2, the imaging device 1 has a one-dimensional or substantially one-dimensional field of view 8, and a plane including the field of view 8 is substantially parallel to the inner wall of the carbonization chamber. The mirror surface 7 is disposed in front of the imaging device 1, and the carbonization chamber wall portion 9 can be imaged through an image obtained by reflection on the mirror surface 7. The range in which the imaging device 1 can capture an image at a certain time is a linear portion in the vertical direction. By performing imaging while moving the imaging device 1 and the mirror surface 7 in the coking chamber furnace length direction, the horizontal direction of the carbonizing chamber With respect to the entire length of the furnace length, an image of the inner wall of the imaging range 9 portion of the imaging device can be obtained in the vertical direction.
[0011]
It is possible to simultaneously cover the entire height range of the carbonization chamber by arranging a plurality of imaging devices 1 in the vertical direction, but in the present invention, as shown in FIG. Reference numeral 7 denotes only a part of the height in the coking chamber height direction as an imaging range. In order to cover the entire height range, it is necessary to use an imaging device and a mirror surface whose height is comparable to the height of the carbonization chamber, but by making only a part of the height as the imaging range as in the present invention. The housing 4 and the mirror surface 7 that house the imaging device 1 can be made compact.
[0012]
After the imaging of the entire length of the furnace is completed for the height range that can be covered by the imaging device 1 and the mirror surface 7, the height direction position of the imaging device 1 and the mirror surface 7 in the furnace is changed, for example, from the position (a) in FIG. The height is changed to the position (b), and imaging is performed for the height range (b). By repeating the imaging in this way, it is possible to obtain imaging data for the entire length and height of the carbonization chamber wall.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The imaging device 1 used in the present invention is characterized in that the field of view is linear or slit-shaped and is arranged so as to image the carbonization chamber wall. An imaging device having a linear or slit field of view uses an imaging device in which light receiving elements are arranged one-dimensionally as the imaging device. A CCD imaging device or the like in which CCD (charge coupled device) units are arranged in series, and the number of units is selected as 2048 units × 1 row, 4096 units × 1 row or 5150 units × 1 row. Can do. In order for the field of view to be slit-shaped, the light receiving elements need not be arranged in a single row, and there may be two or several rows. Alternatively, a normal two-dimensional image sensor may be used, and a slit-like image of a specific field of the entire field of view may be used. However, it is possible to obtain an element with a higher resolution in the length direction of the slit-like field by using a one-dimensional image sensor than using a two-dimensional image sensor.
[0014]
In the case of the carbonization chamber side wall observation imaging apparatus, the optical axis of the imaging apparatus is arranged substantially parallel to the furnace length direction, and the slit-shaped field of view is arranged parallel to the furnace height direction. As shown in FIG. 4A, a long thin mirror surface 7 that covers the slit-shaped field of view is arranged in front of the imaging device, and an angle between the mirror surface and the optical axis 6 of the imaging device is approximately 45 ° to obtain a reflected image. The observation part of the inner wall is observed from a substantially vertical direction through a mirror surface. As shown in FIG. 4B, the angle between the mirror surface and the optical axis of the imaging device may be changed, and the observation location may be observed from an oblique direction through the mirror surface. In any of the embodiments, the extension distance of the optical axis between the imaging device and the observation point is determined so as to cover the imaging range where the visual field is necessary. As a result of adopting the configuration of the present invention, since the distance between the shooting location and the imaging device is substantially the same in the entire field of view in one imaging, it is possible to focus in the entire field of view.
[0015]
As the vertical movement means for moving the imaging device 1 and the mirror surface 7 of the present invention in the height direction, a method using a turning arm 10 turning in the vertical direction as shown in FIG. 1 or a method using a moving means sliding up and down, etc. Can be used. In the case of using the swing arm 10, the imaging device 1 and the mirror surface 7 are disposed at the tip of the swing arm 10. Here, it is preferable that the imaging direction of the imaging device 1 and the orientation of the mirror surface 7 always face the same direction regardless of the height direction position of the swivel arm 10. Specifically, the imaging direction of the imaging device 1 is preferably a horizontal direction parallel to the side wall, and the direction of the mirror surface 7 is preferably a vertical direction. Therefore, a swing device 12 is disposed at the tip of the swivel arm 10, and the imaging device 1 and the mirror surface 7 are installed on the swing device 12. By adjusting the rotation angle of the swing device 12 in accordance with the turning of the turning arm 10, the orientation of the imaging device 1 and the mirror surface can always be maintained in a constant direction.
[0016]
Unlike the observation of the side wall 17, the imaging device (1b, 1c) for observing the furnace top refractory 18 or the furnace bottom refractory 19 can take a longer distance from the refractory to the imaging device viewed vertically. An angle between the axis and the observation surface can be arbitrarily determined. Therefore, it is not necessary to use a mirror surface as in the side wall observation, and it is possible to observe at an arbitrary angle including 90 ° with respect to the observation surface. The linear or slit imaging device field of view is arranged parallel to the furnace width direction.
[0017]
The imaging device moves in the furnace length direction together with the mirror surface. At this time, the heights of the imaging device 1 and the mirror surface 7 are kept constant. During this movement, the direction of the optical axis of the image pickup device is always maintained in a constant direction. Therefore, the observation spot 9 on the inner wall that the image pickup device sees as a field of view moves with the same distance as the image pickup device. When moving, every time the imaging device moves a short distance, imaging data captured by the imaging device in a linear or slit-like field of view is collected. Usually, image data is collected every time a short fixed distance is moved. The imaging data is aggregated, and, for example, one slit-shaped imaging data is displayed in the vertical direction on the two-dimensional screen, and the imaging data is displayed in the horizontal direction so that the imaging data is arranged for each moving distance of the imaging interval. Since the moving distance of the imaging interval is set to be short, for example, 1 mm, a two-dimensional image can be created by arranging the imaging data in this way. If it is an image of the side wall of the furnace, in the created image, the vertical direction is the furnace height direction, the horizontal direction is the furnace length direction, and an image is obtained as if the inner wall of the furnace was viewed at a distance from the front. be able to. The focus is in every place, the required resolution is satisfied in any place, and image processing for enlarging or reducing the image depending on the place is not required. As a method of creating a two-dimensional image by arranging the one-dimensional image data as described above, a general image scanner scans a one-dimensional reading device to create a two-dimensional image as image data. It is possible to use a general-purpose method used.
[0018]
In FIG. 6, the imaging device 1 has moved from the position 1r to the position 1s and is still moving. During this time, the observation site of the side wall 17 by the imaging device moved from 9r to 9s. Images based on the imaging data obtained so far are synthesized by the image synthesizing unit 23, and an image 25 is obtained on the image display unit 24.
[0019]
The number of imaging devices can be one or a plurality of side wall observation imaging devices. In the present invention, since the imaging device can be moved up and down, a single imaging device covers a certain range in the height direction, and sequentially captures the entire height range of the sidewall by moving the height of the imaging device. Can do. Although the side wall 17 has two left and right surfaces, the left and right side walls are observed with the same image pickup device by adopting a method in which one side wall 17a is observed on the outward path of the image pickup apparatus movement and the remaining side wall 17b is observed on the return path. It is possible. Observation of the refractory at the furnace bottom and the furnace top can be observed with one imaging device each because the furnace width is narrow.
[0020]
When the image pickup apparatus moves, it is difficult to completely prevent the image pickup apparatus from shaking. In the horizontal movement mechanism 13 as a moving means for moving the imaging device in the furnace length direction, the imaging device is guided by a wheel 14 that contacts the furnace bottom, or at the tip of a beam having a length equal to the furnace length of about 16 m. Installed and supported without ground guide. When using a wheel that touches the bottom of the furnace, the bottom of the furnace is not a smooth flat surface. It is difficult to avoid shaking. As shown in FIG. 5, in the conventional method in which the side wall is imaged obliquely by the camera, the image shake has occurred by the magnitude of Δy due to the presence of the lateral blur Δx. In the embodiment in which the optical axis to be directed is oriented vertically, even if the imaging device and the mirror surface fluctuate sideways, there is little variation in the observation position due to it. Therefore, there is an advantage in that an image with a good resolution can be obtained with less image distortion due to the lateral blur accompanying the movement of the imaging device.
[0021]
In the embodiment in which the optical axis directed from the mirror surface toward the side wall is inclined, the fluctuation in the observation position caused by the lateral blurring of the imaging device and the mirror surface and the disturbance of the image based thereon are compared with the embodiment in which the optical axis is vertical. Some image distortion occurs. On the other hand, since the observation is performed at an angle with respect to the observation surface, it has a feature that the unevenness of the observation surface can be grasped more clearly than in the embodiment in which observation is performed from the vertical direction. It is important to check the depth of cracks in order to grasp the damage status of the inner wall of the carbonization chamber, but it is possible to recognize a certain depth of unevenness based on the shadow of the obtained image, so whether repair is necessary or not. It is useful for grasping the degree of repair.
[0022]
As described above, since each has a unique advantage depending on the angle of the optical axis from the mirror surface toward the side wall, it is preferable that an arbitrary form can be selected according to the observation purpose. In the present invention, as shown in FIG. 2, the imaging device turning device 2 that supports the imaging device 1 and enables the optical axis of the imaging device to be directed to each mirror surface of a plurality of sets of mirror surfaces (7b to 7e). By determining the orientation of the imaging device by the action of the turning device, the angle of the optical axis toward the side wall can be selected.
[0023]
Although the side walls of the carbonization chamber have both left and right sides, the direction of the imaging device is controlled by the action of the imaging device turning device 2, and the left side wall is observed as the forward path of movement in the furnace length direction by the same imaging device, and the return path is the right side surface. It is also possible to control the observation.
[0024]
Usually, observation is performed between coke oven operations, so the observed oven wall is red hot. Therefore, when observing with the image pickup apparatus, the self-luminous light is observed, and no separate illumination is required. In general, the refractory is thin, the distance between the adjacent combustion chambers is shortened, and the damaged part is heated to a higher temperature than the surrounding healthy part. Can be recognized. Moreover, since the carbon adhesion part burns itself, the brightness is high. The damaged portion to be repaired and the repair method are determined from the image obtained based on the luminance information and the unevenness information in the embodiment in which the optical axis from the mirror surface toward the side wall is inclined, and repair is performed.
[0025]
Since the mirror surface 7 disposed in front of the imaging device is exposed to a high temperature environment, it is necessary to take measures to protect the mirror surface from thermal deformation and thermal damage. In a method in which a planar mirror surface is provided independently and supported by a support mechanism, a complicated cooling mechanism is required to effectively and uniformly cool the mirror surface. On the other hand, as in the present invention shown in FIG. 2, the above problem can be solved by making the surface of the tube having a water cooling structure directly a mirror surface. Since it is a circular tube, it is easy to form a plurality of mirror surfaces on the surface. Stainless steel pipe is the most suitable material for the pipe. A necessary portion of the surface of the tube is polished into a flat surface to obtain a mirror surface, but if it is a stainless steel tube, the occurrence of cloudiness on the mirror surface is not a problem even if it is used in a red-heated coke oven. In addition, since the overall shape is tubular, the heat effect received from the periphery is uniform in the circumferential direction of the tube, and because it is tubular, it is highly rigid and can be manufactured at low cost. Generation of mirror distortion during insertion in the furnace is at a level that does not cause a problem. The internal water cooling structure is a method of flowing cooling water through the entire inside of the pipe, or a jacket type in which cooling water is flowed between the inner pipe 3b and the outer pipe 3a as a double pipe structure as shown in FIG. 2 (a). Either can be adopted. The mirror surface 7 is an elongated flat mirror parallel to the tube axis having a length that covers the field of view of each imaging device, and is provided at a plurality of locations (7b to 7e) on the outer periphery of the tube according to the angle with the optical axis of the imaging device. .
[0026]
The imaging device 1 and the imaging device turning mechanism 2 need to be housed in a casing whose outer periphery is cooled in order to protect from the high temperature atmosphere in the carbonization chamber. Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 7-126636, a method of storing each imaging device and a turning mechanism in a water-cooled casing is known, but this makes it very difficult to manufacture and maintain. . On the other hand, as in the present invention shown in FIG. 2 and FIG. 3, a cylindrical housing 4 whose outer periphery is water-cooled with a water-cooling jacket is prepared, and an imaging device 1a and an imaging device turning device 2 for side wall observation are prepared. Further, if necessary, the imaging devices 1b and 1c for observing the top and bottom of the furnace can be accommodated in the single cylindrical casing 4. As a result, the swivel sliding part of the image pickup apparatus is not exposed to heat, so there is no need for a special water cooling mechanism, and there is no fear of cooling water leakage. Moreover, the cooling structure of the housing is simple and the flow of cooling water can be made smooth. Furthermore, since the structure is simple, the weight can be reduced. The observation window is usually fitted with quartz glass or the like with a coating for reflecting heat rays to prevent intrusion of heat and outside air.
[0027]
In the present invention, as shown in FIG. 3, a pair of distance meters (26a, 26b) are housed in the imaging device housing 4, and the distance to the left and right side walls (17a, 17b) by the distance meters. Can be measured. As the distance meter 26, a laser distance meter can be used. Based on the sum of the measurement results of the pair of distance meters (26a, 26b), the furnace width between both side walls at the distance measurement point can be measured. When the side wall 17 of the carbonization chamber is damaged, the furnace width increases at the damaged portion. In addition, if there is carbon adhesion, the furnace width of the part is narrowed. Therefore, by observing the inner wall of the carbonization chamber and simultaneously measuring the furnace width with the imaging device of the present invention, it is possible to obtain more detailed information on the damage status of the inner wall of the carbonization chamber, and repairing refractories or removing carbon. It becomes possible to carry out more appropriately. If the method of measuring the furnace width is adopted, even if the casing in which the distance meter is stored rolls in the carbonization chamber, it is possible to perform measurement without being affected by the roll.
[0028]
After the damaged part of the inner wall refractory is specified by the inner wall observation apparatus of the present invention, the damaged part is repaired. For repair, remove the carbon at places where the carbon adheres heavily, and repair the damaged parts of the refractory brick by spraying the refractory. A device for inserting a carbon removal jig or a refractory spray nozzle into the furnace and arranging it corresponding to the damaged part is required. Although it is possible to separately provide a moving device for inserting and arranging the repair device in the furnace, if the moving device of the inner wall observation device of the present invention can also serve as the moving device of the repair device, the equipment cost can be reduced. This eliminates the need to secure a wide facility installation location.
[0029]
In the present invention, the imaging device and the mirror surface at the tip of the vertical movement device such as the swivel arm 10 can be attached and detached, and after the observation in the furnace is completed, the imaging device and the mirror surface are removed from the tip of the vertical movement device, instead of a spray nozzle or the like. By attaching this repair jig to the tip of the up-and-down moving device, it becomes possible to perform both in-furnace observation and in-furnace repair operations with one set of moving device. When the swing arm 10 is used as the vertical movement device, the swinging device 12 at the tip of the swing arm 12, the imaging device 1, and the mirror surface 7 can be integrally removed from the swing arm 10.
[0030]
【Example】
An embodiment of the present invention will be described with reference to FIGS. The inner wall of the coke oven carbonization chamber having a height of 6.5 m, a width of 0.4 m, and a length of 16 m was observed using the inner wall observation device of the carbonization chamber shown in FIGS. The imaging device 1 for observation has one unit (1a) for side wall observation and one unit (1b, 1c) for furnace top / bottom bottom observation, each of which is a one-dimensional unit having 2048 units × 1 row of light receiving elements. It is a CCD camera. The imaging apparatus can observe a linear range with a viewing angle of 60 °. The side wall observation imaging device 1a, the furnace top observation imaging device 1b, and the furnace bottom observation imaging device 1c are all housed in one vertical water-cooled cylinder 4.
[0031]
As shown in FIG. 2, a cylinder (hereinafter referred to as “mirror tube 3”) having two sets of mirror surfaces (7b to 7e) symmetrical on the outer periphery is vertically arranged at a position 900 mm ahead of the side wall imaging device 1a. . The mirror tube 3 is a jacket water cooling system in which the inside is a double tube and cooling water passes between the outer tube 3a and the inner tube 3b, and the outer tube is a stainless steel tube. On the outer periphery of the mirror tube, there are plane parts symmetrically left and right at positions of 45 ° and 22.5 ° with respect to the furnace length direction (7b to 7e), and are mirror-polished to constitute a plane mirror (FIG. 2). (C)). The width of the plane mirror is 20 mm, and an imaging device for observing the side walls can observe the side walls at an angle of 90 ° or 45 ° with respect to the side walls for each plane mirror by observing the reflected light with these plane mirrors in the field of view. it can. As shown in FIG. 2A, the side wall imaging device 1a can be swung left and right within a range of 15 ° around the furnace length direction by the swivel device 2, and by selecting the angle, A method of observing the side wall from the direction of the side wall 90 ° (6b, 6e) to the direction of 45 ° (6c, 6d) by specular reflection can be selected. 2 (a) and 2 (b), the orientation of the imaging device 1 is 6d, and the angle at which the side wall 17b is observed at a 45 ° angle through the mirror surface 7d is selected.
[0032]
In each of the furnace length observation imaging apparatus 1b and the furnace bottom observation imaging apparatus 1c, the optical axis 6 is set in the vertical direction, and the distance from the observation target is set to 400 mm.
[0033]
The imaging device and the mirror surface are moved up and down by the turning arm 10. A swing drive unit 11 is provided at the base of the swing arm 10, and an imaging device and a mirror surface are disposed via a swing device 12 at the tip of the swing arm. The head swing device 12 can always keep the orientation of the imaging device and the mirror surface constant by swinging the head up and down as the swing arm 10 swings. The connecting portion between the swing device 12 and the turning arm 10 of the present embodiment also has a left and right turning mechanism 15. The swinging device 12 and the left and right turning mechanisms 15 can be separated, and after the observation in the furnace is finished, the in-furnace repair device is attached instead of separating the swinging device 12. The left / right turning mechanism 15 is a function necessary for in-furnace repair, and the left / right turning mechanism 15 is used with the turning position fixed in observation in the furnace.
[0034]
The horizontal movement mechanism 13 for horizontally moving the observation apparatus in the furnace has a necessary length for moving the entire length of the furnace. A wheel 14 that contacts the bottom of the furnace is provided at the bottom of the horizontal movement mechanism, and supports the horizontal movement mechanism. A turning drive unit 11 of the turning arm 10 is installed at the tip of the horizontal moving mechanism, and the horizontal moving mechanism 13 is driven by an electric motor and can move in the furnace.
[0035]
The horizontal movement mechanism 13 moves in the furnace at a speed of 12.5 m / min, and collects imaging data of each imaging device every time it moves 1 mm. The images are created as an on-display image and a printed image. As for the side wall image, 2048-bit one-dimensional information can be obtained in the height direction with one imaging device. This information is sequentially connected by the image composition means corresponding to the moving distance in the furnace length direction. Then, by moving 16 m in the furnace length direction, 16000 pieces of image information are connected in the furnace length direction, and as a result, a two-dimensional image displaying the length of the side wall 17 in the furnace length direction is obtained. The entire range of the sidewall can be imaged by changing the height of the imaging device by turning the revolving arm 10 and performing imaging four times. A two-dimensional image is obtained by imaging the top 18 of the furnace at the time of imaging the uppermost side wall and simultaneously imaging the bottom of the furnace 19 at the time of imaging the lowermost side wall.
[0036]
Thus, images were created for the left and right side walls and the top and bottom of the furnace. From the images, we were able to clearly read the conditions of wall joints, brick cracks, peeling, carbon adhesion, wall surface irregularities, and curvature, and we were able to accurately grasp the damaged parts.
[0037]
Next, the swinging device 12, the image pickup device, and the mirror surface were removed from the turning arm 10, and a repairing device such as a refractory spray nozzle was attached to the tip of the turning arm. By repairing the refractory with this repair device based on the information on the damage status / damaged part, the refractory can be repaired in a timely manner, extending the life of the coking chamber refractory and shortening the repair time. Was able to be realized.
[0038]
【The invention's effect】
In the state where the carbonization chamber of the coke oven is red hot, it is possible to obtain an observation image from the optimum angle with a good resolution over the entire inner wall, and as a result, the damage status and damage location of the refractory obtained Based on accurate information, appropriate refractory repair can be performed in a timely manner, and the lifetime of the coking chamber refractory can be extended and the repair time can be shortened.
[0039]
The side wall observation device can be made compact and easy to handle during observation in the furnace. In addition, by using the up-and-down moving device also as the refractory repairing device, the observation in the furnace and the repairing work in the furnace can be easily performed.
[Brief description of the drawings]
FIGS. 1A and 1B are side views of the present invention, and FIGS. 1A, 1B, and 1C show situations in which imaging devices and the like are arranged at different positions in the vertical direction.
FIG. 2 is an enlarged view showing the relationship between the imaging device, mirror surface, and inner wall of the present invention, (a) is a cross-sectional view seen from above, (b) is an AA plane arrow diagram of (a), (C) is the enlarged view which looked at the mirror tube from the imaging device direction.
FIG. 3 is a cross-sectional view of the present invention as seen from the front.
FIG. 4 is a plan view showing the relationship between the imaging device, mirror surface, and inner wall of the present invention.
FIG. 5 is a diagram illustrating a relationship of influences caused by a lateral shake of the imaging apparatus according to each embodiment of the present invention.
FIG. 6 is a diagram showing how the inner wall observation image is synthesized by the image synthesizing means while moving the imaging apparatus in the present invention.
7A and 7B are diagrams illustrating a situation of imaging of an inner wall in a conventional technique using a two-dimensional imaging device, in which FIG. 7A shows a range that can be covered with one piece of imaging data on a side wall, and FIG. The image imaged by is shown.
[Explanation of symbols]
1 Imaging device
1a Side wall observation imaging device
1b Furnace top refractory observation imaging device
1c Furnace bottom refractory observation imaging device
2 Imaging device turning device
3 Mirror tube
3a Mirror tube outer cylinder
3b Mirror tube inner cylinder
3c Mirror tube cooling water passage
4 Imaging device housing
4a Imaging device housing outer cylinder
4b Imaging device housing inner cylinder
4c Imaging device housing housing cooling water passage
5 Imaging device window
6 Optical axis of imaging device
7 mirror surface
8 Field of view of the imaging device
9 Inner wall imaged by the imaging device
10 Swivel arm
11 Swiveling drive
12 Swing device
13 Horizontal movement mechanism
14 wheels
15 Left and right turning mechanism
16 side walls
17a Left side wall
17b Right side wall
18 Furnace top refractories
19 Furnace bottom refractories
20 Two-dimensional imaging device in the prior art
21 Inner wall imaging range by two-dimensional imaging device
22 Images captured by a two-dimensional imaging device
23 Image composition means
24 Image display means
25 Composite image
26 Distance meter

Claims (6)

コークス炉炭化室の窯口より撮像装置を炭化室内部に挿入し、内壁の撮像をもとに炭化室内壁状況を観察する方法において、
該撮像装置の視野を線状もしくはスリット状として、撮像装置前方に鏡面を配置し、該鏡面で反射した炭化室内壁の像を前記撮像装置の視野でとらえて前記炭化室内壁を撮像するように配置し、前記撮像装置と鏡面は一体として炭化室内部で上下に移動可能であり、
前記撮像装置と鏡面の上下方向の移動は旋回アームの旋回によって行い、かつ該旋回アームの旋回位置によらず前記撮像装置の撮像方向及び鏡面の設置方向は一定方向を保ち、
該撮像装置及び鏡面を上下方向の位置を定めて炉長方向に移動し、該撮像装置が短い距離を移動する毎に撮像データを採取し、
該撮像データを炉長方向の移動距離に対応して順次つなぎ合わせ、更に炭化室上下方向の位置を変更して同様の撮像を繰り返し、炭化室内壁の広い面積の画像を1枚の画像として作成することを特徴とするコークス炉炭化室の内壁観察方法。
In the method of observing the state of the carbonization chamber wall based on the imaging of the inner wall by inserting an imaging device into the chamber of the coke oven carbonization chamber,
The field of view of the imaging device is linear or slit-like, a mirror surface is disposed in front of the imaging device, and the image of the inner wall of the carbonization chamber reflected by the mirror surface is captured from the field of view of the imaging device so as to capture the wall of the carbonization chamber. Arranged, the imaging device and the mirror surface can be moved up and down in the carbonization chamber as a unit,
The vertical movement of the imaging device and the mirror surface is performed by turning a turning arm, and the imaging direction of the imaging device and the installation direction of the mirror surface are kept constant regardless of the turning position of the turning arm,
Move the imaging device and the mirror surface in the furnace length direction by setting the vertical position, and collect imaging data every time the imaging device moves a short distance,
The image data is sequentially connected in accordance with the moving distance in the furnace length direction, and the same position is repeated by changing the vertical position of the coking chamber to create a large area image of the coking chamber wall as a single image. A method for observing the inner wall of a coke oven carbonization chamber.
前記鏡面は複数の鏡面からなり、鏡面毎に、撮像装置からの光軸が反射して鏡面から側壁に向かう光軸の角度が異なり、いずれの鏡面から得られた像を撮像するかを選択することにより、複数の角度から炭化室内壁を観察することを特徴とする請求項1記載のコークス炉炭化室の内壁観察方法。The mirror surface is composed of a plurality of mirror surfaces, and for each mirror surface, the optical axis from the imaging device reflects and the angle of the optical axis from the mirror surface toward the side wall is different, and the mirror surface is selected from which the image obtained is captured. The method of observing the inner wall of a coke oven chamber according to claim 1 , wherein the inner wall of the coking oven is observed from a plurality of angles. 炭化室内壁を撮像するための線状又はスリット状視野を有し、炉高方向に1台又は複数台配置された撮像装置と、
前記撮像装置の視野前方に配置され、炭化室内壁の反射像を前記撮像装置の視野に供給する1又は2以上の鏡面と、
前記撮像装置及び鏡面を支持し、炭化室上下方向に移動する上下移動装置と、
前記上下移動装置を支持し、炉長方向に往復移動する移動手段と、
前記炉長方向移動手段による前記撮像装置の炉長方向への往復移動過程で、該撮像装置が短い距離を移動する毎に得られた線状もしくはスリット状視野の撮像データを、炉長方向の移動距離に対応して順次つなぎ合わせ、炭化室内壁の広い面積の画像を1枚の画像として合成する画像合成手段とを備え
前記上下移動装置は旋回アームの旋回によって上下移動を行い、かつ該旋回アームの旋回位置によらず前記撮像装置の撮像方向及び鏡面の設置方向を一定方向に保つように回転する首振り装置を有することを特徴とするコークス炉炭化室の内壁観察装置。
An imaging device having a linear or slit-like field for imaging the wall of the carbonization chamber, and one or more arranged in the furnace height direction;
One or more mirror surfaces that are disposed in front of the field of view of the imaging device and supply a reflected image of the inner wall of the carbonization chamber to the field of view of the imaging device;
A vertical movement device that supports the imaging device and the mirror surface and moves in the vertical direction of the carbonization chamber;
A moving means for supporting the vertical movement device and reciprocating in the furnace length direction;
In the process of reciprocating the imaging device in the furnace length direction by the furnace length direction moving means, the imaging data of the linear or slit-like field obtained each time the imaging device moves a short distance is obtained in the furnace length direction. Image combining means for sequentially connecting in accordance with the moving distance, and combining an image of a large area of the carbonization chamber wall as a single image ;
The up-and-down moving device has a swinging device that moves up and down by turning a turning arm and rotates so as to keep the imaging direction of the imaging device and the installation direction of the mirror surface constant regardless of the turning position of the turning arm. An apparatus for observing the inner wall of a coke oven carbonization chamber.
前記旋回アーム先端に配置した前記撮像装置と鏡面は、前記首振り装置とともに又は首振り装置と別に旋回アーム先端に着脱可能であり、該旋回アーム先端には炉壁補修装置も配置可能であり、炭化室の内壁観察終了後に炉壁補修装置を旋回アーム先端に設置して炉壁補修を行うことができることを特徴とする請求項に記載のコークス炉炭化室の内壁観察装置。The imaging device and the mirror surface arranged at the tip of the swing arm can be attached to and detached from the tip of the swing arm together with the swing device or separately from the swing device, and a furnace wall repair device can also be placed at the tip of the swing arm, The apparatus for observing an inner wall of a coke oven carbonization chamber according to claim 3 , wherein after the observation of the inner wall of the carbonization chamber, the furnace wall repair device can be installed at the tip of the swivel arm to repair the furnace wall. 前記鏡面は内部を水冷構造とした管の表面を直接1又は2以上の鏡面としてなることを特徴とする請求項3又は4に記載のコークス炉炭化室の内壁観察装置。5. The apparatus for observing the inner wall of a coke oven carbonization chamber according to claim 3 or 4 , wherein the mirror surface has one or more mirror surfaces directly on the surface of a tube having a water cooling structure inside. 前記撮像装置は水冷構造の筐体内に収納してなることを特徴とする請求項乃至のいずれかに記載のコークス炉炭化室の内壁観察装置。6. The apparatus for observing an inner wall of a coke oven carbonization chamber according to any one of claims 3 to 5 , wherein the imaging device is housed in a casing having a water cooling structure.
JP2002263559A 2002-09-10 2002-09-10 Method and apparatus for observing inner wall of coke oven carbonization chamber Expired - Fee Related JP3981610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263559A JP3981610B2 (en) 2002-09-10 2002-09-10 Method and apparatus for observing inner wall of coke oven carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263559A JP3981610B2 (en) 2002-09-10 2002-09-10 Method and apparatus for observing inner wall of coke oven carbonization chamber

Publications (2)

Publication Number Publication Date
JP2004099746A JP2004099746A (en) 2004-04-02
JP3981610B2 true JP3981610B2 (en) 2007-09-26

Family

ID=32263250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263559A Expired - Fee Related JP3981610B2 (en) 2002-09-10 2002-09-10 Method and apparatus for observing inner wall of coke oven carbonization chamber

Country Status (1)

Country Link
JP (1) JP3981610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126989A (en) * 2009-12-17 2011-06-30 Sumitomo Heavy Industries Process Equipment Co Ltd Method and apparatus for observing coke oven wall
JP2011126988A (en) * 2009-12-17 2011-06-30 Sumitomo Heavy Industries Process Equipment Co Ltd Method and apparatus for observing coke oven wall

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119501A1 (en) * 2008-03-24 2009-10-01 株式会社Ihi検査計測 Furnace-observing method and apparatus
JP2020002320A (en) * 2018-06-29 2020-01-09 鎬榮 李 Diagnostic device and diagnostic system for coke oven and door frame of coke oven
CN108542273A (en) * 2018-07-03 2018-09-18 珠海黑白科技有限公司 A kind of oven with camera function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126989A (en) * 2009-12-17 2011-06-30 Sumitomo Heavy Industries Process Equipment Co Ltd Method and apparatus for observing coke oven wall
JP2011126988A (en) * 2009-12-17 2011-06-30 Sumitomo Heavy Industries Process Equipment Co Ltd Method and apparatus for observing coke oven wall

Also Published As

Publication number Publication date
JP2004099746A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
AU698585B2 (en) Apparatus for monitoring wall surface
JP5569318B2 (en) Coke oven carbonization chamber wall surface measuring method, coke oven carbonization chamber wall surface measuring device, and computer program
EP1473350B1 (en) Furnace wall observation device
JP3981610B2 (en) Method and apparatus for observing inner wall of coke oven carbonization chamber
JP2004132881A (en) Method for inspecting arrangement structure
JP3895928B2 (en) Wall surface observation device
JP3590509B2 (en) Method and apparatus for observing inner wall of coke oven carbonization chamber
JP2001003058A (en) Method for inspection wall surface of coke oven carbonization chamber and wall surface inspection equipment
JP2002226861A (en) Method for diagnosing inside of carbonization chamber of coke oven and device for diagnosing the same
KR101881359B1 (en) Coke ovens and coke oven door frame diagnosis appratus and diagnosis system
JP4133106B2 (en) Furnace wall shape measuring device
JP4750961B2 (en) Coke oven inside observation device
KR200282938Y1 (en) Coke oven carbonization chamber furnace wall diagnosis device_
CN108872249A (en) The diagnostic device and diagnostic system of coke oven and coke oven doorframe
KR101262200B1 (en) Apparatus for diagnosing inside wall of heating chamber
JPH10103934A (en) Profile measuring method and apparatus for charge
JP4295819B2 (en) Fine crack width calibration method
JP3962173B2 (en) Coke oven wall observation device
JP6482248B2 (en) Narrow gap inspection device
JP4954688B2 (en) Coke oven carbonization chamber furnace wall displacement measurement system, and coke oven carbonization chamber furnace wall displacement measurement method
JP4344007B2 (en) Fine crack width calibration method
JP2004354241A (en) Furnace wall geometry measuring method
JPS62288685A (en) Method for repairing furnace wall of coke oven
JP6848304B2 (en) Wall measurement method and wall surface measurement device for carbonization chamber of coke oven
JPH09275556A (en) Observation device for wall surface of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R151 Written notification of patent or utility model registration

Ref document number: 3981610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees